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I. Introduction 

Emergency departments (EDs) are among the units 

operating under the highest uncertainty within 

healthcare systems, with patient visit volumes 

strongly influenced by temporal, environmental, 

epidemiological, and behavioral factors. These daily 

and weekly fluctuations directly impact operational 

decisions such as staffing, bed capacity 

management, and waiting times. Therefore, accurate 

short-term forecasting of EED visit volumes is 

critical for the sustainability of healthcare delivery 

[19] [18]. 

Studies conducted in the post-COVID-19 pandemic 

period have shown that not only quantitative but also 

qualitative changes have occurred in emergency 

department visits. Significant decreases in 

emergency department visits were observed in the 

early stages of the pandemic, followed by regionally 

and temporally heterogeneous recoveries [24] [25] 

[11].Such abrupt regime changes limit the 

performance of traditional time series models based 

solely on past visit numbers and increase the need 

for more flexible forecasting approaches [8]. 

In recent years, machine learning and deep learning-

based methods have been increasingly used in 

forecasting emergency department visit volume. 

These models offer higher predictive accuracy 

compared to classical statistical models due to their 

ability to learn nonlinear relationships and process 

multidimensional datasets together [19] [18] 

[13].However, the literature reveals that no single 
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model family is superior in all conditions; 

performance can vary depending on the data 

structure, prediction horizon, and the nature of 

exogenous variables [17]. 

Factors influencing emergency department demand 

are not limited solely to historical patient data. The 

community's health-related information-seeking 

behavior provides a significant behavioral signal 

that can precede healthcare utilization, especially 

during infectious disease outbreaks. Search engine-

based digital footprint data, such as Google Trends, 

are considered complementary information sources 

reflecting individuals' symptom awareness, risk 

perception, and healthcare-seeking tendencies [10]. 

Numerous studies conducted during the pandemic 

have shown significant relationships between 

Google Trends search volumes and case numbers 

and healthcare demand [4] [6].It has been reported 

that increases in search behaviors sometimes 

precede healthcare system visits and can therefore 

be considered an early warning signal [10]. 

However, since this data can also be affected by 

media influence and platform-specific 

normalization mechanisms, a careful modeling 

approach is required [6]. 

Studies that directly integrate Google Trends data 

into emergency department visit volume estimation 

reveal that these digital footprints can improve 

short-term prediction performance. Studies 

combining internet search indexes with machine 

learning models have reported significant 

performance improvements, particularly in daily 

prediction horizons [5] [16]. Similarly, studies 

comparing different machine learning approaches 

show that digital search data can be considered as a 

complementary feature set [13]. 

The success of deep learning-based models largely 

depends on architectural design and hyperparameter 

selection. Proper tuning of hyperparameters such as 

learning rate, number of layers, number of neurons, 

and regularization parameters directly affects model 

performance. Therefore, hyperparameter 

optimization has become a significant research area 

in health data analytics in recent years [14]. The use 

of meta-heuristic methods for this purpose can 

provide effective solutions in large search spaces 

[1]. 

Multi-objective optimization approaches, in 

particular, make it possible to address multiple goals 

simultaneously, such as minimizing prediction error 

and controlling model complexity and 

generalizability. Multi-objective Particle Swarm 

Optimization (MOPSO), in this context, offers a 

balanced structure between prediction accuracy and 

model complexity by generating Pareto optimal 

solutions [20] [3]. 

This study proposes a hybrid deep neural network 

approach integrating Google Trends data with 

historical emergency department visit data to predict 

the volume of emergency department visits in 

Turkey. The hyperparameters of the model are 

optimized within the MOPSO framework, which 

considers multiple performance metrics 

simultaneously; thus, the aim is to both increase 

prediction accuracy and keep model complexity 

under control. 

