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ABSTRACT 

The present work is focused on the numerical solution of unsteady two dimensional accelerating laminar 

boundary layer flow and heat transfer of an incompressible fluid over a moving wedge in the presence of 

variable viscosity. The system of partial differential equations governing the flow and  reduced to a system of 

non-linear ordinary differential equations by using similarity transformations, then solved numerically by an 

implicit finite difference scheme along with quasilinearization technique. The obtained numerical results are 

presented graphically  in terms of velocity, temperature, as well as, for the skin friction and local nusselt number 

for several values of variable viscosity parameter (  ) and Falkner-Skan parameter (m) along with  Prandtl 

number(Pr). 
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I. INTRODUCTION 
 The two dimensional incompressible wedge 

flow investigated for the first time by Falkner and 

Skan[1]. Later, many investigators [2-10], have 

studied the classical Falkner-Skan problem 

employing various analytical and numerical methods 

for different flow as well as heat transfer situations. 

In all these studies, the fluid properties were 

assumed to be constant. However, in many 

engineering applications this assumption is not 

obeyed. As such, we have to consider such problems 

by assuming variable viscosity. It is known that the 

physical properties of the fluid may change 

significantly, when temperature changes (for 

example the viscosity of water decreases by about 

24% when temperature increases from 10
0
 to 50

0
c). 

The first attempt to solve the Falkner-Skan problem 

including the variation of viscosity with temperature 

was made by Herwing & Wickern[11]. Hossain et.al 

[12] studied the flow of a fluid with variable 

viscosity past a permeable wedge with uniform 

surface heat flux. Rudrakonta Deka et.al [13] studies 

the effect of variable viscosity on flow past a porous 

wedge with Suction or injection. A Pantokratorns 

et.al [14] presented Falkner-Skan flow with constant 

wall temperature and variable viscosity.  

 In all the above studies the effect of 

unsteadiness were not studied. The present study is 

aimed to analyzing the unsteady accelerating flow 

over a wedge with variable viscosity, where 

unsteadiness in the flow is due to time dependent 

free stream velocity. 

II. MATHEMATICAL ANALYSIS 

 
Figure 1. Physical model and co-ordinate system for 

MHD Falkner- Skan wedge flow, where 1 and 2 

represent   edge of thermal and momentum boundary 

layers, respectively. 

 

 Consider a two dimensional unsteady 

laminar incompressible boundary layer flow over a 

moving wedge, as shown in Fig.1. Where x is 

measured along the surface of the wedge and y is 

normal to it. The unsteadiness in the flow field is 

introduced by the free stream velocity ue , varying 

inversely with time. The temperature of the wall Tw 

is uniform and constant and is greater than the free 

stream temperature ( T ).The fluid is assumed to 

have constant physical properties except for the fluid 

viscosity (  ) which is assumed to be an inverse 

linear function of the temperature (T). 
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Under the aforesaid assumptions, the boundary layer 

equations governing the unsteady, forced convection 

flow over a moving wedge is given by, 
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The boundary conditions are given by 
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In the present investigation, a semi-empirical 

formula for the viscosity of the form is 

  


TT
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1

1
  

as developed by Ling and Dybbs [15] has been 

adopted, where    is the viscosity of the 

ambient fluid and   is a constant.

 Introducing the following transformations:
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From equations (1) - (3), we find that continuity (1) 

is identically satisfied and (2) and (3) are, 

respectively transformed to: 
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The transformed boundary conditions are: 

1;0  GF  at 0  

0;1  GF as                                            (9) 

 Here,    TTw   is termed as the 

viscosity variation parameter.  and f  are 

dimensional and dimensionless stream functions, 

respectively; m is the Falkner-skan power law 

parameter ; F and G are respectively, dimensionless 

velocity and temperature of the fluid;   is the 

unsteady parameter ; LRe is the local Reynolds 

number; Pr is the  Prandtl number; η  is the 

transformed coordinate.  Here prime ( ) denotes 

derivative with respect to η.  

The skin friction and heat transfer coefficient in the 

form of Nusselt number, can be expressed, 

respectively,as 
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where the wall shear stress w  is given by 
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and k are, 

respectively, dynamic viscosity and thermal 

conductivity and 


Lu
L

Re  called the local 

Reynolds number. 

