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ABSTRACT 

Machine learning algorithms and especially neural networks have proven to be excellent in processing complex 

data. Neural networks learn from the data presented to them and are then able to make predictions about the 

data. the various forms of data can heavily affect the choice of neural network model that will process them. 

Graph data lend themselves naturally to many physical phenomena. This necessitates the development of 

specialized neural network models that can handle this type of data. Information in graph data appear in two 

forms, individual node features, and the underlying structure of the graph. The proposed Mixed Diffusion Graph 

Neural Network (MDGNN) model utilizes diffusion process to combine the information available in the node 

features with the underlying graph structure. The model is tested on two benchmarking datasets, Cora and 

Citeseer. The model achieved an accuracy of 84.9% on Cora and 73.4% on Citeseer. Both results exceed those 

of previous models. 
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I. INTRODUCTION 
 The abundance of data that have 

accompanied the many technological advancements 

of this era led to increased demand for intelligent 

data processing algorithms. Artificial neural 

networks have demonstrated their ability to learn 

from data and make accurate decisions. The way the 

data is presented to a neural network generally 

affects the performance of the network. Taking the 

form of the data into consideration when designing 

the network can improve the end result. This 

approach aims to capture the most amount of 

information available in the data. Graph structured 

data appear in many aspects of life, such as chemical 

compounds [1], protein structure [2], social 

networks[3], wireless sensor networks [4], 

publications citations[5], and natural language [6]. 

  

1.1 Problem Definition 

 The problem of concern here is learning 

and making predictions from graph structured data. 

To that end we denote graph structure data with a 

graph G= V,E,X,Y , where V is a set of n nodes, E 

is a set of edges, X = (𝐱1 , 𝐱2, … , 𝐱n) ∈ ℝn×d  is the 

nodes feature matrix where 𝐱i is a d-dimensional 

feature vector of node vi, and Y= y
1
,y

2
,…,y

n
  are 

the labels for the nodes in V. In real life problems, 

usually only a small subset of the data points is 

labeled. To mimic this scenario, we adopt a semi-

supervised setting. This indicates that in the learning 

phase of the network only a subset of the node labels 

is available. In the testing phase, the network must 

predict the labels of the nodes whose labels were not 

available in the training phase. 

 

1.2 Related Works 

 Graph domain representations have been 

used in modelling large databases. A rich literature 

exists for the problem of retrieving a data point from 

the database in response to a user query. The 

retrieved data point should be most similar to the 

query. A weighted graph is used to model the 

database where the initial edge weights encode the 

similarities of the data points. A popular approach to 

the problem is utilizing diffusion processes to 

improve the edge weights of the graph. The 

improved weights eventually improve the results of 

the retrieval operation. A diffusion process aims to 

diffuse/propagate the data throughout the graph 

utilizing its underlying structure[7]. Diffusion 

processes are also used in salient object detection 

problems in images [8].   

 Early works on learning graph structured 

data used to encode the graph into another format of 

data and then perform the training process. This 

encoding process often leads to loss of information 

that were available in the graph structure. A new 

neural network model was introduced in [9] and later 

on in [10] aptly named the graph neural network 

model (GNN). The model is considered as an 

extension to the recurrent neural network (RNN) 

architecture. RNNs are able to capture time-domain 
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sequence patterns, the researchers aimed to exploit 

this feature and extend it to graph structured data. In 

same way that RNNs have internal states for each 

time step, GNNs have internal state for each node in 

the graph 

 When learning longer time-domain 

sequences, RNNs suffered from vanishing gradients. 

Long-Term Short Memory (LSTM) [11]networks 

and gated recurrent units [12] introduced some 

gating mechanisms to solve the vanishing gradient 

issue. Naturally, this modification was carried to the 

GNN, introducing the Gated Graph Sequence Neural 

Networks (GGS-NN) [13]. Another extension to the 

GNN was the Graph Partition Neural Network 

(GPNN)[14]. Partitioning large graphs into smaller 

ones, and then aggregating the information from the 

smaller graphs allowed the network to better tackle 

large graphs. In the original GNN, data was 

aggregated between nodes using a fully connected 

neural network. Motivated by the idea that not all 

neighboring nodes are equally important to a given 

node, a new model was proposed. The new model 

relies on an attention mechanism instead of the fully 

connected layer to aggregate data from the 

neighboring nodes. The model was named 

Attention-based Graph Neural Network 

(AGNN)[15]. 

