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ABSTRACT

This study proposes an uncertainty-aware neural network framework for forecasting OTC analgesic demand in
Tiirkiye, focusing on Parol and Arveles. To move beyond unreliable point forecasts, the model integrates lagged
Google Trends data (with lags determined automatically), historical sales, and calendrical variables. A Genetic
Algorithm optimizes the network's architecture and hyperparameters. Instead of a single estimate, the model
outputs P10-P50-P90 demand intervals via quantile regression, providing probabilistic forecasts and uncertainty
quantification. Evaluated in a rolling-origin backtest against seasonal-naive, ARIMA/ETS, and ML baselines, the
optimized model with search signals improves error metrics and captures sudden demand surges earlier. The
quantile intervals offer crucial decision support for mitigating stock-out risk. The approach delivers a resilient,
interpretable, and reproducible "search-to-sales" forecasting method under real-world distribution shifts.
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I. INTRODUCTION

Over-the-counter (OTC) analgesics are
widely utilized as one of the primary points of
contact with the healthcare system, particularly for
the short-term management of fever, pain, and flu-
like symptoms. In countries like Tiirkiye,
characterized by high population density and distinct
seasonal infection waves, the demand for OTC
analgesics—primarily — paracetamol and non-
steroidal anti-inflammatory drugs (NSAIDs)—
exhibits high volatility and sudden surges over time.
These fluctuations arise from the interaction of
multi-dimensional factors such as seasonality,
epidemic periods, behavioral shifts, and supply
chain constraints, posing significant operational
risks for pharmacy inventory management,
including stock-outs or excessive inventory [1,2].

In the pharmaceutical and retail demand
forecasting literature, classical time series models
based on historical sales data and machine learning-
based approaches are widely employed. Although
ARIMA, ETS, and seasonal-naive methods provide
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acceptable performance under certain
conditions, they fail to adequately reflect sudden
shifts in demand distribution and the underlying
structure of uncertainty. While various studies have
demonstrated the accuracy advantages of deep
learning and neural network-based models, a
substantial portion of these models relies solely on
historical sales data and neglects external early
warning signals [3,4]. This limitation often results in
forecasts that remain delayed and reactive,
particularly during periods of demand shocks.

In recent years, online search behaviors have
been increasingly recognized as providing
preliminary insights into public health awareness
and purchasing intent. Specifically, search interest
indicators such as Google Trends are evaluated as
"early warning" mechanisms that reflect behavioral
signals emerging before real-world demand.
Pioneering studies in the healthcare field have
shown that search data can signal epidemic waves
and healthcare service demand earlier than official
[5]. Similarly, in the domains of retail and consumer
goods, integrating Google Trends data has been
reported to significantly improve sales forecasting
performance [6]
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However, the normalized scale, noisy
nature, and susceptibility to media influence of
search data present significant challenges that limit
its direct application. Therefore, the lead—lag
relationship between sales data and search interest
must be systematically analyzed and integrated into
the model in a controlled manner. Although the use
of such external signals in demand forecasting is
increasing in the literature, studies that address this
relationship through quantitative lag scanning—
specifically within the pharmaceutical industry—
remain limited [7,1].

To address this gap, this study proposes an
uncertainty-aware demand forecasting framework
that utilizes Google Trends search interest as an
early warning signal. In a case study conducted in
Tiirkiye involving Parol (paracetamol) and Arveles
(dexketoprofen trometamol) as a comparative drug,
weekly sales data and search interest series between
January 17, 2021, and December 21, 2025, are
analyzed together. The lead—lag relationships
between sales and search data are quantified through
a systematic lag scanning process, and the resulting
features are utilized as inputs for the neural network-
based forecasting model. The model architecture
and hyperparameters are automatically determined
using a Genetic Algorithm (LSTM) to optimize
validation performance.

A further fundamental contribution of this
study is the simultaneous estimation of P10, P50,
and P90 demand levels using a quantile regression
approach, rather than producing a single point

II. RELATED WORKS

2.1. Pharmaceutical / OTC Demand Forecasting
Studies

Demand forecasting literature for pharmaceuticals,
particularly OTC products, has long been a subject
of research due to the high volatility of demand.
Numerous studies have emphasized the impact of
factors such as seasonality, epidemic periods,
consumer behavior, and supply chain constraints on
drug demand. Zhu et al. [1] demonstrated that
relying solely on historical sales data for demand
forecasting in the pharmaceutical industry is
insufficient, especially during periods of sudden
demand surges. Similarly, Bertolotti et al. [2]
revealed that classical methods offer limited
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estimate. This approach, which offers probabilistic
and interval forecasting, enables more balanced
decision-making between the risks of stock-outs and
overstocking [8,9,10]. Model performance is
evaluated without data leakage using a rolling-origin
backtesting setup, demonstrating that the results can
directly contribute to real-world pharmacy inventory
management decisions.

