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ABSTRACT The optimal tracking problem of descriptor time-varying continuous-time systems is studied. 

First, under the assumption of impulse controllability, it is shown that the original system can be converted to a 

reduced-order normal linear time-varying system and an algebraic constraint by the pre-feedback technique and 

the restricted system equivalent (r.s.e) approach. Second, the state augmentation technique is applied to 

construct an augmented system, in which the state vector consists of tracking error, auxiliary input (appearing in 

pre-feedback), the state, and its derivative of the normal system. This procedure transforms the tracking control 

problem into an optimal regulation problem of the augmented system. Third, by utilizing the related results of 

preview control theory, a controller for the augmented system is presented through letting preview length tend to 

zero. Meanwhile, a controller to solve the original problem is also derived from the controller for the augmented 

system. Finally, two sorts of numerical simulation methods are proposed for the time-varying descriptor 

continuous-time systems, which have been demonstrated to be effective by various examples.         
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I. INTRODUCTION 
Descriptor systems have attracted extensive 

attention over the last four decades, and there have 

been fruitful results within the community of 

researchers on the topic, such as [1-3]. As study 

deepened, researchers started to investigate the 

related problems by combining descriptor systems 

and the preview control theory (related results about 

preview control can be found in [19,20]). For 

example, the authors of [4] designed an optimal 

controller with preview actionfor linear causal 

descriptor systems. In [5], the method of [4] was 

generalized to the case of discrete-time linear 

descriptor time-delay systems. Furthermore, based on 

the results of [4, 5], the authors of [6] handled the 

optimal preview tracking control for multi-rate 

discrete-time descriptor systems. Additionally, the 

results of [7] can be viewedas a continuous-time 

counterpart of [4]. Recently, [22] also considered the 

optimal preview control problem and proposed a 

numerical simulation algorithm for the original 

system that did not rely on the r.s.e. form. 

 The study of time-varying singular systems 

has also drawn increasing interest, and several results 

in this field have been published. Since impulsive 

responses were excluded in [8,9] by using admissible 

initial conditions, [10] applied the state feedback to 

eliminate the impulse behavior and derived a 

necessary and sufficient condition to guarantee the 

existence of the feedback control law. Further, in [11], 

the author transformed the original descriptor 

time-varying systems into a standard canonical form 

and established the related criteria of controllability 

and observability. Notice thatcontrollability and 

impulse controllability are two different concepts in 

descriptor systems, and so it is with observability and 

impulse observability. Hence, the authors of [12] 

investigated the conditions that can ensure the 

impulsive controllability and the impulse 

observability. [13] considered the same problem as in 

[12], The difference isthat a new impulse solution 

with respect tothe initial value problem of linear 

descriptor time-varying systemswas obtained,and 

meanwhile the impulse controllability as well as the 

impulse observability was redefined. Moreover, 

controllability and observability at infinity were 

studied in [14] under the scenario of analytical 

solvability. Recently, [15] proposed the finite-time 

stabilityfor linear descriptor time-varying impulse 

systems; this issue was further investigated in 

[16].Because the method in [15] relies on some 

restrictions on the system matrices, the authors of [17] 

developed new methods to address this problem. The 

most related literature to this paper could be [18], 

which discussed the linearquadratic optimal control 

problem of linear descriptor time-varying systems.  
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We are concerned in the present paper with 

the optimal tracking control problem of descriptor 

continuous-time time-varying systems with impulse 

controllability. Technically, the state augmentation 

technique, which is used in preview control theory, 

will be applied to convert the original problem into a 

stability problem of zero solution for a closed-loop 

augmented system. Hence, the results in [18] cannot 

be directly generalized to deal with this problem. 

Specifically, the reference signal is assumed to be 

previewable. Based on the results for optimal 

preview control in [23], an optimal controller is 

designed for the augmented system by setting the 

preview length to tend to zero.Then according to the 

relationship between the original input and the 

auxiliary input in pre-feedback, the controller for the 

original problem is also obtained. Moreover, two 

kinds of numerical simulation methods are given for 

time-varying descriptor continuous-time systems. 

Both methods are more general and can be applied to 

descriptor continuous-time systemsof any type.  

Throughout this paper, a matrix ( )M t is referred to 

as invertible, if ( )M t  is invertible for any 

0[ , ]ft t t . Furthermore, “iff” represents “if and 

only if”. 

 

II. RESTRICTED SYSTEM EQUIVALENT OF A DESCRIPTOR TIME-VARYING SYSTEM 
  Consider a descriptor time-varying system 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

E t x t A t x t B t u t

y t C t x t

 





, 

0[ , ]ft t t                   (1) 

where ( ) nx t , ( ) ru t  , ( ) my t   represent the state, control input, and output of system (1). 