 The success of Convolutional Neural 

Networks (CNN) inspired many attempts at 

generalizing the convolutional operation to graph 

structured data. In [16] the convolutional operation 

was generalized using the spectrum of the graph 

Laplacian. Relying on the new convolutional 

operation, a deep convolutional network was 

designed for graph-structured data [17]. In order to 

reduce the computational complexity of the 

convolutional operation, Chebyshev polynomials 

were used to approximate the spectral convolutional 

filters [18]. The graph convolutional network (GCN) 

[19] restricted the convolutional operation to include 

only the 1st order neighborhood. Researchers in [20] 

extended the GCN to work with hyper graphs, aptly 

naming the model HyperGCN. A network of GCNs 

(N-GCN) was proposed to capture relations further 

than the 1st order neighborhood [21].  

 All of the previously discussed models 

aggregate data from neighboring nodes using one 

way or another. One model proposed using an 

attentional mechanism to aggregate the data from 

neighboring nodes (Graph Attention Network GAT) 

[5]. The learnable attention mechanism assigns 

weights to each of the neighboring nodes. This 

allows the node in concern to “attend” more to 

neighbors with more relevant features (higher 

weights). The attention mechanism was first 

introduced as an enhancement to RNNs [22] and 

later was proved to be enough to build a model for 

machine translation tasks [23]. One modification to 

the GAT model was the Gated Attention Networks 

(GaAN) [24]. This model employs a convolutional 

network to control the outputs of the attention heads 

in the GAT model. It is argued that not all of the 

attention heads contribute useful information to a 

given node, thus the gating network would assign 

weights to each attention head.  

 The discussion above was focused on 

neural network graph learning models. There are 

also non-neural network approaches to the graph 

learning problem in the literature. For example; the 

Label Propagation algorithm (LP) [25], 

DeepWalk[26], Planetoid [27], Manifold 

Regularization (ManiReg) [28], Semi-supervised 

Embedding (SemiEmb) [29], and Iterative 

Classification Algorithm (ICA) [30]. We refer the 

reader to following comprehensive graph embedding 

techniques surveys [31], [32]. 

 

1.3 Purpose and Contributions 

 The purpose of this work is to design a 

specialized neural network model that can efficiently 

learn graph structured data and make accurate 

predictions on such types of data. The contributions 

of this work are twofold. The first is introducing a 

new flexible mixed graph diffusion model. The 

second contribution in the design of the Mixed 

Diffusion Graph Neural Network (MDGNN) model. 

A benchmarking test on two standard datasets 

validates the performance of the new model.  

 

II. MIXED DIFFUSION GRAPH NEURAL 

NETWORK (MDGNN) MODEL 
 The proposed MDGNN is inspired the 

Graph Diffusion-Embedding Network (GDEN) [33]. 

The GDEN model aims to combine the information 

found in the node features with the underlying 

structure of the data graph. This was accomplished 

by using graph diffusion techniques. The authors 

introduced three such diffusion techniques and 

compared the results of each technique. We propose 

using a combination of the diffusion techniques and 

show that the performance is indeed improved. 

  

2.1 Diffusion Techniques 

 Diffusion techniques enable us to 

incorporate the features of the other nodes in the 

feature representation of a given node. The new 

diffused features representation is  Xd = Ad X, where 

Ad  is the diffusion matrix and X is the original 

features matrix. The three diffusion matrices defined 

in [33] are: 

The Lablacian diffusion matrix: 

 Ad = α I + αL −1 (1) 

The normalized Lablacian diffusion matrix: 

 Ad =  I − αℒ −1 (2) 

The random walks with restart diffusion matrix: 

 Ad = (1 − α) I − αP −1 (3) 
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 Where α is a tunable parameter, I is an 

n × n identity matrix, A is the n × n adjacency 

matrix of the graph, and D is an n × n diagonal 

matrix with dii =  Aijj . The diagonal matrix D is 

known as the degree matrix of the graph. The matrix 

L = D − A is the Lablacian of the graph, ℒ =
D−1/2 AD−1/2 is known as the normalized Lablacian 

of the graph, and the matrix P = AD−1 is called the 

transition probability matrix. We propose using a 

combination of the previous diffusion matrices: 

 Md = βAd1 +  1 − β Ad2 (4) 

 Where 0 < β < 1 determines the mixing 

ratio of the diffusion techniques, Ad1 and Ad2 can be 

any of the previously defined diffusion matrices. 

 

2.2 Semi-Supervised Learning Neural Network 

The diffused features Xd = Md X capture the 

underlying structure of the graph along with the 

node features. In a graph embedding scenario, the 

diffused features can be linearly transformed as 

follows: 

 H = Xd W = MdXW (5) 

 Where Ad ∈ ℝn×n , X ∈ ℝn×d , W ∈ ℝd×k  is 

the dimensionality reduction matrix provided k < d, 

and V ∈ ℝn×k  is the new dimensionally-reduced 

features embedding for every node. From (5) it is 

possible to define a layer-wise propagation rule to be 

used in building a neural network: 

 H(l+1) = σ Md H(l)W(l)  (6) 

 Where l is the layer number, σ(∙) is an 

activation function, Md  is the mixed diffusion matrix 

as defined in equation (4), H(0) = X is the starting 

feature matrix of the nodes, H(l) is the output of the 

lth  layer, W(l) is the trainable weight matrix of the 

lth  layer.  