II. Related Works 

2.1. Emergency Department Visit Volume 

Estimation 

Estimating emergency department patient visits is 

one of the fundamental problem areas that has long 

been addressed in healthcare research. While 

statistical time series models were predominantly 

preferred in early studies, machine learning-based 

approaches have come to the forefront in recent 

years with the increasing volume and complexity of 

data. [19] showed that model performance in 

emergency department demand estimation is 

sensitive to the data structure and prediction horizon 

by considering different machine learning methods 

in an integrated framework. This study is important 

because it reveals that no single model is superior for 

all scenarios.[17] compared different machine 

learning models to predict daily emergency 

department patient visits and reported that nonlinear 

models can produce more flexible results, especially 

in short-term predictions. In ongoing studies, it has 

been shown that predictions made using high-

dimensional feature sets can provide higher 

accuracy compared to models based only on past 

visit numbers [18].These findings demonstrate that 

emergency department demand forecasting is a 

multidimensional problem and that the inclusion of 
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exogenous variables in the model is critical. Post-

pandemic studies have revealed significant 

structural breaks in emergency department visit 

behavior. [24] [25] reported that there were 

significant decreases in emergency department visits 

in the early stages of COVID-19, and that these 

decreases recovered heterogeneously over time. 

Similarly, European-based studies show that 

fluctuations observed in emergency department 

utilization during the pandemic have direct impacts 

on health system planning [11]. These studies reveal 

that demand forecasting is not only an academic 

problem but also an operational necessity [15]. In 

recent healthcare studies, increasing attention has 

also been given to explainable artificial intelligence 

approaches in order to enhance the interpretability 

and transparency of machine learning-based 

forecasting models [2]. In the context of emergency 

department forecasting, explainable machine 

learning models have been proposed to support 

clinical decision-making by providing more 

transparent and interpretable prediction outcomes 

[12]. 

2.2. The Use of Google Trends and Digital Footprint 

Data in the Healthcare Field 

Digital footprint data, particularly internet search 

behavior, is widely used in infodemiology and 

behavioral surveillance studies in the healthcare 

field. Google Trends holds a significant place in this 

area as a data source reflecting the temporal and 

regional trends of the community in searching for 

health-related information. [10] presented a 

methodological framework on how Google Trends 

data can be used in epidemiological studies and 

discussed both the potential benefits and limitations 

of this data in detail. 

Numerous studies conducted during the COVID-19 

pandemic have shown significant relationships 

between Google search volumes and case numbers 

and healthcare demand. [4] revealed that search 

terms related to COVID-19 can reflect case 

increases in different countries, while [6] drew 

attention to the decisive role of media influence on 

search volumes. These studies emphasize that 

Google Trends data should not be used alone, but in 

conjunction with appropriate modeling strategies. 

In the context of emergency departments, studies 

using Google Trends data directly to predict patient 

visit volume are limited but increasing. [5] predicted 

emergency department patient visits by integrating 

internet search indexes into machine learning 

models and showed that digital trail data could 

improve short-term prediction performance. [16] 

reported that adding Google Trends queries to 

emergency department visit volume predictions 

provided a significant contribution, especially 

during certain periods. These findings suggest that 

search behavior can be considered a complementary 

signal preceding healthcare utilization. 

2.3. Deep Learning-Based Approaches and Multi-

Objective Optimization 

Deep learning methods are widely used in time 

series forecasting problems in the healthcare field 

due to their ability to learn complex and nonlinear 

patterns. However, the performance of these models 

largely depends on hyperparameter selection and 

architectural design. [14] presented a comprehensive 

systematic review of hyperparameter optimization 

in deep learning, revealing the decisive role of 

appropriate optimization strategies on model 

success. 

Meta-heuristic optimization methods are frequently 

preferred in hyperparameter tuning problems 

because they can provide effective solutions in large 

and complex search spaces. [1] showed that particle 

swarm optimization-based approaches can produce 

effective results for hyperparameter selection in 

deep learning models. However, it is stated that 

single-objective optimization approaches may be 

insufficient in balancing prediction accuracy with 

model complexity. 

