
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 1|P a g e

Building A Secure & Anti-Theft Web
Application By Detecting And Preventing

Owasp Critical Attacks- A Review

Vibhakti Mate
1
, Milind Tote

2
, Abdulla Shaik

3

1,2,3, Department of Computer science & Engineering, Nuva college of Engg. & Tech., Nagpur

(MH),India

vibhaktimate@gmail.com
1
,milind_tote@gmail.com

2
, snanmka@gmail.com

3

ABSTRACT-

Web applications of all kinds, whether online shops or partner portals, have in recent years increasingly

become the target of hacker attacks. The attackers are using methods which are specifically aimed at exploiting

potential weak spots in the web application software itself - and this is why they are not detected, or are not detected

with sufficient accuracy, by traditional IT security systems. OWASP develops tools and best practices to support

developers in the development and operation of secure web applications. Additional protection against attacks, in

particular for already productive web applications, is offered by what is still emerging category of IT security

systems, known as Web Application Firewalls often also called Web Application Shields or Web Application

Security Filters. According to OWASP, Web applications vulnerable to attacks such as SQL injection and Cross-Site

Scripting,Cross Site Request Forgery, Broken Authentication and Session management. In this paper we are

implementing four vulnerabilities of web application i.e., SQLI, CSRF, XSS and Broken Authentication and session

management to find out their prevention strategies over existing web application.

The main objective of this paper is to create a web application that provide security when user is login and

while user is logged on. Web application must be secured from the attacks that are listed above and show how these

attacks are used to compromise user identity and credentials. In this paper we are proposing a framework for

building secure and anti-theft web applications that must be secure from above listed attacks by improving existing

prevention techniques.

Keywords:Vulnerabilities, SQL Injection attack, Cross Site Request Forgery, Cross Site Scripting, Broken

Authentication and Session management, Open Web Application Security Project.

file:///C:\Documents%20and%20Settings\nuva.NUVA\My%20Documents\Downloads\vibhaktimate@gmail.com
mailto:milind_tote@gmail.com2
file:///C:\Documents%20and%20Settings\nuva.NUVA\My%20Documents\Downloads\snanmka@gmail.com3

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 2|P a g e

1. INTRODUCTION

Web applications are widely used to provide

functionality that allows companies to build and

maintain relationships with their customers. The

information stored by web applications is often

confidential and, if obtained by malicious attackers,

its exposure could result in substantial losses for both

consumers and companies. Recognizing the rising

cost of successful attacks, software engineers have

worked to improve their processes to minimize the

introduction of vulnerabilities. In spite of these

improvements, vulnerabilities continue to occur

because of the complexity of the web applications

and their deployment configurations. The continued

prevalence of vulnerabilities has increased the

importance of techniques that can identify

vulnerabilities in deployed web applications.

The main objective of this project is to create a

web application that provide security when user is

login and while user is logged on. Web application

must be secured from the attacks &show how these

attacks are used to compromise user identity and

credentials.

For providing better security and assurance of

confidentiality web applications must be developed

with secure coding practices. So for securing web

application from any attack from web we will create

a web application with vulnerability prevention and

we will test this application with different attacks that

can be perform on it

Designing secure authentication and session

management mechanisms are just a couple of the

issues facing Web application designers and

developers. Other challenges occur because input and

output data passes over public networks. Preventing

parameter manipulation and the disclosure of

sensitive data are other top issues.

Some of the top issues that must be addressed with

secure design practices are shown in Figure

Figure 1.0: Solution Architecture

This paper proposes a novel specification-

based methodology for the prevention of

above(abstract) listed Attacks. The two most

important advantages of the new approach against

existing analogous mechanisms are that, first, it

prevents all forms of above listed attacks; second,

Current technique does not allow the user to

accessdatabase directly from the database server. Our

proposed framework for building secure and anti-

theft web applications is consisting of four stages. In

each stage we analyze the inputted data taken from

the user and make a decision, whether that is

suspected or not.