 In the setting of semi-supervised learning, 

the final layer must predict the labels of the graph 

nodes. Therefore, a final layer with a softmax 

function can be used to predict the labels of the 

inputs: 

 Y = softmax Ad H(L)W(L)  (7) 

 Where L is the number of the last layer, and 

Y ∈ ℝn×c  is the predicted labels matrix provided that 

c is the number of possible labels. A cross-entropy 

error loss function [19] can then be used over the set 

of labeled inputs YL .  

 ℒ = −   Yij ln⁡(Y ij )

c

j=1i∈YL

 (8) 

 

III. EXPERIMENTS 
3.1 Datasets 

 In order to test the performance of the 

proposed neural network, two benchmarking real 

world datasets were used; Cora and Citeseer [34]. 

Both of them are citations networks. Each document 

in these citation networks represents a node in the 

graph and is described by a bag-of-words feature 

vector. The feature vectors are gathered in a matrix 

X. The datasets also contain a list for the citations 

between the documents. The citations represent the 

undirected edges of the graphs and are captured in 

the adjacency matrix A. Each document also has a 

label specifying which category it belongs to.  

 The Cora dataset has 2708 documents 

(nodes), 5429 edges, 1433 features (for each 

document/node), and 7 classes (labels). Given the 

semi-supervised learning setting and following along 

with the same data split used in previous works [27], 

only 20 labeled instances from each class are 

available in the training phase, i.e. 140 labeled 

nodes. The adjacency matrix and all of the feature 

vectors are available for training. 

 The Citeseer dataset on the other hand, has 

3327 documents (nodes), 4732 edges, 3703 features 

(for each document/node), and 6 classes (labels). 

With the 20 labeled instances per class condition, 

120 labeled nodes are used in training in addition to 

the adjacency matrix and the all of the feature 

vectors. Table 1 shows a summary of the two 

datasets. 

 

3.2 Model Setup 

 In the implementation of the model, two 

layers of the MDGNN were used as defined in (6). A 

dropout rate of 0.5 was used on the first layer [35]. 

The two layers used an exponential linear unit 

(ELU) as activation functions [36]. The first layer 

reduces the dimension of the input to 16 and the 

second layer reduces it further to the number of 

possible classes. Both layers use L2 regularization of 

10−5. The output of the two layers was passed to a 

softmax function to generate the predictions of the 

labels. The cross-entropy error loss function was 

then applied on the labeled set of the inputs. The 

network was trained using the Adam optimizer [37] 

with a learning rate of 0.01. The values of α were set 

to 1, 0.65 and 0.91 for the Lablacian, normalized 

Lablacian and random walk diffusion matrices 

respectively. We note that multiple values for the 

parameter α were tested, the values mentioned 

achieved the best performance when using each 

diffusion matrix on its own without mixing (β = 1). 

 

3.2.1 MDGNN Variations Testing 

 Given the three defined diffusion matrices, 

there are three possible variations of the MDGNN 

model,namely,MDGNN-L+RW, MDGNN-NL+RW, 

and MDGNN-L+NL, where L stands for the 

Lablacian matrix, LN stands for the normalized 

Lablacian matrix, and RW stands for the random 

walk base diffusion matrix. The three model 

variations were tested on the two datasets against 

different values of the mixing parameter β. 
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 Fig. 1 below shows the achievable 

classifying accuracies of the different MDGNN 

variations for varying values of β for the Cora 

dataset. Several combinations already achieve an 

accuracy above the 83% mark (highest accuracy in 

the literature). The best performance is made by the 

MDGNN-NL+RW model with β = 0.4 for the Cora 

dataset achieving an accuracy of 84.9%. 

 

 
Fig.1: MDGNN variations accuracies for Cora 

dataset 

 

 Fig. 2 shows the performance of the 

MDGNN variations on the Citeseer dataset. It is 

clear that two MDGNN variations that utilize the 

random walk diffusion are performing better than 

the variation that does not. The best variation 

achieves a classification accuracy of 73.2%. The 

model is MDGNN-L+RW with β = 0.4. 