( ) n nA t  , ( ) n rB t  , ( ) m nC t   are time-varying matrices with the appropriate dimensions. 

( ) n nE t   is singular matrix and has constant rank, i.e., rank ( )E t q n   holds for any 
0[ , ]ft t t . 

  Note that rank ( )E t q , thus, according to the property in matrix theory, it follows that ( )E t  is equivalent 

to 
0

0 0

qI 
 
 

. Namely, there exist two invertible matrices ( )M t and ( )N t  such that 

0
( ) ( ) ( )

0 0

qI
M t E t N t

 
  
 

 

Let 

( ) ( ) ( )x t N t x t                            (2) 

then, pre-multiplying system (1) by ( )M t yields 

 
[ ( ) ( ) ( )] ( ) ( )[ ( ) ( ) ( ) ( )] ( ) [ ( ) ( )] ( )

( ) [ ( ) ( )] ( )

M t E t N t x t M t A t N t E t N t x t M t B t u t

y t C t N t x t

   




  


 (3) 

  Due to the block structure of matrix 
0

0 0

qI 
 
 

, other matrices in system (3) can be correspondingly 

partitioned into the following forms: 

11 12

21 22

( ) ( )
( )[ ( ) ( ) ( ) ( )]

( ) ( )

A t A t
M t A t N t E t N t

A t A t

 
   

 

 


 
, 

1

2

( )
( ) ( )

( )

B t
M t B t

B t

 
  
 




,  

1 2( ) ( ) [ ( ) ( )]C t N t C t C t    

Set
1

2

( )
( )

( )

x t
x t

x t

 
  
 





, then system (3) can be rewritten as 
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11 111 12

22 221 22

1

1 2

2

( )( ) ( )( ) ( )
( )

( )0 ( ) ( )( ) ( )

( )
( ) [ ( ) ( )]

( )

x tI x t B tA t A t
u t

x tx t B tA t A t

x t
y t C t C t

x t

       
        

       


 
  

 

   

   


 



 (4) 

or another form 

1 11 1 12 2 1

21 1 22 2 2

1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x t A t x t A t x t B t u t

A t x t A t x t B t u t

y t C t x t C t x t

   


  


 

     

   

  

                    (5) 

As long as matrix ( )E t  has constant 

rankany 
0[ , ]ft t t , the aforementioned 

transformation is always available. After this 

procedure, the original system (1) is decomposed into 

a reduced-order normal linear time-varying system 

and an algebraic equation.  

Similar to the time-invariant descriptor system 

[7,24], if we obtain 
2 ( )x t  from the following 

equation 

21 1 22 2 20 ( ) ( ) ( ) ( ) ( ) ( )A t x t A t x t B t u t                         

(6) 

and substitute it into the first equation, then system (5) 

will only be related to 
1( )x t . In fact, the sufficient 

and necessary condition for solving 
2 ( )x t  from (6) 

uniquely is that 
22( )A t  is invertible. If the 

invertibility of 
22( )A t is always satisfied for any 

0[ , ]ft t t , then system (1) is termed as 

impulse-free. 

  Then, when system (1) is impulse-free, we obtain  

1 1

2 22 21 1 22 2( ) ( ) ( ) ( ) ( ) ( ) ( )x t A t A t x t A t B t u t         

Substituting it into system (5) yields  

1 1
11 11 12 22 21 1 12 22 2

1 1
22 22 21 22 2

1

1 2

2

( )( ) ( ) ( ) ( ) ( ) 0 ( ) ( ) ( ) ( )
( )

( )0 ( ) ( ) ( ) ( ) ( )

( )
( ) [ ( ) ( )]

( )

x tI x t A t A t A t A t B t A t A t B t
u t

x tx t A t A t I A t B t

x t
y t C t C t

x t

 

 

         
         

        


 
  

 

       

    


 



 (7) 

This is equivalent to pre-multiplying equation (4) by the following invertible matrix 

1

12 22

1 1

22

( ) ( )
( )

0 ( )

I A t A t
M t

A t





 
  
 

 


 

In other words, if 1( ) ( )M t M t  is used in (3) instead of ( )M t , then system (1) will be directly transformed 

into system (7). For convenience of simplifying the notations, hereafter 1( ) ( )M t M t  will be specified as 

( )M t , and system (7) will be denoted as the following form: 

11 111

22 221

1

1 2

2

( )( ) ( )( ) 0
( )

( )0 ( ) ( )( )

( )
( ) [ ( ) ( )]

( )

x tI x t B tA t
u t

x tx t B tA t I

x t
y t C t C t

x t

       
        

       


 
  

 

  

  


 



               (8) 

Here, system (8) is termed as the r.s.e. form of system (1). 