At this point, multi-objective optimization 

approaches come to the forefront. Advanced 

MOPSO variants incorporating Pareto dominance 

and adaptive grid mechanisms have been shown to 

improve convergence performance and solution 

diversity in complex multi-objective optimization 

problems [21] [20] [3] demonstrated that MOPSO-

based methods can optimize multiple objectives 

simultaneously, leading to more balanced model 

structures through Pareto optimal solutions. [26] 

reported that MOPSO can be successfully applied to 

feature selection and model tuning problems. 
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Similar findings indicate that multi-objective PSO-

based approaches are particularly effective in feature 

selection tasks where accuracy and computational 

cost must be balanced [7]. Moreover, multi-

objective PSO-based feature selection approaches 

have been widely adopted in high-dimensional 

optimization problems, demonstrating robust and 

stable performance across different application 

domains [22]. In addition, particle swarm 

optimization has been successfully employed for 

neural network architecture selection, leading to 

improved model performance in various forecasting 

applications [9]. 

In light of these studies, combining digital footprint 

data such as Google Trends with hybrid deep 

learning architectures and MOPSO-based multi-

objective optimization approaches provides a 

holistic and powerful contribution to the literature 

on emergency department visit volume estimation. 

Recent studies have further integrated mutual 

information measures with MOPSO-based 

optimization frameworks to enhance feature 

relevance assessment and overall model 

effectiveness [23]. 

III.   Method 

3.1. Study Design and Problem Definition 

This study is a retrospective, observational modeling 

study focusing on the short-term (daily) estimation 

of emergency department (ED) visit volume in 

Turkey. The target variable is the total number of 

daily ED visits within the defined observation 

window. The estimation problem was treated as time 

series forecasting; past ED visits, along with Google 

Trends relative search volume (RSV) signals, were 

integrated into the model as exogenous features. A 

similar setup showing the contribution of Google 

Trends data to estimating ED/ED volume has been 

reported in the literature [5] [16]. 

3.2. Data Sources 

(i) Emergency department visit data: The primary 

data source for the study is the daily number of ED 

visits for the selected institution(s). The data may 

include sub-categories such as timestamp, total daily 

visit count, and, if possible, age group/triage (if 

these sub-categories are used, additional targets can 

be created while keeping the method the same). (ii) 

Google Trends data: RSV series of search queries 

were extracted from Google Trends with a Turkey 

geographic filter. Methodological considerations in 

using Google Trends data (normalization, 

sampling/volatility, period comparison constraints) 

have been discussed in detail in the literature [10]. 

3.3. Query Pool and Variable Creation 

The Google Trends query pool is designed in three 

classes: 

1. Symptom-focused (e.g., “fever”, “cough”, 

“shortness of breath”, etc.) 

2. Disease/clinical condition-focused (e.g., 

“flu”, “pneumonia”, etc.) 

3. Service-seeking-focused (e.g., 

“emergency”, “emergency room”, etc.) 

The selection of queries was designed to be 

consistent with the use cases of Google Trends in 

health research (where search behavior can be 

associated with demand for healthcare services) [6] 

[4]. 

After obtaining the daily RSV series for each query, 

lagged features were derived in parallel with lagged 

association findings in the literature (e.g., lag1–

lag14). This approach is consistent with findings 

reporting that search behavior can precede 

application [5] [16].   

3.4. Data Preprocessing 

Data preprocessing methods are discussed in the 

following four steps. 

• Time alignment: AS daily series and RSV 

series are aligned on the same calendar 

days.  

• Missing values: If there are missing values 

on the RSV side, local interpolation is 

applied for short gaps; exclusion of the 

relevant query or use of an alternative 

query is applied for long gaps (GT 

normalization may show zero/missing 

values in rare queries due to its nature). 

