
Abdullah M. Al-Gafri Journal of Engineering Research and Application ww.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 5 (Series -III) May 2019, pp 35-40

www.ijera.com DOI: 10.9790/9622- 0905033540 35 | P a g e

Mixed Diffusion Graph Neural Network for Learning Graph

Data

Abdullah M. Al-Gafri*
*(Department of Electrical Engineering, King Abdulaziz University, Kingdom of Saudi Arabia

ABSTRACT

Machine learning algorithms and especially neural networks have proven to be excellent in processing complex

data. Neural networks learn from the data presented to them and are then able to make predictions about the

data. the various forms of data can heavily affect the choice of neural network model that will process them.

Graph data lend themselves naturally to many physical phenomena. This necessitates the development of

specialized neural network models that can handle this type of data. Information in graph data appear in two

forms, individual node features, and the underlying structure of the graph. The proposed Mixed Diffusion Graph

Neural Network (MDGNN) model utilizes diffusion process to combine the information available in the node

features with the underlying graph structure. The model is tested on two benchmarking datasets, Cora and

Citeseer. The model achieved an accuracy of 84.9% on Cora and 73.4% on Citeseer. Both results exceed those

of previous models.

Keywords-Mixed Diffusion Graph Neural Network (MDGNN), semi-supervised learning, diffusion models,

Citation networks

--- ---------

Date Of Submission: 09-05-2019 Date Of Acceptance: 24-05-2019

--- ----------

I. INTRODUCTION
 The abundance of data that have

accompanied the many technological advancements

of this era led to increased demand for intelligent

data processing algorithms. Artificial neural

networks have demonstrated their ability to learn

from data and make accurate decisions. The way the

data is presented to a neural network generally

affects the performance of the network. Taking the

form of the data into consideration when designing

the network can improve the end result. This

approach aims to capture the most amount of

information available in the data. Graph structured

data appear in many aspects of life, such as chemical

compounds [1], protein structure [2], social

networks[3], wireless sensor networks [4],

publications citations[5], and natural language [6].

1.1 Problem Definition

 The problem of concern here is learning

and making predictions from graph structured data.

To that end we denote graph structure data with a

graph G= V,E,X,Y , where V is a set of n nodes, E

is a set of edges, X = (𝐱1 , 𝐱2, … , 𝐱n) ∈ ℝn×d is the

nodes feature matrix where 𝐱i is a d-dimensional

feature vector of node vi, and Y= y
1
,y

2
,…,y

n
 are

the labels for the nodes in V. In real life problems,

usually only a small subset of the data points is

labeled. To mimic this scenario, we adopt a semi-

supervised setting. This indicates that in the learning

phase of the network only a subset of the node labels

is available. In the testing phase, the network must

predict the labels of the nodes whose labels were not

available in the training phase.

1.2 Related Works

 Graph domain representations have been

used in modelling large databases. A rich literature

exists for the problem of retrieving a data point from

the database in response to a user query. The

retrieved data point should be most similar to the

query. A weighted graph is used to model the

database where the initial edge weights encode the

similarities of the data points. A popular approach to

the problem is utilizing diffusion processes to

improve the edge weights of the graph. The

improved weights eventually improve the results of

the retrieval operation. A diffusion process aims to

diffuse/propagate the data throughout the graph

utilizing its underlying structure[7]. Diffusion

processes are also used in salient object detection

problems in images [8].

 Early works on learning graph structured

data used to encode the graph into another format of

data and then perform the training process. This

encoding process often leads to loss of information

that were available in the graph structure. A new

neural network model was introduced in [9] and later

on in [10] aptly named the graph neural network

model (GNN). The model is considered as an

extension to the recurrent neural network (RNN)

architecture. RNNs are able to capture time-domain

RESEARCH ARTICLE OPEN ACCESS

Abdullah M. Al-Gafri Journal of Engineering Research and Application ww.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 5 (Series -III) May 2019, pp 35-40

www.ijera.com DOI: 10.9790/9622- 0905033540 36 | P a g e

sequence patterns, the researchers aimed to exploit

this feature and extend it to graph structured data. In

same way that RNNs have internal states for each

time step, GNNs have internal state for each node in

the graph

 When learning longer time-domain

sequences, RNNs suffered from vanishing gradients.