2. ATTACKS ON WEB APPLICATIONS

Most of the attacks on web application are

performed to steal confidential data or to deface

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 3|P a g e

website or stealing session cookies. And reason for

this attacks are some vulnerabilities in web

application coding and in application developing

methods. This vulnerabilities from which on some of

very severe damaging attack can be perform. So

while developing application itself developer can

avoid that vulnerability.

2.1 Type of Attacks:

There are several Web application attacks

that can be used to take control over application or

deface application or stealing confidential data.

According to OWASP(Open Web Application

Security Project) there are 8 attacks that are most

severe and dangerous for any web application. That

attacks are as follows:

1. SQL Injection Attack

2. Cross-Site Scripting (XSS)

3.Broken Authentication and Session Management

4. Insecure Direct Object References

5. Cross-Site Request Forgery (CSRF)

6. Insecure Cryptographic Storage

7. Failure to Restrict URL Access

8. Unvalidated Redirects and Forwards

3.0 ENHANCEMENT

Initially, websites were static and the

interactions between users and web servers were very

limited. The implementation of dynamic websites

through server side scripts made it possible to

dynamically generate web pages for interactions

between users and web servers. These advancements

in web applications deploy the occurrence of critical

attacks as mentioned by OWASP. This applications

built an architecture, indicate to develop Secure

Software Engineering practices to achieve

vulnerabilities free web application. Here we are

mentioned four different attacks on web applications,

to show how we can prevent from these to achieve

secure web application.

3.1. SQL-Injection(SQLI):

 An SQL injection attack (SQLIA) is a type

of attack on web applications that exploits the fact

that input provided by web clients is directly included

in the dynamically generated SQL statement. SQLIA

is one of the foremost threats to web applications.

Injection flaws as SQL injection occur when

untrusted data is sent to an interpreter as part of a

command or query. The attacker’s hostile data can

trick the interpreter into executing unintended

commands or accessing unauthorized data.SQL

injection is a technique for maliciously exploiting

applications that use client-supplied data in SQL

statements. Using SQLIAs, an attacker may be able

to read, modify, or even delete query to its underlying

database, the attacker’s embedded commands are

executed by the database and the attack succeeds.

The results of these attacks are often dangerous and

can range from leaking of sensitive data to the

destruction of database contents.

3.2 SQL Injection Types:

These are the classification of SQL injection

types according to Halfond, Viegas and Orso

researches [2,5].

3.2.1. Tautology:

This attack bypasses the authentication and access

data through vulnerable input field using “where”

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 4|P a g e

clause by injecting SQL tokens into conditional query

statements which always evaluates to true.

3.2.2. Logically incorrect queries:

The error message sent from database on

being sending wrong SQL query may contain some

useful debugging information. This could help in

finding parameters which are vulnerable in the web

application and hence in the database of the

application.

3.2.3. Union queries:

The “Union” keyword in SQL can be used

to get information about other tables in the database.

And if used properly this can be exploited by attacker

to get valuable data about a user from the database

3.2.4. Piggy-backed Queries:

This is the kind of attack where an attacker

appends “;” and a query which can be executed on

the database. It could be one of the very dangerous

attacks on database which could damage or may

completely destroy a table. If this attack is successful

then there could be huge loss of data.

3.2.5. Stored Procedure:

It is an abstraction layer on top of database

and depending on the kind of stored procedure there

are different ways to attack. The vulnerability here is

same as in web applications. Moreover all the types

of SQL injection applicable for a web application are

also going to work here.

3.2.6. Blind Injection:

It’s difficult for an attacker to get

information about a database when developers hide

the error message coming from the database and send

a user to a generic error displaying page. It’s at this

point when an attacker can send a set of true/false

questions to steal data.

3.2.7. Timing Attacks:

In this kind of attack timing delays are

observed in response from a database which helps to

gather information from a database. SQL engine is

caused to execute a long running query or a time

delay statement with the help of if-then statement

which depends on the logic that has been injected. It

is possible to determine whether injected statement

was true or false depending on how much time

condition is true this code is injected to produce

response delay in time.