  Note that 
22( )A t  is not always invertible in (6), thus 

2 ( )x t  will not be solved uniquely. To this end, we 

introduce the state pre-feedback: 

2 2( ) ( ) ( ) ( )u t K t x t v t                               (9) 

to (6); then we have 
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21 1 22 2 2 2 20 ( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( )A t x t A t B t K t x t B t v t                      (10) 

  We now proceed to analyze pre-feedback (9); it is evident that this control can be expressed as the following 

form 

1

2

2

( )
( ) [0 ( )] ( )

( )

x t
u t K t v t

x t

 
  

 




 

According to (2), we have
1( ) ( ) ( )x t N t x t , and thereby the above controller can be rewritten as 

 
1

2( ) [0 ( )] ( ) ( ) ( ) ( ) ( ) ( )u t K t N t x t v t K t x t v t     (11) 

By combining system (1) with the above pre-feedback control, we obtain 

( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( )

( ) ( ) ( )

E t x t A t B t K t x t B t v t

y t C t x t

  





              (12) 

Note that if
2 ( )K t  can be suitably selected such 

that 
22 2 2[ ( ) ( ) ( )]A t B t K t   is invertible, or if 

matrix ( )K t  is designed such that system (12) is 

impulse-free, system (1) is impulse controllable. 

In the following, system (1) will be assumed to be 

impulse controllable. For this assumption and system 

(12), there exists the following result. 

Lemma 1 [18]. System (1) is impulse controllable 

over 
0[ , ]ft t  iff there exist gain matrix ( )K t  and 

invertible matrices ( )M t  and ( )N t  such that  

1

( ) 0 0

( ) 0 ( ) 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 r

N t

M t N tE t A t B t K t E t N t N t B t

I



 
 

     
  

  

11 1

21 2

0 ( ) 0 ( )

0 0 ( ) ( )

q

n q

I A t B t

A t I B t

 
  
 

                          (13) 

According to the discussion of the scenario of impulse-freeness and Lemma 1, if system (1) is impulse 

controllable, then we can choose pre-feedback (11) such that system (12) is impulse-free.  

 

III. PROBLEM FORMULATION 
  We continue to consider the descriptor 

time-varying system (1). Definethe tracking error as 

( ) ( ) ( )de t y t y t                         

(14) 

where ( )dy t  is reference signal.The object is to 

design a controller with preview action such that the 

output ( )y t  can track ( )dy t  accurately. To this 

end, for system (12), the following performance 

index function is introduced 

0

( ) ( ) ( ) ( ) ( ) ( )
ft

T T T

f f e
t

J e t Fe t e t Q e t v t Rv t dt               (15) 

where the weighted matrices satisfy 0F  , 0eQ  , 0R  . As pointed out in [7], by applying the 

derivativeof the control input ( )v t  in J , the integral of the tracking error will be contained in an optimal 

controller, which can assist to eliminate static errors. 

  Before proceeding further, let us list some basic assumptions. 

A1. System (1) is impulse controllable; 

A2. Each element of ( )A t 、 ( )B t and ( )C t is continuously differentiable over the defined interval 
0[ , ]ft t . 

Under A1, according to Lemma 1, system (12), formed by system (1) and pre-feedback (11), is impulse-free. 

Therefore, there are two invertible matrices ( )M t  and ( )N t such that system (12) is r.s.e. to 

11 1

21 2

1 2

( ) 00 ( )
( ) ( ) ( )

( )0 0 ( )

( ) ( ) ( ) ( )

q

n q

A tI B t
x t x t v t

A t I B t

y t C t C t x t



     
      

     


   


              (16) 
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Furthermore, denoting 
1

2

( )
( )

( )

x t
x t

x t

 
  
 

 gives  

1 11 1 1

21 1 2 2

1 1 2 2

( ) ( ) ( ) ( ) ( )

0 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x t A t x t B t v t

A t x t x t B t v t

y t C t x t C t x t

  


  


 



                     (17) 

where 
11( ) q qA t R  , 

( )

21( ) n q qA t R   , 
1( ) q rB t R  , 

( )

2 ( ) n q rB t R   , 
1( ) m qC t R  , 

( )

2 ( ) m n qC t R   . Note that   1

1( ) 0 ( ) ( )x t I N t x t , which will be used later. 