 

 
Fig.2: MDGNN variations accuracies for Citeseer 

dataset 

 

3.3 Baselines 

 The results of the proposed model are 

compared against a number of baselines. Namely the 

baselines are; DeepWalk[26], CNN-Cheby[18], 

Planetoid [27], Graph Convolutional Network 

(GCN) [19], Manifold Regularization (ManiReg) 

[28], Semi-supervised Embedding (SemiEmb) [29], 

Label Propagation (LP) [25], Iterative Classification 

Algorithm (ICA) [30], and Diffusion-Convolutional 

Neural Network (DCNN) [38]. We also include the 

following baselines; Network of GCN (N-GCN) 

[21], Graph Attention Network (GAT) [5], and 

Graph Diffusion-Embedding Network (GDEN) [33]. 

 

3.4 Results 

 Table 2 shows the accuracy of the different 

methods in predicting the labels of the unlabeled 

nodes (node classification). The accuracies of the 

models were taken as reported in the literature. 

 

Table 2: Accuracy of node classification on citation 

networks comparison in a semi-supervised learning 

setting 

Method Cora dataset 
Citeseer 

dataset 

SemiEmb 59.0% 59.6% 

ManiReg 59.5% 60.1% 

DeepWalk 67.2% 43.2% 

LP 68.0% 45.3% 

ICA 75.1% 69.1% 

Planetoid 75.7% 64.7% 

CNN-Cheby 79.2% 68.1% 

GDEN-RWR 79.3% 72.9% 

DCNN 81.3% 71.1% 

GCN 81.5% 70.3% 

GDEN-L 81.9% 71.3% 

N-GCN 83.0% 72.2% 

MDGNN-L+RW 

(proposed model) 
82.7% 73.4% 

MDGNN-NL+RW 

(proposed model) 
84.9% 72.2% 

 

IV. DISCUSSION 
 The semi-supervised graph learning 

challenge and specifically the node classification 

problem has been under investigation for an 

extended period of time as apparent by the numerous 

proposed methods. As Table 2 shows, the proposed 

model (MDGNN) achieves better node classification 

accuracy than the other models. To further validate 

the performance of the new model we used two 

different real world citation datasets, namely; Cora 

and Citeseer.  

 The performance of the model is heavily 

affected by the choices of Ad1, Ad2 and β in (4). The 

best diffusion matrices combinations were found to 

include the random walk based diffusion and either 

 

 

Table 1: Citation Datasets Statistics Summary 

 

Documents 

(Nodes) 

Links 

(Edges) Features 

Classes 

(Labels) 

Labels Used 

in Training 

Labels 

Percentage 

Cora 2708 5429 1433 7 140 5.17% 

Citeseer 3327 4732 3703 6 120 3.61% 
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one of the Lablacian diffusions. The two Lablacian 

diffusion matrices originates from an optimization 

problem that seeks to balance the similarity of 

neighboring diffused features with retaining the 

original node features [33]. The random walk 

diffusion matrix originates from the random walk 

model. The random walk model originally aims to 

encode the structure of a given graph without the 

need for any node features. Combining the features 

focused Lablacian diffusions with the graph 

structure focused random walk diffusion generated 

the best performance. The chosen β value of 0.4 

shows that the best performance lies in between the 

features focused and the graph structure focused 

diffusion models. 

 In regards to the computational complexity 

of the proposed model, the model needs only to 

perform the diffusion matrices calculations one time. 

The heaviest required calculations in the model are 

the matrices inversions in the diffusion equations. 

However, it is possible to calculate the two diffusion 

matrices in parallel to cut the computation time.  

 Diffusion models in general have shown 

promising results in the graph node classification 

problem [33]. Other diffusion models could be 

explored and tested in the semi-supervised learning 

setting [7]. The proposed model (MDGNN) showed 

that combining diffusion processes can further 

improve the performance of the node classifier. 

There is still a need to investigate other 

combining/fusing methods. There is also a need for a 

systematic way to calculate the optimum value for 

the fusing parameter β. Another possible future 

direction would be to extend the MDGNN model to 

handle directed graphs and graphs with edge 

features.  

 

V. CONCLUSION 
 In this work, the proposed Mixed Diffusion 

Graph Neural Network (MDGNN) showed great 

promise in the graph node classification problem 

under semi-supervised learning. The new model 

outperformed the previous models from the 

literature. The model was defined in a layer-wise 

fashion that is easy to incorporate in any neural 

network design.  

 The diffusion processes presented in this 

workexhibited promising performance inthe task of 

semi-supervised graph data learning, however, there 

is still a need to findthe optimum value for the 

tuning parameter for each diffusion process. 

Thecombining parameter β could also be further 

investigated to achieve optimumperformance. The 

proposed combined diffusion model could also be 

applied to otherproblems such as graph auto-

encoders and graph learning (instead of node 

learning).The neural network model used in the 

paper is similar to a simple multi-layerperceptron 

neural network, other network models such as 

recurrent neural networks(RNN) could be tested to 

adopt the learning model for different problem 

settings. 
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