3.3 Existing system

Many existing techniques rely on complex

static analyses in order to find potential

vulnerabilities in the code. Some techniques also

based on dynamic negative tainting [1] that focuses

on untrusted data. These kinds of conservative static

analyses can generate high rates of false positives and

can have scalability issues when applied to large

complex applications. These techniques involve

extensive human effort. They require developers to

manually rewrite parts of the Web applications, build

queries using special libraries, or mark all points in

the code at which malicious input could be

introduced.

3.4 Proposed System

We propose a new highly automated

approach for dynamic detection and prevention of

SQLIAs. Intuitively, our approach works by

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 5|P a g e

identifying “trusted” strings in an application and

allowing only these trusted strings to be used to

create the semantically relevant parts of a SQL query

such as keywords or operators. The general

mechanism that we use to implement this approach is

based on Regular Expressions, which marks and

tracks certain data in a program at runtime.

In this project we have developed a highly automated

approach for protecting Web applications from

SQLIAs. This application consists of 1) Using

Regular expressions to track trusted data at runtime,

and 2) Allowing only trusted data to form the

semantically relevant parts of queries such as SQL

keywords and operators. 3) Performs syntax-aware

evaluation of a query string immediately before the

string is sent to the database to be executed. The

project also provides practical advantages over the

many existing techniques whose application requires

customized and complex runtime environments: It is

defined at the application level, requires no

modification of the runtime system, and imposes a

low execution overhead.

4.1Cross-Site scripting (XSS):

Cross-site scripting (XSS) is an attack

against web applications in which scripting code is

injected into the output of an application that is then

sent to a user’s web browser. In the browser, this

scripting code is executed and used to transfer

sensitive data to a third party (i.e., the attacker).

Currently, most approaches attempt to prevent XSS

on the server side by inspecting and modifying the

data that is ex- changed between the web application

and the user. Un- fortunately, it is often the case that

vulnerable applications are not fixed for a

considerable amount of time, leaving the users

vulnerable to attacks. The solution presented in this

paper stops XSS attacks on the client side by tracking

the flow of sensitive information inside the web

browser. If sensitive information is about to be

transferred to a third party, the user can decide if this

should be permitted or not. As a result, the user has

an additional protection layer when surfing the web,

without solely depending on the security of the web

application.

4.1.1 Existing System

Existing techniques for defending against XSS

exploits suffer from various weaknesses: inherent

limitations, incomplete implementations, complex

frameworks, runtime overhead, and intensive

manual-work requirements. Security researchers can

address these weaknesses from the below

perspectives. From a development perspective,

researchers need to craft simpler, better, and more

flexible security defenses. They need to look beyond

current techniques by incorporating more effective

input validation and sanitization features. In time,

development tools will incorporate security

frameworks that implement state-of-the-art

technology[8].

4.1.2 Proposed System:

Cross-site scripting (XSS) is one of the most

frequent vulnerabilities found in modern web

applications. Nevertheless, many service providers

are either not willing or not able to provide sufficient

protection to their users. This paper proposes a novel,

client-side solution to this problem. By modifying the

popular Firefox web browser, we are able to

dynamically track the flow of sensitive values (e.g.,

user cookies) on the client side. Whenever such a

sensitive value is

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 6|P a g e

abouttobetransferredtoathirdparty(i.e., theadversary),

the user is given the possibility to stop the

connection. To ensure protection against more subtle

types of XSS attacks that try to leak information

through non dynamic

controldependencies,weadditionallyemployanauxiliar

y,efficient static analysis, where necessary. With this

combination of dynamic and static techniques[3,5],

we are able to protect the user against XSS attacks in

a reliable and efficient way. To validate our concepts,

we automatically tested the enhanced browser on

more than one million web pages by means of a

crawler that is capable of interpreting JavaScript

code. The results of this large-scale evaluation

demonstrate that only a small number of false

positives is generated, and that our underlying

concepts are feasible in practice.