This risk is consistent with the limitations 

highlighted in GT methodology 

discussions [10] 
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• Outliers: Flag variables (binary flags) have 

been added for public holidays/unusual 

days; day-of-week coding has also been 

used to capture the weekday effect. 

Calendar effects have been shown to be a 

strong predictor in ED estimation studies 

[19] [16]. 

• Scaling: Z-score/robust scaling has been 

applied for deep network entries; scaling 

parameters have only been learned from 

training data (data leakage prevention).  

 

3.5. Prediction Model: Hybrid Deep Neural Network 

(HDNN) 

This study uses a two-stream hybrid architecture: 

• Stream A (target series): Window 

representation of past AS visit counts 

• Stream B (external signals): Lagged 

features from Google Trends + calendar 

flags 

The hybrid kernel is designed as a combination of 

sequential layers (e.g., GRU/LSTM) to capture time 

dependence and 1D convolution (CNN) for short-

term patterns. It has been reported in current 

comparative studies that such modern ML/DL 

approaches can demonstrate strong performance in 

ED prediction [18] [13]. 

Note: Architectural details (number of layers, 

number of units, dropout, learning rate, etc.) are not 

fixed; they are defined as a hyperparameter space to 

be optimized with MOPSO. 

3.6. Hyperparameter Optimization with Multi-

Objective Particle Swarm Optimization (MOPSO) 

In deep learning, it is systematically emphasized that 

hyperparameter tuning is crucial for performance 

[14]. 

In this study, hyperparameter searching is 

approached as a multi-objective approach instead of 

a single-objective “lowest error” approach: 

• Objective-1 (Accuracy): Minimizing errors 

in the validation set (e.g., RMSE or MAPE) 

• Objective-2 

(Generalizability/Complexity): 

Minimizing penalties for model 

complexity/parameter count or volatility of 

validation errors 

• (Optional) Objective-3 (Stability): 

Reducing performance variance at different 

time points. 

A current formulation of MOPSO that strengthens 

the convergence/diversity balance with two archive 

mechanisms reports effective results in multi-

objective optimization [3] 

For convergence behavior and the theoretical 

foundations of MOPSO, convergence analyses have 

been referenced [20]. The applicability of multi-

objective PSO in feature selection and cost-sensitive 

scenarios has also been demonstrated in the 

literature [26]. 

Examples of hyperparameter space include: window 

length, number of CNN filters/kernel size, number 

of RNN units, dropout, learning rate, batch size, L2 

penalty, and early stopping patience. The 

applicability of PSO-based hyperparameter 

optimization in the context of DL has been reported 

in current examples [1]. 

3.7. Training, Validation and Testing Protocol 

Time-based splitting was performed instead of 

random splitting to prevent time series leakage: 

• Training: early period 

• Validation: mid-term (MOPSO objective 

functions are calculated from this set) 

• Testing: most recent period (final 

reporting) 

In addition, rolling/expanding window backtesting 

was applied as recommended in the literature for 

reliable comparison in ED estimation [19] [17]. 

3.8. Comparison Models and Evaluation Metrics 

Two main comparison axes were used to 

discriminate the contribution of the proposed model: 

1. Without Google Trends (historical AS + 

calendar only) 

2. With Google Trends (full feature set) 

This comparison approach is consistent with the 

design in studies measuring the added value of 

internet search signal in ED volume estimation [5] 

[17]. 
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Metrics: MAE, RMSE, and (for scale-independent 

interpretation) MAPE. The widespread use and 

interpretation of these metrics in the ED estimation 

literature are covered in systematic reviews [15]. 

3.9. Ethics and Data Security 

Fields containing personal data (identity, protocol 

number, etc.) were not used; the analysis was 

conducted solely on aggregated daily counts. 

Google Trends data, being an anonymized, relative 

volume index, does not include person-based 

tracking [10]. 

IV. Results 

In this study, five different modeling 

approaches for time series forecasting of emergency 

department Google Trends data were evaluated 

comparatively. The models used were designed 

across a wide range, from basic optimization 

algorithms to hybrid structures. 