 

III. METHOD OF SOLUTION 
 The system of nonlinear coupled ordinary 

differential equations (6) and (7) subject to the 

boundary conditions (9) have been solved 

numerically by using a very efficient and accurate 

implicit finite-difference scheme in conjunction with 

quasilinearization technique. Quasilinearisation 

technique can be viewed as a generalization of the 

Newton-Raphson approximation technique in 

functional space. An iterative sequence of linear 

equations is carefully constructed to approximate the 

non-linear (6) and (7) under boundary conditions (9) 
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for achieving quadratic-convergence and 

monotonicity. This method, developed originally for 

ordinary differential equations by Inouye and Tate 

[16], has been successfully applied in a wide variety 

of thermo-fluid dynamic problems by many 

researchers. Following [16], we replace the non-

linear ordinary differential equations (6) and (7) to 

the following sequence of linear ordinary differential 

equations: 
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 Where, the coefficient functions with 

iterative index k are known and functions with 

iterative index  k+1 are to be determined. The 

boundary conditions become 
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The coefficients in (11) and (12) are given by  

 
  
























 f

m
GG

G
X k

1

2

2
1

1

')(

1































m
G

m

m
FGX k

1

2
)1(

1

2
2)1()(

2 

')(

3
1

F
G

X k
















               

 




















































'2

'''

2

)(

4

2
1

1

2

1

2
1

1

FF
mm

m
F

fFFG
G

X k








 

  GX
m

G

F
m

m
GGF

G
U k

4

2')(

1

1

2
1

)1(
1

2
1'

1



































Pr
1

2

2
Pr)(

1 











m
fY k 

                           

0)(

2 kU
 

 Since the method is presented for ordinary 

differential equations by Inouye and Tate [16] and 

for partial differential equations in a recent study by 

Srinivasa and Eswara [17], its description is omitted 

here for the sake of brevity. The equations (11) and 

(12) along with boundary conditions (13) were 

expressed in difference form, considering central 

difference scheme in  -direction. In each iteration 

step, equations were then reduced to a system of 

linear algebraic equations with a block tri-diagonal 

structure which is later solved using [18]. To ensure 

the convergence of the numerical solution to the 

exact solution, step size   is optimized and taken 

as 0.01.  The results presented here are independent 

of the step size in  -direction at least up to the four 

decimal place. The value of  (i.e., the edge of the 

boundary layer) has been taken as 4.0 throughout the 

computation.  Iteration is employed to deal with the 

nonlinear nature of the governing equations to 

become linear, locally. A convergence criterion 

based on the relative difference between the current 

and the previous iteration values of the velocity and 

temperature gradients at wall are employed. The 

solution is assumed to have converged and the 

iterative process is terminated 

when
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IV. RESULTS AND DISCUSSIONS 
 The numerical computations have been 

carried out for various values of temperature 

dependent viscosity  0.10   , unsteady 

parameter ( ),and Falkner-Skan parameter (m). To 

validate the accuracy of our numerical method, we 

have compared skin friction ( '

wF ) and heat transfer 

( '

wG ) parameters with those of Watanabe [7] for the 

range of m )0.10(  m [as shown in Table 1] by 

taking Pr = 0.72 for  accelerating flow. In fact, 

analysis has been carried out for entire range of 

realistic flow from )2.00(  m , corresponding 

wedge angle ranging from 0
0 
to 60

0
. 

 

Table 1 Comparison of steady state ( = 0.0) results 

for the range of m )0.10(  m when   = 0.0 with 

those of Watanabe [7]. 

m 
"

wF

 

'

wG

 
Present Watanab

e [7] 

Present Watana

be[7] 

0.0 0.4696 0.46960 0.4151 0.41512 

0.014 0.5046 0.50461 0.4205 0.42051 

0.042 0.5690 0.56898 0.4299 0.42984 

0.090 0.6550 0.65498 0.4413 0.44125 

0.142 0.7320 0.73200 0.4504 0.45042 

0.2 0.8021 0.80213 0.4583 0.45826 

0.333 0.9277 0.92765 0.4708 0.47083 

1.0 1.2326 1.23258 0.4957 0.49571 

 