4.2 Cross site request forgery (CSRF):

CSRF is a kind of attack which forces an

end user to execute unwanted action on a web

application in which they were currently

authenticated. With a little help of social engineering

like sending a link via email/chat, an attacker may

forces the user of a web application to execute

actions of the attacker's choosing. CSRF

vulnerabilities are very common, and consequences

of such attacks are most serious with financial web-

sites. We propose Browser-Enforced Authenticity

Protection (BEAP), a browser-based mechanism to

defend against CSRF attacks. BEAP infers whether a

request reflects the user’s intention and whether an

authentication token is sensitive, and strips sensitive

authentication tokens from any request that may not

reflects the user’s intention. The inference is based on

the information about the request and heuristics

derived from analyzing real-world web applications.

4.2.1 Existing System

Several defense mechanisms have been

proposed for CSFR attacks, we now discuss their

limitations [11]. CSRF attacks are particularly

difficult to defend because cross-site requests are a

feature of the web application. To effectively defend

against CSRF attacks, one needs as much information

about an HTTP request as possible, in particular, how

the request is triggered and crafted. Such information

is available only within the browser. Existing

defenses suffer from the fact that they do not have

enough information about HTTP requests. They

either have to change the web application to enhance

the information they have or to use unreliable source

of information (such as Referer header)[10]. Even

when such information is available, it is still

insufficient. The most popular CSRF defense is to

authenticate the web form from which an HTTP

request is generated. CSRF attacks use HTTP

requests that have lasting observable effects at the

web site. Two request methods are used in real-world

HTTP requests: GET and POST [9]. The GET

method, which is known as a “safe” method, is used

to retrieve objects. The GET requests should not have

any lasting observable effect (e.g., modification of a

database). The operations that have lasting

observable effects should be requested using the

method POST. The POST requests have a request

body and are typically used to submit forms.

However, there exist web applications that do not

follow the standard and use GET for requests that

have lasting side effects. Web pages in one site may

result in HTTP requests to another site; these are

called cross-site requests.

4.2.2 Proposed system

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 7|P a g e

The fundamental nature of the CSRF attack

is that the user’s browser is easily tricked into

sending a sensitive request that does not reflect the

user’s intention. Our solution to this problem is to

directly address the confused deputy problem of the

browser. More specifically, we propose Browser-

Enforced Authenticity Protection (BEAP), which

enhances web browsers with a mechanism ensuring

that all sensitive requests sent by the browser reflect

the user’s intention. BEAP achieves this through the

following. First, BEAP infers whether an HTTP re-

quest reflects the intention of the user. Second, BEAP

infers whether authentication tokens associated with

the HTTP request are sensitive. An authentication

token is sensitive if attaching the token to the HTTP

request could have sensitive consequences. Third, if

BEAP concludes that an HTTP request reflects the

user’s intention, the request is allowed to be sent with

authentication tokens attached. If BEAP concludes

that an HTTP request may not reflects the user’s

intention, it strips all sensitive authentication tokens

from the HTTP request [4].

4.3 Broken authentication and Session

Management:

Web applications include and cover a

number of services such as commercial transactions

and mail exchange. The deployment of applications

via web has many benefits, for instance (1) it

increases the reach of application owners to the

intended users, and (2) reduces the maintenance and

deployment costs. The wide acceptance and usability

of web applications however has brought them into

the focus of cyber attacks of various sorts.

Application functions related to authentication and

session management are often not implemented

correctly, allowing attackers to compromise

passwords, keys, session tokens, or exploit other

implementation flaws to assume other users’

identities.

4.3.1 Existing system

For the attack like session management and

broken authentication, possible employment of Root

Cause Analysis (RCA) has been developed. It

provide some security aspects of web

applications.RCA has a proven record as an effective

problem analysis method in different knowledge

domains that may range from handling customer

complaints on a limited products line to critical

infrastructures such as risk analysis in nuclear power

plants [7]. We feel that the inherent potential of RCA

is somehow ignored relative to computer and

information security. Usually, it has been reduced to

certain applications in the analysis of very few

specific attacks on computer networks and data

centers. Additional work is required to identify

causes of problems in the web applications such as

the generic and high level research presented in.