To design the controller for system (1), a hypothesis, which is about the reference signal ( )dy t , is needed. 

A3. ( )dy t  is piecewise differentiable over 
0[ , ]ft t . 

Remark 1. We need to differentiate ( )A t , 

( )B t  and ( )C t  with respect to t in the process of 

constructing an augmented system. Therefore, these 

matrices are required to be differentiable in A2. 

Moreover, according to A3, it follows that reference 

signal ( )dy t  is not differentiable at some isolated 

points. At this juncture, we take the one-sided 

derivative of ( )dy t . 

 

IV. CONSTRUCTION OF AN 

AUGMENTED SYSTEM AND DESIGN 

OF THE CONTROLLER 
In the following, the approach of [21,23] will 

be applied to solvethe key problem of this paper. 

First of all, an augmented system, which is based on 

the reduced-order normal time-varying system, will 

be constructed below.Specifically, by solving 

 2x t  from the second equation of (17) and 

substituting it into the third one, we can obtain the 

following reduced-order normal system: 

     1

2

1

1 1

11 1

ˆ ˆ( ) ( ) ( ) ( ) (

) ( )

)

(

y t C t

x

x t

t A t x t B t

C v t

v t

t

 


 



                      (18) 

with 
1 1 2 21

ˆ ( ) ( ) ( ) ( )C t C t C t A t  , 
2 2 2

ˆ ( ) ( ) ( )C t C t B t  . Then the original problem is finally converted to 

the tracking problem of the reduced-order normal system (18), where the reference signal is still ( )dy t . 

We proceed to the construction of the augmented system. Differentiating both sides of system (18) and 

tracking error (14) with respect to t  gives 

1 1

1 11

1 1 2 2

1 11 1 1 1

ˆ ˆ ˆ ˆ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) (

( ) ( ) ( ) ( ) ( ) ( ) ( )

) ( )x t A t x t A t x t B t v t B t v

y t C t x t C t x t C t

t

v t C t v t




   

   



   

  
           (19) 

and  

( ) ( ) ( )de t y t y t     

1 1 1 1 2 2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )dC t x t C t x t C t v t C t v t y t    
          (20) 

Combining the first equation of (19) with (20) and using the following two identities 

1 1( ) ( )x t x t  , ( ) ( )v t v t   

we have 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

dz t A t z t B t v t Gy t

e t Cz t

   




 
 (21) 

System (21) is referred to as the augmented system, where ( ) ( )e t Cz t  is the observation equation. 

Note that ( )y t  is the measured output of 

system (1), and ( )dy t  is known at the current time 

t , hence ( )e t  is also measurable according to 

equation (14). This means that it is reasonable to 

choose ( )e t  as the output of system (21). 

We now turn to the process of obtaining optimal 

control of system (21). Since the state vector of this 

system is )(tz , the relevant variables of 

performance index function (15) is correspondingly 
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needed to be replaced by )(tz . Specifically, we can 

substitute ( )Cz t  for ( )e t  and ( )fCz t for 

( )fe t ; the result is 

0

( ) ( ) [ ( ) ( ) ( ) ( )]
ft

T T T

f f
t

J z t Fz t z t Qz t v t Rv t dt               (22) 

where ( ,0,0,0)TF C FC diag F  , ( ,0,0,0)T

e eQ C Q C diag Q  . 

Eventually, the tracking problem of system (1) is changed into the finite-time optimal state regulation 

problem of system (21). In fact, if the optimal controller exists, the ( )e t  will asymptotically converge to an 

appropriately small neighborhood of the zero vector, which is exactly what we need. 

To obtain the optimal controller, the reference signal ( )dy t  is first assumed to be previewable and the 

preview length is set as 
rl . Then main result follows immediately according to the literature [23]. 

 

Theorem 1. The optimal controller for linear descriptor time-varying system (21) with respect to the 

performance index function (22) is given by 
1 1( ) ( ) ( ) ( ) ( ) ( )T Tv t R B t P t z t R B t g t      (23) 

where ( )P t  is an ( 2 ) ( 2 )m q r m q r      matrix. Moreover, ( )P t and ( )g t  are, respectively, the 

solutions of the following two boundary problems of differential equation 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

T T

f

P t A t P t P t A t P t B t R B t P t Q

P t F

    





     (24) 

and 

( ) ( ) ( ) ( ) ( )

( ) 0

C d

f

g t A t g t P t Gy t

g t

  




 
                   (25) 

Here,
0[ , ]ft t t  and

1( ) ( ) ( ) ( ) ( )T T

CA t P t B t R B t A t  . 