Long-Term Short Memory (LSTM) [11]networks

and gated recurrent units [12] introduced some

gating mechanisms to solve the vanishing gradient

issue. Naturally, this modification was carried to the

GNN, introducing the Gated Graph Sequence Neural

Networks (GGS-NN) [13]. Another extension to the

GNN was the Graph Partition Neural Network

(GPNN)[14]. Partitioning large graphs into smaller

ones, and then aggregating the information from the

smaller graphs allowed the network to better tackle

large graphs. In the original GNN, data was

aggregated between nodes using a fully connected

neural network. Motivated by the idea that not all

neighboring nodes are equally important to a given

node, a new model was proposed. The new model

relies on an attention mechanism instead of the fully

connected layer to aggregate data from the

neighboring nodes. The model was named

Attention-based Graph Neural Network

(AGNN)[15].

 The success of Convolutional Neural

Networks (CNN) inspired many attempts at

generalizing the convolutional operation to graph

structured data. In [16] the convolutional operation

was generalized using the spectrum of the graph

Laplacian. Relying on the new convolutional

operation, a deep convolutional network was

designed for graph-structured data [17]. In order to

reduce the computational complexity of the

convolutional operation, Chebyshev polynomials

were used to approximate the spectral convolutional

filters [18]. The graph convolutional network (GCN)

[19] restricted the convolutional operation to include

only the 1st order neighborhood. Researchers in [20]

extended the GCN to work with hyper graphs, aptly

naming the model HyperGCN. A network of GCNs

(N-GCN) was proposed to capture relations further

than the 1st order neighborhood [21].

 All of the previously discussed models

aggregate data from neighboring nodes using one

way or another. One model proposed using an

attentional mechanism to aggregate the data from

neighboring nodes (Graph Attention Network GAT)

[5]. The learnable attention mechanism assigns

weights to each of the neighboring nodes. This

allows the node in concern to “attend” more to

neighbors with more relevant features (higher

weights). The attention mechanism was first

introduced as an enhancement to RNNs [22] and

later was proved to be enough to build a model for

machine translation tasks [23]. One modification to

the GAT model was the Gated Attention Networks

(GaAN) [24]. This model employs a convolutional

network to control the outputs of the attention heads

in the GAT model. It is argued that not all of the

attention heads contribute useful information to a

given node, thus the gating network would assign

weights to each attention head.

 The discussion above was focused on

neural network graph learning models. There are

also non-neural network approaches to the graph

learning problem in the literature. For example; the

Label Propagation algorithm (LP) [25],

DeepWalk[26], Planetoid [27], Manifold

Regularization (ManiReg) [28], Semi-supervised

Embedding (SemiEmb) [29], and Iterative

Classification Algorithm (ICA) [30]. We refer the

reader to following comprehensive graph embedding

techniques surveys [31], [32].

1.3 Purpose and Contributions

 The purpose of this work is to design a

specialized neural network model that can efficiently

learn graph structured data and make accurate

predictions on such types of data. The contributions

of this work are twofold. The first is introducing a

new flexible mixed graph diffusion model. The

second contribution in the design of the Mixed

Diffusion Graph Neural Network (MDGNN) model.

A benchmarking test on two standard datasets

validates the performance of the new model.

II. MIXED DIFFUSION GRAPH NEURAL

NETWORK (MDGNN) MODEL
 The proposed MDGNN is inspired the

Graph Diffusion-Embedding Network (GDEN) [33].

The GDEN model aims to combine the information

found in the node features with the underlying

structure of the data graph. This was accomplished

by using graph diffusion techniques. The authors

introduced three such diffusion techniques and

compared the results of each technique. We propose

using a combination of the diffusion techniques and

show that the performance is indeed improved.