4.3.2 Proposed system:

Our research focuses on the application of

RCA to identify root causes of Session Management

and Broken Authentication Vulnerabilities and

eventually come up with solutions that shall

minimize the recurrence of these vulnerabilities in

web applications. In Our paper we are selected

Reality Charting Root Cause [6] analysis software as

an approved tool for the implementation of the RCA

methodology which is one of the commonly used

RCA methods in different domains. It is a simple

causal process tool whereby one (1) asks why the

(defined) problem occurs, (2) answers the question

with at least two causes then (3) examines each

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 8|P a g e

previous cause until there are no more causes

attributable to the last identified causes.

In this section for Session management ,to

strengthen security we suggest the use of cookies,

enforcement of the same origin policy for the

cookies, and usage of SSL for any traffic comprising

of session IDs and credentials. Technical solutions

towards the security of web applications from broken

authentication problems are the usage of S-HTTP

during authentication and cryptographically

protecting user credentials (for instance by using

hashing or encryption). These solutions protect

authentication data but the solution creates

communication overhead and need further

optimization.

5.IMPLEMENATATION

Our Prototype currently includes separate

proposed techniques for each type of above

mentioned attacks .In practical we are implementing

four attacks i.e., SQLI,XSS,CSRF,BA&SM, to

suggest the prevention over them to achieve highly

secure web application.

CONCLUSION

In this paper we describe Vulnerability

Assessment (VA) process of identifying, quantifying,

and prioritizing the vulnerabilities (security holes) in

a system. Despite numerous attempts to counter

attacks, vulnerabilities are frequently found in most

web applications. Therefore, our above

[Enhancement] proposed techniques reduce the rate

of strategies of attacks in most of the web

applications. Depending upon the response given by

our proposed techniques we are able to qualified and

identified problems on most web applications.

REFERENCES

1. Atefeh Tajpour CASE & Mohammad Zaman

Heydari: SQL Injection Detection and

Prevention Tools Assessment ,IEEE,2010.

2. William G.J. Halfond and Alessandro Orso:

Preventing SQL Injection Attacks Using

AMNESIA

3. Lwin Khin Shar and Hee Beng Kuan

Tan:Defending against Cross-Site Scripting

Attacks,IEEE,2012

4. Tatiana Alexenko Mark Jenne & Suman Deb

Roy Wenjun Zeng, Columbia: Cross-Site

Request Forgery: Attack and Defense

,IEEE,2010

5. Sreenivasa Rao & Kumar N: Web Application

Vulnerabilities Assessment and Preventing

Techniques, Int. J. of Enterprise computing and

business System., Vol. 2, No. 1, January,2012

6. Daniel Huluka DSV and Oliver Popov DSV:

Root Cause Analysis of Session Management

and Broken Authentication Vulnerabilities,

IEEE, 2012.

7. Goodman, G.; West, G., Jr.; Schoenfeld, I.; ,

"Criteria for review of root-cause analysis

programs," Human Factors and Power Plants,

1997. 'Global Perspectives of Human Factors in

Power Generation'., Proceedings of the 1997

IEEE Sixth Conference on , vol., no., pp.2/1-

2/6, 8-13 Jun 1997

8. Cross Site Scripting-Latest developments and

solutions-A survey :Jayamsakthi Shanmugam1,

Dr. M. Ponnavaikko2,: Int. J. Open Problems

Compt. Math., Vol. 1, No. 2, September 2008

9. Ziqing Mao, Ninghui Li, Ian Molloy:Defeating

Cross-Site Request Forgery Attacks with

Browser-Enforced Authenticity Protection

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

"International Conference on Industrial Automation And Computing (ICIAC-12th &13th April 2014)

Jhulelal Institute of Technolgy, Nagpur 9|P a g e

10. William Zeller and Edward W. Felten:Cross-

Site Request Forgeries: Exploitation and

Prevention

11. M. Johns and J. Winter. RequestRodeo: Client

side protetion against session riding. In

Proceedings of the OWASP Europe 2006

Conference, 2006

12. Aanchal Jain & Vineet Richariya:

Implementing a Web Browser with Phishing

Detection Techniques ,World of Computer

Science and Information Technology Journal

(WCSIT) , Vol. 1, No. 7, 289-291, 2011