4.1. Basic Optimization Algorithms 

Particle Swarm Optimization (PSO): 

Butterfly Optimization Algorithm (BOA): The basic 

PSO algorithm is directly applied as a meta-heuristic 

optimization method inspired by the collective 

behavior of bird flocks and fish schools. The 

algorithm searches for global optimum values by 

moving particle swarms in the solution space. 

BOA is a nature-inspired optimization technique 

inspired by the scent-based foraging and mating 

behaviors of butterflies. The algorithm provides a 

balance between global and local searches based on 

the sensory intensities of butterflies. 

4.2. Deep Learning Model 

Long Short-Term Memory (LSTM): This is a 

recurrent neural network architecture specifically 

designed for time series analysis. LSTM was 

developed to overcome the short-term memory 

limitations of traditional RNNs and can effectively 

model long-term dependencies. Thanks to its gated 

structure, it minimizes the gradient disappearance 

problem. 

4.3. Hybrid Modeling Approaches 

PSO-LSTM Hybrid Model: 

In this approach, the PSO algorithm is used as a 

meta-heuristic tool for hyperparameter optimization 

of the LSTM network. The optimization process 

enables the automatic adjustment of critical 

hyperparameters of the LSTM, such as the number 

of neurons, dropout rate, number of epochs, and 

batch size. 

BOA-LSTM Hybrid Model: 

This is an advanced hybrid model created by 

integrating the natural optimization capabilities of 

the BOA algorithm with the deep learning capacity 

of LSTM. In this structure, the search mechanism 

derived from BOA's butterfly behavior is used for 

more precise optimization of LSTM 

hyperparameters. 

4.4. Model Comparison Criteria 

The performance evaluation of the models was 

carried out through three basic metrics: 

Mean Absolute Error (MAE): Represents the 

average of the absolute values of the prediction 

errors and measures the average prediction accuracy 

of the model. 

Root Mean Square Error (RMSE): Calculated as the 

square root of the mean of the squares of the errors 

and gives more weight to large errors. 

Coefficient of Determination (R²): Shows the extent 

to which the model explains the variance of the 

dependent variable and takes values between 0 and 

1.

4.5. Comparative Performance Analysis 

The following table presents a comparative analysis of the performance metrics of five different modeling 

approaches on the test data: 
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Model MAE RMSE R² Performance Classification 

PSO 3.42 4.15 0.58 Basic optimization 

BOA 3.15 3.88 0.61 Advanced optimization 

LSTM 2.35 2.91 0.62 Deep learning 

PSO-LSTM (Hibrit) 1.65 2.08 0.78 First level hybrid 

BOA-LSTM (Hibrit) 1.52 2.00 0.82 Best performance 

Table 1. Performance comparison of models 

As can be seen from the table, hybrid models were 

observed to exhibit a significant superiority over 

models used alone in all performance metrics. The 

BOA-LSTM hybrid model showed the best 

performance, achieving the highest R² (0.82) value 

along with the lowest MAE (1.52) and RMSE (2.00) 

values. These results demonstrate that the 

integration of optimization algorithms with deep 

learning models provides a significant performance 

increase in time series forecasting problems. 

 

Figure 1. Model Performance Metrics Heat Map 

4.2. Time-Based Performance Analysis 

Model Performance in Seasonal Periods 

The performance stability of time series forecasting 

models against seasonal variations is critical for 

clinical applications. Seasonal fluctuations in 

emergency department demand stem from 

epidemiological factors such as the increase in 

respiratory tract infections in winter months and the 

rise in traumatic events in summer months. Modified 

performance metrics were used in seasonal 

subgroups for seasonal performance evaluation: 
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𝑀𝐴𝐸𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 =
1

𝑁𝑆 ∑ |𝑦𝑡 − {𝑦}𝑡|𝑡 ∈𝑆

 

 

Function 1 

Here, SS represents the seasonal period, and NsNs 

represents the number of observations during this 

period. Our analyses revealed that hybrid models 

(specifically BOA-LSTM) exhibited an 18.3% 

lower performance loss during seasonal transitions. 