2.1 Diffusion Techniques

 Diffusion techniques enable us to

incorporate the features of the other nodes in the

feature representation of a given node. The new

diffused features representation is Xd = Ad X, where

Ad is the diffusion matrix and X is the original

features matrix. The three diffusion matrices defined

in [33] are:

The Lablacian diffusion matrix:

 Ad = α I + αL −1 (1)

The normalized Lablacian diffusion matrix:

 Ad = I − αℒ −1 (2)

The random walks with restart diffusion matrix:

 Ad = (1 − α) I − αP −1 (3)

Abdullah M. Al-Gafri Journal of Engineering Research and Application ww.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 5 (Series -III) May 2019, pp 35-40

www.ijera.com DOI: 10.9790/9622- 0905033540 37 | P a g e

 Where α is a tunable parameter, I is an

n × n identity matrix, A is the n × n adjacency

matrix of the graph, and D is an n × n diagonal

matrix with dii = Aijj . The diagonal matrix D is

known as the degree matrix of the graph. The matrix

L = D − A is the Lablacian of the graph, ℒ =
D−1/2 AD−1/2 is known as the normalized Lablacian

of the graph, and the matrix P = AD−1 is called the

transition probability matrix. We propose using a

combination of the previous diffusion matrices:

 Md = βAd1 + 1 − β Ad2 (4)

 Where 0 < β < 1 determines the mixing

ratio of the diffusion techniques, Ad1 and Ad2 can be

any of the previously defined diffusion matrices.

2.2 Semi-Supervised Learning Neural Network

The diffused features Xd = Md X capture the

underlying structure of the graph along with the

node features. In a graph embedding scenario, the

diffused features can be linearly transformed as

follows:

 H = Xd W = MdXW (5)

 Where Ad ∈ ℝn×n , X ∈ ℝn×d , W ∈ ℝd×k is

the dimensionality reduction matrix provided k < d,

and V ∈ ℝn×k is the new dimensionally-reduced

features embedding for every node. From (5) it is

possible to define a layer-wise propagation rule to be

used in building a neural network:

 H(l+1) = σ Md H(l)W(l) (6)

 Where l is the layer number, σ(∙) is an

activation function, Md is the mixed diffusion matrix

as defined in equation (4), H(0) = X is the starting

feature matrix of the nodes, H(l) is the output of the

lth layer, W(l) is the trainable weight matrix of the

lth layer.

 In the setting of semi-supervised learning,

the final layer must predict the labels of the graph

nodes. Therefore, a final layer with a softmax

function can be used to predict the labels of the

inputs:

 Y = softmax Ad H(L)W(L) (7)

 Where L is the number of the last layer, and

Y ∈ ℝn×c is the predicted labels matrix provided that

c is the number of possible labels. A cross-entropy

error loss function [19] can then be used over the set

of labeled inputs YL .

 ℒ = − Yij ln⁡(Y ij)

c

j=1i∈YL

 (8)

III. EXPERIMENTS
3.1 Datasets

 In order to test the performance of the

proposed neural network, two benchmarking real

world datasets were used; Cora and Citeseer [34].

Both of them are citations networks. Each document

in these citation networks represents a node in the

graph and is described by a bag-of-words feature

vector. The feature vectors are gathered in a matrix

X. The datasets also contain a list for the citations

between the documents. The citations represent the

undirected edges of the graphs and are captured in

the adjacency matrix A. Each document also has a

label specifying which category it belongs to.

 The Cora dataset has 2708 documents

(nodes), 5429 edges, 1433 features (for each

document/node), and 7 classes (labels). Given the

semi-supervised learning setting and following along

with the same data split used in previous works [27],

only 20 labeled instances from each class are

available in the training phase, i.e. 140 labeled

nodes. The adjacency matrix and all of the feature

vectors are available for training.