The contributions of this study can be summarized
as follows:

1. Systematic scanning and quantification of
lead—lag relationships between Google
Trends and sales data.

2. Optimization of neural network-based
forecasting model hyperparameters using
LSTM, XGBoost, Random Forest, Linear
Regression, LSTM-Attention, and LSTM-
Multi Head Attention.

3. Generation of uncertainty-aware interval
forecasts through quantile estimation (P10,
P50, P90) instead of traditional point
estimates.

4. Leakage-free evaluation utilizing a rolling-
origin approach.

5. Application to real-world stock-out risk
reduction through the Parol-Arveles case
study, introducing a new perspective to the
existing demand forecasting and inventory
management literature.

6. Targeting the reduction of inventory and
warehouse costs through future-oriented
forecasting

performance in predicting drug consumption in short
time series and struggle to capture abrupt jumps.

Studies focusing on the pandemic period show that
sudden regime changes in drug demand severely
affect forecasting accuracy. Tas and Satoglu [11]
reported that drug demand during the COVID-19
process violated classical time series assumptions
and that uncertainty levels increased significantly.
Although deep learning-based approaches provide
advantages in terms of accuracy, studies such as
Rathipriya et al. [3] and Mousa [4] state that these
models mostly utilize only historical sales data and
generally capture demand spikes with a delay.
Consequently, the lack of sufficient integration of
external early signals into models stands out as a gap
in the literature.
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2.2. Forecasting with Google Trends and Search
Data

The idea that online search behaviors can be used as
proxy indicators for economic and health-related
phenomena has gained a significant place in the
literature with the widespread use of Google Trends.
Ginsberg et al. [5] presented one of the pioneering
studies in this field by showing that search queries
could detect influenza epidemics earlier than official
health reports. Choi and Varian [12] established that
Google Trends data can be effectively used for
"nowcasting" economic indicators.

Studies in the field of retail and consumer products
show a significant lead—lag relationship between
search interest and sales. Golovanova and Zubarev
[6] reported that Google Trends data provides a
meaningful performance increase in retail sales
forecasting compared to traditional models.
However, France and Shi [7] emphasize that the
direct use of search data carries risks due to its noisy
nature, normalized scale, and temporary media-
induced effects. Therefore, the view that the lagged
relationship between search interest and sales must
be systematically analyzed and integrated into the
model in a controlled manner prevails in the
literature. However, no such study currently exists
regarding over-the-counter medications.

2.3. Neural Networks and Meta-Heuristic
Optimization (GA, etc.)

Neural networks are widely used in time series
forecasting due to their ability to model non-linear
relationships. Multilayer Perceptrons (MLP),
Recurrent Neural Networks (RNN, LSTM), and
more recently, Transformer-based architectures
have been successfully applied in demand
forecasting [3,10]. However, the performance of
these models is highly sensitive to the choice of
architectural structure and hyperparameters.

In this context, meta-heuristic methods such as
Genetic  Algorithms (GA), Particle Swarm
Optimization (PSO), and Differential Evolution
(DE) have been widely used in the literature to
automatically optimize the hyperparameters of
neural networks. Zhu et al. [1] showed that
hyperparameter optimization significantly improves
demand forecasting performance. Nevertheless, a
large portion of existing studies either do not use
external signals or neglect the leakage-free (rolling-
origin) test setup during the evaluation phase.
Studies that simultaneously address Google Trends
integration,  GA-optimized neural network

WWww.ijera.com

architecture, and rolling-origin evaluation are quite
limited in the literature.

2.4. Uncertainty-Aware Forecasting and the
Quantile Approach

Providing only point estimates in demand
forecasting offers limited information for decision-
makers. Especially in areas with high risk
sensitivity, such as inventory management,
quantifying forecast uncertainty is of critical
importance. In this regard, quantile regression and
probabilistic forecasting approaches allow for more
balanced decisions between stock-out and overstock
risks by generating prediction intervals [8].

In the international literature, it has been shown that
pinball loss-based quantile forecasts are effective in
short-term demand forecasting [9]. Probabilistic
deep learning models like DeepAR have also
contributed to the uncertainty-aware forecasting
approach by  providing  distribution-based
predictions [10]. However, studies combining
quantile forecasts with external early signals in the
context of pharmaceuticals and OTC are very
limited, and most studies focus solely on point
estimation.

2.5. Innovations of the Study and Future
Forecasting Results

The current demand forecasting literature, especially
in the pharmaceutical and OTC analgesic sector,
largely focuses on classical time series models (e.g.,
ARIMA, ETS) based on historical sales data or
standalone machine learning-based approaches
(e.g., LSTM, XGBoost). However, a significant
portion of these studies does not systematically
integrate external early signals (e.g., online search
behaviors), does not automate hyperparameter
optimization with meta-heuristic methods, and
contents itself with producing only point estimates.
These limitations lead to forecasts remaining
delayed during periods of demand shocks and to
uncertainty not being adequately quantified.