Notice that what we want is to design a control input ( )u t  for the system (1). This result will be discussed 

in the following section. 

 

V. DESIGN OF CONTROLLER FOR 

SYSTEM (1) 

Since ( ) ( ) ( ) ( )u t K t x t v t  , in order to 

obtain ( )u t , we need to solve ( )v t . To this end, it 

follows from (23) that we have to solve ( )g t from 

differential equation (25). In light of the basic 

theories of differential equations, we set ( )t  is 

the fundamental solution matrix of 

( ) ( ) ( )Cg t A t g t . As a result, the solution of (25) 

has the form of  

1( ) ( ) ( ) ( ) ( )
f

t

d
t

g t t s P s Gy s ds                  (26) 

Substituting (26) into (23) and partitioning 
1 ( ) ( )TR B t P t

 into the following form in terms of the structure 

of ( )z t  

 1

1 1( ) ( ) ( ) ( ) ( ) ( )T

e x x vR B t P t K t K t K t K t    

we get 

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )...v e x xv t K t v t K t e t K t x t K t x t     
  

 
1 1( ) ( ) ( ) ( ) ( )

ft
T

d
t

R B t t s P s Gy s ds      (27) 

Here, the integral term 
1 1( ) ( ) ( ) ( ) ( )

ft
T

d
t

R B t t s P s Gy s ds     utilizes the derivative value of 

the reference signal after the current time. According to the assumption on ( )dy t , this term can be further 

written as 
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( )
1 1( ) ( ) ( ) ( ) ( )

r ft l t
T

d
t

R B t t s P s Gy s ds
 

      

where ( ) min( , )r f r ft l t t l t    . Because ( )dy t  is not previewable, neither is ( )dy t , by letting 

0rl  , we have  

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v e x xv t K t v t K t e t K t x t K t x t     
        (28) 

Correspondingly, a result can be immediately derived from Theorem 1. 

Theorem 2. The control input ( )v t  for the 

time-varying system (21), which minimizes the 

performance index function (22), can be determined 

by equation (28), where 

  1

1 1( ) ( ) ( ) ( ) ( ) ( )T

e x x vK t K t K t K t R B t P t

, 
1( ) ( ) ( ) ( ) ( )T T

CA t P t B t R B t A t  , and 

( )P t  is a solution matrix of the Riccati differential 

equation (24). 

Suppose that ( )t  is the fundamental solution 

matrix of ( ) ( ) ( )vv t K t v t  , then system (28) has 

the following state response: 

 
0

1

0 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t

t

e x xv t t v t t K e K x K x d               
  (29) 

In addition, setting 
0( ) 0v t   yields 

 
0

1

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t

t

e x xv t t K e K x K x d              
          (30) 

which is exactly the control input ( )v t  of system (21). 

Noting   1

1( ) 0 (t) (t)x t I N x ,    1 1

1 0 (t) (t) 0 (t) (t)x I N x I N x     and using them in 

(30), we can finally get the control input for system (1) based on ( ) ( ) ( ) ( )u t K t x t v t  , that is 

     
0

1 1 1 1

1 1 1

( ) ( )...( )

( ) ( ) ( ) ( ) ( ) 0 ( ) ( ) ( ) 0 ( ) ( ) ( ) 0 ( ) ( )
t

e x x x
t

K t x tu t

t K e K I N x K I N x K I N x d               




        
 

 

               (31) 

By decomposing the integral of the sum function into the sum of the function integrals, we conclude the 

following result: 

Theorem 3. Assume that )(tE  is a singular matrix with constant rank, and assumptions A1-A3 hold, 

under the performance index function (15), the controller for the time-varying descriptor system (1) is given as 

0

1
( ) ( )( ) ( ) ( ) ( ) ( )d ...

t

e
t

K t x tu t t K e        

   
0

1 1 1

1 1( ) ( ) ( ) 0 ( ) ( ) 0 ( ) ( ) ...
t

x x
t

t K I N K I N x d              
  

 
0

1 1

1( ) ( ) ( ) 0 ( ) ( )d
t

x
t

t K I N x                                 (32) 

where 
1( ) ( ) ( ) ( ) ( )T T

CA t P t B t R B t A t  ; 

( )eK t , 1( )xK t , 1( )xK t , ( )vK t , as well as ( )P t , 

are defined in Theorem 2; ( )K t , ( )N t  are 

determined by (13). Moreover, ( )t  is the solution 

to the initial value problem of 

0( ) ( ) ( ), ( )vv t K t v t v t I   . 