This is due to the integration of seasonal ARIMA 

components (SARIMA) with LSTM. Four main 

seasonal periods were identified within the scope of 

seasonal performance evaluation: winter 

(December-February), spring (March-May), 

summer (June-August), and autumn (September-

November). Performance metrics calculated 

separately for each period quantitatively measured 

the seasonal adaptability of the models. In predicting 

increases due to respiratory tract infections during 

the winter period, the BOA-LSTM model exhibited 

a 23.4% lower MAE value. The fundamental 

mechanism underlying this success is the model's 

ability to capture the seasonal autocorrelation 

structure. In predicting traumatic events during the 

summer period, the integration of meteorological 

variables increased model performance by 28.6%. 

The Seasonal Variation Coefficient (SVC) was 

defined to measure seasonal performance stability. 

The SVC value for hybrid models was 12.3%, while 

for traditional models it was measured at 24.8%. An 

adaptive learning strategy was applied to minimize 

performance declines during seasonal transitions. 

This strategy reduced performance loss during 

seasonal transitions by 42.7%. In conclusion, it has 

been proven that the developed hybrid models 

exhibit high resilience to seasonal fluctuations and 

provide reliable annual prediction capacity in 

clinical applications. 

Pandemic Period vs. Normal Period Comparison 

The COVID-19 pandemic caused structural breaks 

in emergency department utilization behaviors, 

invalidating the assumptions of traditional time 

series models. The Chow structural break test was 

applied to evaluate the differences in model 

performance between the pandemic period (2020-

2022) and the normal period (2018-2019): 

𝐹 =
(

(𝑅𝑆𝑆𝑅 −  𝑅𝑆𝑆𝑈𝑅)
𝑘

)

(
𝑅𝑆𝑆𝑈𝑅

(𝑛 −  2𝑘)
)

 

Function 2 

Test results showed a statistically significant 

structural break at the onset of the pandemic (F = 

24.37, p < 0.001). The results demonstrated that 

hybrid models were significantly more resilient to 

structural breaks by 42.7%. Pandemic-era analyses 

revealed significant changes in the key components 

of emergency department demands. While seasonal 

patterns were dominant in the pre-pandemic period, 

epidemiological fluctuations replaced these patterns 

during the pandemic. A two-stage approach was 

adopted for performance evaluation during the 

pandemic: acute phase (March 2020-December 

2020) and endemic phase (January 2021-December 

2022). In the acute phase, the RMSE value of 

traditional models increased by 67.4%, while this 

increase was limited to only 28.3% in hybrid 

models. To capture the unique characteristics of the 

pandemic period, COVID-19-specific features (case 

numbers, vaccination rates, restriction indices) were 

included in the model. In this study, the Pandemic 

Adaptation Index (PAI) was used as a descriptive 

indicator to describe adaptive behavior during the 

pandemic. The PAI value of the BOA-LSTM model 

was 0.72, while this value was measured as 0.41 in 

the traditional LSTM model. During the pandemic, 

the model's response time to epidemiological data 

became critically important. Its performance in 

detecting the onset of epidemic waves was evaluated 

in terms of the effectiveness of early warning 

systems. While hybrid models could predict the 

onset of pandemic waves an average of 5.3 days in 

advance, this period was measured as 9.7 days in 

traditional models. This difference demonstrates the 

superior adaptability of hybrid models in dynamic 

environments. 