 Fig.3 shows the effect of variable viscosity 

parameter on the skin friction [Cf (ReL)
1/2

] and  heat 

transfer coefficient [Nu(ReL)
-1/2

]   for  various values 

of m, )2.00.0( m corresponding to wedge 

angles ranging from 0
o
  to 60

0
 when  0.1  

(accelerating flow)  and Pr = 0.72. It is clear that 

both [Cf (ReL)
1/2

] and  [Nu(ReL)
-1/2

]    increases with 
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the increase of variable viscosity parameter 

( )0.1,5.0,0 . Indeed, the percentage of increase 

of skin friction  is about 93.2% at m = 0.1(32
0
)  and 

heat transfer is around 2.06%  for an increase of   in 

the range 0.0 ≤ m  ≤ 0.2.  
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Figure 3. Effect of variable viscosity on (a) skin   

friction and (b) heat transfer coefficients for 

different values of m. 

 

 Fig.4 shows the effect of variable viscosity 

parameter ( ) on the skin friction [Cf (ReL)
1/2

] and  

heat transfer coefficient [Nu(ReL)
-1/2

]   for different 

values of  > 0 (accelerating flow) corresponding to 

wedge angle m = 0.2 (60
0
) and Pr = 0.72. It is clear 

that both [Cf (ReL)
1/2

] and  [Nu(ReL)
-1/2

]    increases 

with the increase of variable viscosity parameter     

( =0.0,0.5,1.0). Indeed, the percentage of increase 

of skin friction is about 80.06% and heat transfer is 

around 3.01%  for an increase of   in the range   

0.0 ≤   ≤ 1.0 .  

 The effect of variable viscosity ( ) on 

velocity [F] and temperature [G] profiles is shown in 

Fig. 5. It is seen that the velocity gradients increases 

and temperature gradient decreases with the increase 

of variable viscosity parameter. As the value of   
increases, the temperature difference of wedge 

within the boundary layer decreases. Thus the 

viscosity of air decreases, which results in the 

reduction of the thermal boundary layer thickness.  

Hence it is clear that the reduction of momentum 

and thermal boundary layer thickness, leads to the 

decrease in the velocity and temperature inside the 

boundary layer. 
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Figure 4. Effect of variable viscosity on (a) skin    

friction and (b) heat transfer coefficients 

 

 Fig. 6 illustrates the effect of Prandtl 

number     (Pr =0.1, 0.72, 7.0) on skin friction [Cf 

(ReL)
1/2

] and  heat transfer coefficient [Nu(ReL)
-1/2

] 

for various unsteady parameter  >0 (accelerating 

flow) corresponding to wedge angle m = 0.2 (60
0
) 

and variable viscosity   = 0.5. It is clear that both      

[Cf (ReL)
1/2

] and  [Nu(ReL)
-1/2

]  increases with the 

increase of Prandtl number . The percentage of 

increase of skin friction is about 8.276% and heat 

transfer is around 47.5% for an increase of   in the 

range 0.0 ≤    ≤ 1.0. 
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Figure 5. Effect of variable viscosity on (a) Velocity 

(F) and (b) Temperature (G) profiles 
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Figure 6. (a) skin friction and (b) heat transfer 

coefficients for different values of Prandtl numbers 
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Figure 7. (a) Velocity (F) and (b) Temperature (G) 

profiles for different values of Prandtl numbers 

 

 Fig. 7 depicts the effects of different 

Prandtl number (Pr) on velocity [F] and temperature 

[G] profiles. It is seen that both the velocity and 

temperature profile increases with the increase of Pr. 

Numerical results from these figures shows that both 

momentum & thermal boundary thickness increases 

in terms of    at increasing distances from the 

leading edge. This is due to an increase trend in the 
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dimensionless temperature in the thermal boundary 

layer. 

 

V. CONCLUSION 
 In this paper the effect of variable viscosity 

on the unsteady two dimensional accelerating 

laminar boundary layer flow and heat transfer of an 

incompressible fluid over a moving wedge has been 

investigated.  

1. The  skin friction and heat transfer co efficient 

increases with the increase of variable viscosity 

parameter )0.1,5.0,0(   and the velocity profile 

increases but opposite trend in temperature profile 

for the fixed Prandtl number (Pr = 0.72) and wedge 

angle ( m = 0.2) . 

2. The skin friction, heat transfer, velocity & 

temperature profiles are found to be increased for the 

different Prandtl number (Pr = 0.1, 0.72, 7.0) for the 

fixed 5.0  & .2.0m  
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