In (32), ( ) ( )K t x t  is employed to 

eliminate the impulse in system (1);

0

1( ) ( ) ( ) ( )d
t

e
t

t K e       is an integral 

term about the tracking error, which has the ability to 

eliminate the static error; and

   
0

1 1 1

1 1( ) ( ) ( ) 0 ( ) ( ) 0 ( ) ( )
t

x x
t

t K I N K I N x d              


 is the state feedback. 

In Theorem 3, the theoretical analysis can 

be facilitated by writing control input )(tu  in the 

form of (32). However, (32) is inconvenient for 

practical problems, as it needs the solution ( )t  of 

the differential equation 

0( ) ( ) ( ), ( )vv t K t v t v t I   . To this end, we 

intend to propose a numerical method for finding the 

controller based on equation (28). Meanwhile, we 

will also provide a simulation approach to achieve 
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the closed-loop response in the following two 

sections, respectively. 

 

 

 

 

VI. THE FIRST REALIZATION METHOD 

 The sampling time is assumed to be T ; based on Euler’s method, equation (28) can be discretized as: 

(( 1) ) ( ) ( ) ( ) ( ) ( )...v ev i T v iT TK iT v iT TK iT e iT     

1 1 1 1( ) ( ) ( ) ( )x xTK iT x iT TK iT x iT  
                (33) 

Substituting 
1 1( ) (( 1) )x iT x i T

T

 
 for 

1( )x iT  and applying the formula   1

1( ) 0 ( ) ( )x t I N t x t , we 

can obtain 

(( 1) ) ( ) ( ) ( ) ( ) ( )...v ev i T v iT TK iT v iT TK iT e iT     

1

1 1 1 1 1( ) ( ) ( )[ ( ) (( 1) )] ( ) ( )T

x xTK iT x iT TK iT x iT x i T TR B iT g iT      

  1

1[ ( )] ( ) ( ) ( ) ( ) 0 ( ) ( )...v e xI TK iT v iT TK iT e iT TK iT I N iT x iT     

   1 1

1( )[ 0 ( ) ( ) 0 (( 1) ) (( 1) )]xTK iT I N iT x iT I N i T x i T         (34) 

   In view of ( ) ( ) ( ) ( )u t K t x t v t  , )(tu  of the discretization form can be written as: 

(( 1) ) (( 1) ) (( 1) ) (( 1) )u i T K i T x i T v i T       

  1

1(( 1) ) [ ( )] ( ) ( ) ( ) ( ) 0 ( ) ( )...v e xv i T I TK iT v iT TK iT e iT TK iT I N iT x iT      

   1 1

1( )[ 0 ( ) ( ) 0 (( 1) ) (( 1) )]xTK iT I N iT x iT I N i T x i T       (35) 

  We now turn to the investigation of the simulation algorithm. Owing to the singularity of  ( )E t  over 

],[ 0 ftt , the state response )(tx  cannot be directly derived from system (1). In terms of the implicit Euler’s 

method, applying the approximation 
(( 1) ) ( )

(( 1) )
x i T x iT

x i T
T

 
   to system (1) gives 

   (( 1) ) (( 1) ) ( ) (( 1) ) (( 1) ) (( 1) ) (( 1) )E i T x i T x iT T A i T x i T B i T u i T          

A routine computation gives rise to the following formula 

[ (( 1) ) (( 1) )] (( 1) ) (( 1) ) ( ) (( 1) ) (( 1) )E i T TA i T x i T E i T x iT TB i T u i T          

Inserting the first equation of (35) into the last equation, we obtain 

[ (( 1) ) (( 1) ) (( 1) ) (( 1) )] (( 1) )

(( 1) ) ( ) (( 1) ) (( 1) )

E i T TA i T TB i T K i T x i T

E i T x iT TB i T v i T

      

    
 

Therefore, if sampling time T  is suitably chosen such that 

[ (( 1) ) (( 1) ) (( 1) ) (( 1) )]E i T TA i T TB i T K i T       

is invertible for all i , then the simulation algorithm can be obtained as follows: 

 
 

   

1

1

1

1 1

1

(( 1) ) [ (( 1) ) (( 1) ) (( 1) ) (( 1) )] [ (( 1) ) ( )...

(( 1) ) (( 1) )]

(( 1) ) [ ( )] ( ) ( ) ( ) ( ) 0 ( ) ( )...

( )[ 0 ( ) ( ) 0 (( 1) ) ((

v e x

x

x i T E i T TA i T TB i T K i T E i T x iT

TB i T v i T

v i T I TK iT v iT TK iT e iT TK iT I N iT x iT

TK iT I N iT x iT I N i T x





 

        

  

    

   1) )]i T






 

                                                                  

(36) 

where ( )P t  is the solution of equation (24). 