 The Citeseer dataset on the other hand, has

3327 documents (nodes), 4732 edges, 3703 features

(for each document/node), and 6 classes (labels).

With the 20 labeled instances per class condition,

120 labeled nodes are used in training in addition to

the adjacency matrix and the all of the feature

vectors. Table 1 shows a summary of the two

datasets.

3.2 Model Setup

 In the implementation of the model, two

layers of the MDGNN were used as defined in (6). A

dropout rate of 0.5 was used on the first layer [35].

The two layers used an exponential linear unit

(ELU) as activation functions [36]. The first layer

reduces the dimension of the input to 16 and the

second layer reduces it further to the number of

possible classes. Both layers use L2 regularization of

10−5. The output of the two layers was passed to a

softmax function to generate the predictions of the

labels. The cross-entropy error loss function was

then applied on the labeled set of the inputs. The

network was trained using the Adam optimizer [37]

with a learning rate of 0.01. The values of α were set

to 1, 0.65 and 0.91 for the Lablacian, normalized

Lablacian and random walk diffusion matrices

respectively. We note that multiple values for the

parameter α were tested, the values mentioned

achieved the best performance when using each

diffusion matrix on its own without mixing (β = 1).

3.2.1 MDGNN Variations Testing

 Given the three defined diffusion matrices,

there are three possible variations of the MDGNN

model,namely,MDGNN-L+RW, MDGNN-NL+RW,

and MDGNN-L+NL, where L stands for the

Lablacian matrix, LN stands for the normalized

Lablacian matrix, and RW stands for the random

walk base diffusion matrix. The three model

variations were tested on the two datasets against

different values of the mixing parameter β.

Abdullah M. Al-Gafri Journal of Engineering Research and Application ww.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 5 (Series -III) May 2019, pp 35-40

www.ijera.com DOI: 10.9790/9622- 0905033540 38 | P a g e

 Fig. 1 below shows the achievable

classifying accuracies of the different MDGNN

variations for varying values of β for the Cora

dataset. Several combinations already achieve an

accuracy above the 83% mark (highest accuracy in

the literature). The best performance is made by the

MDGNN-NL+RW model with β = 0.4 for the Cora

dataset achieving an accuracy of 84.9%.

Fig.1: MDGNN variations accuracies for Cora

dataset

 Fig. 2 shows the performance of the

MDGNN variations on the Citeseer dataset. It is

clear that two MDGNN variations that utilize the

random walk diffusion are performing better than

the variation that does not. The best variation

achieves a classification accuracy of 73.2%. The

model is MDGNN-L+RW with β = 0.4.

Fig.2: MDGNN variations accuracies for Citeseer

dataset

3.3 Baselines

 The results of the proposed model are

compared against a number of baselines. Namely the

baselines are; DeepWalk[26], CNN-Cheby[18],

Planetoid [27], Graph Convolutional Network

(GCN) [19], Manifold Regularization (ManiReg)

[28], Semi-supervised Embedding (SemiEmb) [29],

Label Propagation (LP) [25], Iterative Classification

Algorithm (ICA) [30], and Diffusion-Convolutional

Neural Network (DCNN) [38]. We also include the

following baselines; Network of GCN (N-GCN)

[21], Graph Attention Network (GAT) [5], and

Graph Diffusion-Embedding Network (GDEN) [33].

3.4 Results

 Table 2 shows the accuracy of the different

methods in predicting the labels of the unlabeled

nodes (node classification). The accuracies of the

models were taken as reported in the literature.