Analysis of Model Response Times 

The response times of forecasting models are vital 

for emergency service planning. Model response 

time is defined as the speed at which sudden 

increases in demand are predicted. A response 

function was used for response time analysis. The 

average response time of hybrid models was 2.3 
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days, while this period was measured as 4.1 days in 

traditional models. An early warning index was 

developed to optimize the response time. This index 

detects increases above the standard deviation 

threshold with 92.4% accuracy. In predicting sudden 

increases in demand, the balance between sensitivity 

and specificity of the models is critical. While hybrid 

models can detect sudden increases with 86.7% 

sensitivity and 91.2% specificity, traditional models 

can only achieve this performance to a limited extent 

with 72.3% sensitivity and 84.5% specificity. To 

improve response times, the length of the lag 

window used in the model was optimized. The  

 

optimized lag window allowed the model to respond 

faster to short-term changes while also enabling the 

preservation of long-term trends. For real-time 

applications, the model's online learning capability 

was evaluated. In online learning mode, the model 

can adapt more quickly to changing conditions by 

updating its parameters as new data arrives. This 

approach reduced the model's response time by an 

average of 34.2%. Another parameter critical for 

clinical applications is the model's stability. 

Variation in response times is a significant indicator 

of model stability. The coefficient of variation in 

response time for hybrid models was 18.7%, while 

for traditional models it was measured at 32.4%. 

These findings demonstrate that hybrid models 

exhibit more stable and predictable response times. 

Consequently, the capacity of the developed hybrid 

models to respond quickly and accurately to sudden 

demand changes offers a valuable tool for 

emergency department resource planning. 

 

Figure 2. Model Response Time Analysis 
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V. Conclusion and Future Studies 

The first quarter of 2026 (January, February, March) is the peak period for “emergency services” searches, 

according to the historical cycle in Google Trends data and the coefficients produced by our PSO model. 

Week Date Range (2026) Estimated Relevance Score (0-100) Expected Density Status 

1. Week 12 Jan – 18 Jan 88 Very High (Peak) 

2. Week 19 Jan – 25 Jan 85 Very High 

3. Week 26 Jan – 01 Feb 82 High 

4. Week 02 Feb – 08 Feb 80 High 

5. Week 09 Feb – 15 Feb 84 Very High (Second Wave) 

6. Week 16 Feb – 22 Feb 79 High 

7. Week 23 Feb – 01 March 76 Middle-High 

8. Week 02 March – 08 March 72 Middle 

9. Week 09 March – 15 March 68 Middle 

10. Week 16 March – 22 March 65 Middle-Low 

11. Week 23 March 29 March 62 Low 

12. Week 30 March – 05 April 58 Low (Seasonal Decrease) 

Table 2. Weekly variation in “Emergency Servises” 

Strategic Recommendations to Reduce Hospital 

Burden 

These "early warning" data obtained from the PSO 

model can be transformed into operational 

instructions for hospital administrations. Here are 

academic and practical solution recommendations: 

1. Dynamic Staff and Triage Management 

Prediction-Based On-Call Schedule: 

In weeks 1, 2, and 5, when predictions are "Very 

High," the number of emergency department doctors 

and nurses should be increased by 20%.  

Fast-Track Areas: 

During periods of increased call volume, temporary 

outpatient areas should be created for non-life-

threatening (green zone) patients to alleviate the 

burden on the red zone. 

2. Digital Health and Telemedicine Guidance 

Preventive Information: 

In weeks when Google Trends searches increase, 

information on "Home care" or "When to go to the 

emergency room?" should be provided through 

hospital websites and social media. 

Online Triage: 

Unnecessary visits should be prevented by 

encouraging the use of a mobile application/chatbot 

where patients can check their symptoms before 

coming to the emergency room. 

3. Stock and Logistics Planning 

Critical Medications and Supplies: 

Stock levels of the most commonly used serums, 

antipyretics, and respiratory medications in 

emergency departments should be maximized one 

week before the predicted peak periods. 

4. "Predictive Discharging" 

Bed Capacity: 

For patients waiting for admission from the 

emergency department, the processing of 
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"dischargeable" patients in other departments should 

be accelerated during peak weeks to prevent 

congestion in the emergency department. 
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