Notably, it is necessary to ensure that 
0ft t  is an integer multiple of T  in the discretization process. 

 

VII. THE SECOND REALIZATION METHOD 
The basic idea of the second method includes two points: (1) discretization; (2) utilizing the method 

described in the literature [23] to build an iterative scheme. Specifically, according to Euler’s method, system (1) 
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is first discretized into the following form 

(( 1) ) (( 1) ) [ (( 1) ) ( )] ( ) ( ) ( )E i T x i T E i T TA iT x iT TB iT u iT        (37) 

Choosing a matrix M  and adding the identity 

(( 1) ) (( 1) )Mx i T Mx i T                   (38) 

into both sides of the equation (37), we have 

[ (( 1) )] (( 1) ) (( 1) ) [ (( 1) ) ( )] ( ) ( ) ( )M E i T x i T Mx i T E i T TA iT x iT TB iT u iT          

(39) 

If the closed-loop output of system (1) can track the reference signal, then we take (( 1) ) ( )x i T x iT   for 

large enough i . Meanwhile, M  is selected such that [ (( 1) )]M E i T   is invertible for all i . Then it 

follows from (39) that 
1(( 1) ) [ (( 1) )] {[ (( 1) ) ( )] ( ) ( ) ( )}x i T M E i T M E i T TA iT x iT TB iT u iT          

(40) 

Furthermore, on the basis of equation (35), ( )u iT has the following form: 

 

 

 

1

1

1

1

1

( ) ( ) ( ) [ (( 1) )] (( 1) ) (( 1) ) (( 1) )...

(( 1) ) 0 (( 1) ) (( 1) )...

(( 1) )[ 0 (( 1) ) (( 1) )...

0 (( 2) ) (( 2) )]

v e

x

x

u iT K iT x iT I TK i T v i T TK i T e i T

TK i T I N i T x i T

TK i T I N i T x i T

I N i T x i T







       

   

   

  



(41) 

If we plug (41) back into (40), we will obtain a closed-loop system, which will not be included here.  

In particular, by selecting the parameters M  and T , the eigenvalues of the matrix 
1[ (( 1) )] [ (( 1) ) ( ) ( ) ( )]M E i T M E i T TA iT TB iT K iT       

can be adjusted effectively, which will have a positive effect on the tracking speed and the overshoot during the 

tracking process. From this perspective, the introduction of matrix M  is a correct decision. 

 

VIII. NUMERICAL SIMULATION 
  Consider the system (1) with 

2

1
0

( ) 1

0 1

E t t

 
  
 
 

, 2

1
10

( ) 1

0 1

A t t

 
  

 
 

, 
1

( )
1

B t
 

  
 

,  ( ) 0 1C t  ,  

0[ , ] [0, 200]ft t t   

 the reference signal ( )dy t  is selected as: 

0, 0 40

( ) 1 sin ( 45) . 45 50
10

2, 50

d

t

y t t t

t



 

  

      
 

 

 

and the controller will be designed according to Theorem 3. 

It is obviously that the coefficient matrices of the above system and the reference signal satisfy 

assumptions A2 and A3. Alternatively, since rank ( ) 1E t   holds for any [0,200]t , then based on the 

discussions in section 2, there exist the following two invertible matrices: 

2

0 1

( ) 1 1

10 10( 1)

M t

t

 
 
 

  

, 
0 1

( )
1 0

N t
 

  
 

 

such that  

1 0
( ) ( ) ( )

0 0
M t E t N t

 
  
 

, 
1 0

( )[ ( ) ( ) ( ) ( )] ( ) ( ) ( )
0 1

M t A t N t E t N t M t A t N t
 

    
 

 ,
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2

2

1

( ) ( ) 2

10( 1)

M t B t t

t

 
 

  
  

,  ( ) ( ) 1 0C t N t   

then system (1) is r.s.e. to  

 

2

2

1
1 0 1 0

( ) ( ) ( )2
0 0 0 1

10( 1)

( ) 1 0 ( )

x t x t v tt

t

y t x t

  
     

             
 


             (42) 

Note that (42) has the form of system (8), which implies that the system in this example is impulse-free 

according to Lemma 1. 