Table 2: Accuracy of node classification on citation

networks comparison in a semi-supervised learning

setting

Method Cora dataset
Citeseer

dataset

SemiEmb 59.0% 59.6%

ManiReg 59.5% 60.1%

DeepWalk 67.2% 43.2%

LP 68.0% 45.3%

ICA 75.1% 69.1%

Planetoid 75.7% 64.7%

CNN-Cheby 79.2% 68.1%

GDEN-RWR 79.3% 72.9%

DCNN 81.3% 71.1%

GCN 81.5% 70.3%

GDEN-L 81.9% 71.3%

N-GCN 83.0% 72.2%

MDGNN-L+RW

(proposed model)
82.7% 73.4%

MDGNN-NL+RW

(proposed model)
84.9% 72.2%

IV. DISCUSSION
 The semi-supervised graph learning

challenge and specifically the node classification

problem has been under investigation for an

extended period of time as apparent by the numerous

proposed methods. As Table 2 shows, the proposed

model (MDGNN) achieves better node classification

accuracy than the other models. To further validate

the performance of the new model we used two

different real world citation datasets, namely; Cora

and Citeseer.

 The performance of the model is heavily

affected by the choices of Ad1, Ad2 and β in (4). The

best diffusion matrices combinations were found to

include the random walk based diffusion and either

Table 1: Citation Datasets Statistics Summary

Documents

(Nodes)

Links

(Edges) Features

Classes

(Labels)

Labels Used

in Training

Labels

Percentage

Cora 2708 5429 1433 7 140 5.17%

Citeseer 3327 4732 3703 6 120 3.61%

Abdullah M. Al-Gafri Journal of Engineering Research and Application ww.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 5 (Series -III) May 2019, pp 35-40

www.ijera.com DOI: 10.9790/9622- 0905033540 39 | P a g e

one of the Lablacian diffusions. The two Lablacian

diffusion matrices originates from an optimization

problem that seeks to balance the similarity of

neighboring diffused features with retaining the

original node features [33]. The random walk

diffusion matrix originates from the random walk

model. The random walk model originally aims to

encode the structure of a given graph without the

need for any node features. Combining the features

focused Lablacian diffusions with the graph

structure focused random walk diffusion generated

the best performance. The chosen β value of 0.4

shows that the best performance lies in between the

features focused and the graph structure focused

diffusion models.

 In regards to the computational complexity

of the proposed model, the model needs only to

perform the diffusion matrices calculations one time.

The heaviest required calculations in the model are

the matrices inversions in the diffusion equations.

However, it is possible to calculate the two diffusion

matrices in parallel to cut the computation time.

 Diffusion models in general have shown

promising results in the graph node classification

problem [33]. Other diffusion models could be

explored and tested in the semi-supervised learning

setting [7]. The proposed model (MDGNN) showed

that combining diffusion processes can further

improve the performance of the node classifier.

There is still a need to investigate other

combining/fusing methods. There is also a need for a

systematic way to calculate the optimum value for

the fusing parameter β. Another possible future

direction would be to extend the MDGNN model to

handle directed graphs and graphs with edge

features.

V. CONCLUSION
 In this work, the proposed Mixed Diffusion

Graph Neural Network (MDGNN) showed great

promise in the graph node classification problem

under semi-supervised learning. The new model

outperformed the previous models from the

literature. The model was defined in a layer-wise

fashion that is easy to incorporate in any neural

network design.

 The diffusion processes presented in this

workexhibited promising performance inthe task of

semi-supervised graph data learning, however, there

is still a need to findthe optimum value for the

tuning parameter for each diffusion process.

Thecombining parameter β could also be further

investigated to achieve optimumperformance. The

proposed combined diffusion model could also be

applied to otherproblems such as graph auto-

encoders and graph learning (instead of node

learning).The neural network model used in the

paper is similar to a simple multi-layerperceptron

neural network, other network models such as

recurrent neural networks(RNN) could be tested to

adopt the learning model for different problem

settings.

REFERENCES
[1]. A. Srinivasan, S. Muggleton, R. D. King, and M. J.

E. Sternberg, “Mutagenesis: ILP experiments in a

non-determinate biological domain,” in

Proceedings of the 4th international workshop on

inductive logic programming, 1994, vol. 237, pp.

217–232.

[2]. P. Baldi and G. Pollastri, “The principled design of

large-scale recursive neural network architectures--

dag-rnns and the protein structure prediction

problem,” J. Mach. Learn. Res., vol. 4, no. Sep, pp.

575–602, 2003.

[3]. H. Ohtsuki, C. Hauert, E. Lieberman, and M. A.

Nowak, “A simple rule for the evolution of

cooperation on graphs and social networks,”

Nature, vol. 441, no. 7092, p. 502, 2006.

[4]. A. E. C. Redondi, “Radio Map Interpolation using

Graph Signal Processing,” IEEE Commun. Lett.,

vol. 22, no. 1, pp. 153–156, 2017.

[5]. P. Velickovic, G. Cucurull, A. Casanova, A.

Romero, P. Lio, and Y. Bengio, “Graph attention

networks,” arXiv Prepr. arXiv1710.10903, vol. 1,

no. 2, 2017.

[6]. A. Bua, M. Gori, and F. Santini, “Recursive neural

networks applied to discourse representation

theory,” in International Conference on Artificial

Neural Networks, 2002, pp. 290–295.

[7]. M. Donoser and H. Bischof, “Diffusion processes

for retrieval revisited,” in Proceedings of the IEEE

conference on computer vision and pattern

recognition, 2013, pp. 1320–1327.

[8]. L. Zhou, Z. Yang, Q. Yuan, Z. Zhou, and D. Hu,

“Salient region detection via integrating diffusion-

based compactness and local contrast,” IEEE

Trans. Image Process., vol. 24, no. 11, pp. 3308–

3320, 2015.

[9]. M. Gori, G. Monfardini, and F. Scarselli, “A new

model for learning in graph domains,” Proc. Int. Jt.

Conf. Neural Networks, vol. 2, pp. 729–734, 2005.

[10]. F. Scarselli, M. Gori, A. C. Tsoi, M.

Hagenbuchner, and G. Monfardini, “The graph

neural network model.,” IEEE Trans. Neural

Netw., vol. 20, no. 1, pp. 61–80, 2009.

[11]. S. Hochreiter and J. Schmidhuber, “Long short-

term memory,” Neural Comput., vol. 9, no. 8, pp.

1735–1780, 1997.

[12]. K. Cho et al., “Learning phrase representations

using RNN encoder-decoder for statistical machine

translation,” arXiv Prepr. arXiv1406.1078, 2014.

[13]. Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel,

“Gated graph sequence neural networks,” arXiv

Prepr. arXiv1511.05493, 2015.

[14]. R. Liao, M. Brockschmidt, D. Tarlow, A. L. Gaunt,

R. Urtasun, and R. Zemel, “Graph Partition Neural

Networks for Semi-Supervised Classification,”

arXiv Prepr. arXiv1803.06272, 2018.

[15]. K. K. Thekumparampil, C. Wang, S. Oh, and L.-J.

Li, “Attention-based Graph Neural Network for

Semi-supervised Learning,” arXiv Prepr.

Abdullah M. Al-Gafri Journal of Engineering Research and Application ww.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 5 (Series -III) May 2019, pp 35-40

www.ijera.com DOI: 10.9790/9622- 0905033540 40 | P a g e

arXiv1803.03735, 2018.

[16]. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun,

“Spectral networks and locally connected networks

on graphs,” arXiv Prepr. arXiv1312.6203, 2013.

[17]. M. Henaff, J. Bruna, and Y. LeCun, “Deep

convolutional networks on graph-structured data,”

arXiv Prepr. arXiv1506.05163, 2015.

[18]. M. Defferrard, X. Bresson, and P. Vandergheynst,

“Convolutional neural networks on graphs with

fast localized spectral filtering,” in Advances in

Neural Information Processing Systems, 2016, pp.

3844–3852.

[19]. T. N. Kipf and M. Welling, “Semi-supervised

classification with graph convolutional networks,”

arXiv Prepr. arXiv1609.02907, 2016.