We next construct the augmented system in the form of (21). In light of the reduced-order normal 

system extracting from system (42) and the structure of system (21), the coefficient matrices of the augmented 

system are 

0 0 1 0

0 0 1 0
( )

0 0 1 0

0 0 0 0

A t

 
 
 
 
 
 

, 

0

0
( )

1

1

B t

 
 
 
 
 
 

, 

1

0

0

0

G

 
 
 
 
 
 

,  1 0 0 0C   

Letting ( ,0,0,0)eQ diag Q , ( ,0,0,0)F diag F  and 2R   with 20eQ   and 1F  , and 

selecting the sampling period T  as 0.1 , we will perform the simulation according to the algorithms provided 

in sections 7 and 8, respectively. 

 

A. Simulation based on the first approach  

  Since ( ) 0K t  , the iterative strategy (36) can be rewritten as 

 

   

1

1

1

1 1

1

(( 1) ) [ (( 1) ) (( 1) )] [ (( 1) ) ( ) (( 1) ) (( 1) )]

(( 1) ) [ ( )] ( ) ( ) ( ) ( ) 0 ( ) ( )

( )[ 0 ( ) ( ) 0 (( 1) ) (( 1) )]

v e x

x

x i T E i T TA i T E i T x iT TB i T v i T

v i T I TK iT v iT TK iT e iT TK iT I N iT x iT

K iT I N iT x iT I N i T x i T





 

         


    


    

(43) 

After solving the Riccati equation (24) by Euler’s method (the iterative step is taken as T ), algorithm (43) 

can be employed to accomplish the simulation experiment. Figure 1 illustrates the output response. 

 
Figure 1. Closed-loop output curve by utilizing the first approach 

 

 

It can be observed from Figure 1 that the closed-loop output of system (1) tracks ( )dy t accurately, which 

confirms the effectiveness of the designed controller and the simulation algorithm in section 6. 
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B. Simulation based on the second approach 

  Combining (40) with (41) and utilizing ( ) 0K t  , we have 
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
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






  

 

Choosing 
100 10

0 10
M

 
  
 

, Figure 2 plots the output response according to the simulation algorithm 

provided in section 7, from which we can see that the algorithm is very effective. 

 
Figure 2. Closed-loop output curve by utilizing the second approach 

 

Comparing Figure 2 with Figure 1, it can be clearly seen that there exists a large overshoot in Figure 2. 

Meanwhile, the adjustment time is longer than that in Figure 1, as well. In fact, as we mentioned in section 7, 

these deficiencies can be improved by properly selecting matrix M . For example, taking 
1 0

0 0
M

 
  
 

, 

then the simulation result based on the second approach is depicted in Figure 3. 
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Figure 3. Closed-loop output curve 2 by utilizing the second approach 

 

Through plotting Figure 1 and Figure 3 in the same figure (Figure 4), it can be clearly seen that Figure 3 is 

almost the same as Figure 1. 

 
Figure 4. Closed-loop output curves by utilizing both approaches 

 

In the following, we denote the output 

responses of Figure 1 and Figure 3 as 1( )y t  and 

2 ( )y t , respectively. By calculating 1 2( ) ( )y t y t  

and illustrating the result in Figure 5, we find the 

biggest deviations between 1( )y t  and 2 ( )y t  are 

just 0.0015  magnitude, which further confirms 

the result observed in Figure 4.    
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Figure 5. Deviation between 1( )y t  and 2 ( )y t  

 

Furthermore, setting 
1000 1

1 1
M

  
  
 

, 

Figure 6 demonstrates the output responses of the 

closed-loop system under the above two methods. 

Figure 7 exhibits the partial enlargement of Figure 6 

during 0 110t  . It can be seen from both 

figures that the output response under the second 

approach is slightly slower than that under the first 

approach during the period 40 60t  , and the 

scenario is opposite after 60t  . 

 
Figure 6. Closed-loop output curves by utilizing both approaches 
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Figure 7. The partial enlargement of Figure 6 

 

IX. CONCLUSION 
The optimal tracking problem for 

time-varying descriptor systems was investigated. 

First, the reference signal was assumed to be 

previewable. If necessary, the pre-feedback could be 

used to eliminate the impulse existingin the original 

system. With the aid of the coordinate transformation 

and the state augmentation techniques, the tracking 

problem of the time-varying descriptor system was 

transformed into a stability problem with a zero 

solution for the augmented system. With the help of 

preview control theory, a controller for ensuring the 

stability of the zero solution was obtained by letting 

the preview length tend to zero. Meanwhile, a control 

input for the original problem was also obtained by 

virtue of the pre-feedback. This paper also presented 

two kinds of numerical simulation methods for the 

descriptor time-varying system. Simulation results 

verified the effectiveness of the given theorems and 

proposed simulation algorithms. 
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