[20]. N. Yadati, M. Nimishakavi, P. Yadav, A. Louis,

and P. Talukdar, “Hypergcn: Hypergraph

convolutional networks for semi-supervised

classification,” arXiv Prepr. arXiv1809.02589,

2018.

[21]. S. Abu-El-Haija, A. Kapoor, B. Perozzi, and J.

Lee, “N-GCN: Multi-scale Graph Convolution for

Semi-supervised Node Classification,” arXiv

Prepr. arXiv1802.08888., 2018.

[22]. D. Bahdanau, K. Cho, and Y. Bengio, “Neural

Machine Translation by Jointly Learning to Align

and Translate,” pp. 1–15, 2014.

[23]. A. Vaswani et al., “Attention Is All You Need,”

no. Nips, 2017.

[24]. J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y.

Yeung, “GaAN: Gated Attention Networks for

Learning on Large and Spatiotemporal Graphs,”

arXiv Prepr. arXiv1803.07294, 2018.

[25]. X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-

supervised learning using gaussian fields and

harmonic functions,” in Proceedings of the 20th

International conference on Machine learning

(ICML-03), 2003, pp. 912–919.

[26]. B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk:

Online Learning of Social Representations,” 2014.

[27]. Z. Yang, W. W. Cohen, and R. Salakhutdinov,

“Revisiting Semi-Supervised Learning with Graph

Embeddings,” vol. 48, 2016.

[28]. M. Belkin, P. Niyogi, and V. Sindhwani,

“Manifold regularization: A geometric framework

for learning from labeled and unlabeled examples,”

J. Mach. Learn. Res., vol. 7, no. Nov, pp. 2399–

2434, 2006.

[29]. J. Weston, F. Ratle, H. Mobahi, and R. Collobert,

“Deep learning via semi-supervised embedding,”

in Neural Networks: Tricks of the Trade, Springer,

2012, pp. 639–655.

[30]. Q. Lu and L. Getoor, “Link-based classification,”

in Proceedings of the 20th International

Conference on Machine Learning (ICML-03),

2003, pp. 496–503.

[31]. P. Goyal and E. Ferrara, “Graph embedding

techniques, applications, and performance: A

survey,” Knowledge-Based Syst., vol. 151, pp. 78–

94, 2018.

[32]. H. Cai, V. W. Zheng, and K. Chang, “A

comprehensive survey of graph embedding:

problems, techniques and applications,” IEEE

Trans. Knowl. Data Eng., 2018.

[33]. B. Jiang, D. Lin, and J. Tang, “Graph Diffusion-

Embedding Networks,” arXiv Prepr.

arXiv1810.00797, 2018.

[34]. P. Sen, G. Namata, M. Bilgic, L. Getoor, B.

Galligher, and T. Eliassi-Rad, “Collective

classification in network data,” AI Mag., vol. 29,

no. 3, p. 93, 2008.

[35]. N. Srivastava, G. Hinton, A. Krizhevsky, I.

Sutskever, and R. Salakhutdinov, “Dropout: a

simple way to prevent neural networks from

overfitting,” J. Mach. Learn. Res., vol. 15, no. 1,

pp. 1929–1958, 2014.

[36]. D.-A. Clevert, T. Unterthiner, and S. Hochreiter,

“Fast and accurate deep network learning by

exponential linear units (elus),” arXiv Prepr.

arXiv1511.07289, 2015.

[37]. D. P. Kingma and J. Ba, “Adam: A method for

stochastic optimization,” arXiv Prepr.

arXiv1412.6980, 2014.

[38]. J. Atwood and D. Towsley, “Diffusion-

convolutional neural networks,” in Advances in

Neural Information Processing Systems, 2016, pp.

1993–2001.

Abdullah M. Al-Gafri" Mixed Diffusion Graph Neural Network for Learning Graph Data"

International Journal of Engineering Research and Applications (IJERA), Vol. 09, No.05, 2019,

pp. 35-40