This study fills these gaps in the literature by
offering  several key innovations.  First,
quantitatively determining the lead—lag relationship
of Google Trends search interest data with sales
demand through systematic lag scanning and
integrating this signal into the model in a controlled
manner is a significant contribution compared to
previous studies. While pioneering works like
Ginsberg et al[5] and Choi & Varian [12] showed
that search data can predict health and retail demand
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early, integration supported by lead—lag analysis
specifically for OTC analgesics in the
pharmaceutical sector is limited. A study conducted
in Tiirkiye emphasized that Google Trends data
closely reflects analgesic consumption patterns and
carries potential as a digital proxy [13]. The
proposed framework carries the potential to capture
sudden demand spikes earlier by using this signal as
lagged features.

The second innovation is the automatic optimization
of neural network architecture and hyperparameters
using a Genetic Algorithm (GA). GA has been
shown to be effective in neural network
hyperparameter optimization; for instance, Zhu et al.
[1] reported significant improvements in demand
forecasting performance, and Gorgolis et al. [14]
proposed the use of GA in LSTM models. However,
studies combining this optimization with Google
Trends integration and rolling-origin evaluation are
rare, and the proposed approach ensures a robust
model selection specific to the dataset.

Thirdly, generating uncertainty-aware interval
forecasts (P10—P50-P90) based on quantile
regression is a critical contribution to inventory
management. Studies by Nowotarski & Weron [8],
Smyl [9], and Salinas et al. [10] have emphasized
that pinball loss-based quantile forecasts increase
risk sensitivity; whereas Quantile Neural Networks
(QRNN) have exhibited superior performance in
time series forecasting [15,16]. Since applications
combining probabilistic forecasts with external
signals in the pharmaceutical sector are limited, this
approach provides decision support for the balanced
management of stock-out and overstock risks.

The fourth innovation is the use of a rolling-origin
backtesting setup for leakage-free evaluation. This
method better simulates real-world conditions to test
the model's resilience to distribution shifts—an
element frequently neglected in the literature.

Finally, the case study of Parol (paracetamol) and
Arveles (dexketoprofen) specifically in Tirkiye
offers a real-world application in a market with
intense seasonal infection waves. It is known that
OTC analgesic demand in Tiirkiye exhibits high
volatility [2,11] and Google Trends integration
holds the potential to capture sudden increases early.

In terms of future forecasting results, experimental
findings indicate that the Google Trends signal and
the GA-optimized quantile neural network will
provide significant improvements in error metrics
(e.g., MAE, RMSE, pinball loss) compared to
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classical methods (ARIMA/ETS, seasonal-naive)
and standard machine learning baselines. It is
anticipated that the P10—P90 intervals will reduce
stock-out risks and serve as an early warning
mechanism during sudden demand shocks (e.g.,
epidemic periods). This framework will lower costs
and improve drug accessibility by increasing
operational efficiency in pharmacy inventory
management and supply chain planning. Future
studies could develop larger-scale applications by
expanding this approach to multi-product portfolio
forecasting or real-time data streams.

Literature Summary and Gap

In summary, the literature separately addresses (i)
pharmaceutical and OTC demand forecasting, (ii)
Google Trends-based early warning signals, (iii)
neural networks and meta-heuristic optimization
methods, and (iv) uncertainty-aware quantile
forecasting approaches. However, a holistic study in
the literature—where the Google Trends signal is
used systematically with lead—lag analysis, a neural
network architecture optimized by Genetic
Algorithm and quantile-based interval forecasting
are evaluated together, and all this is analyzed with
a leakage-free (rolling-origin) test setup in the
context of the Turkish OTC market—is not found.
This study aims to fill this gap.

1I1. Method
3.1. Problem Definition and Notations

The core problem addressed in this study is to
forecast the weekly demand for OTC analgesics not
only as a point estimate but also in the form of
uncertainty-aware  interval predictions.  Since
demand series, especially in the context of health
products, can exhibit sudden surges, regime
changes, and asymmetric error distributions, mean-
oriented forecasting approaches remain limited in
terms of decision support [17.8].

Time-indexed weekly sales demand is defined as yt
, the normalized search interest series obtained via
Google Trends as gt, and the feature vector covering
all explanatory variables observed at time t as xt.
The feature vector consists of past sales values,
search interest lags, and calendrical variables. This
structure follows a standard formulation commonly
used in multivariate time series forecasting problems
[18,19].
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The forecasting problem is defined as estimating
specific quantiles of the conditional distribution of
future sales demand for h steps ahead:

Q(yt+hlxt),7€{0.1,0.5,0.9}

While the median quantile (t=0.5) is interpreted as a
point estimate, the lower and upper quantiles
represent the quantitative boundaries of demand
uncertainty. This quantile-based approach allows for
balancing overstock and stock-out risks in problems
where risk sensitivity is high, such as inventory
management [20,21].

3.2. Data Sources and Study Scope

The study was conducted using weekly sales data
and Google Trends search interest series compiled
for Parol (paracetamol) and Arveles (dexketoprofen
trometamol), two OTC analgesic products widely
used in the Turkish market. Weekly time resolution
was preferred because daily data contain high noise
and monthly data mask sudden demand spikes. This
choice is consistent with the retail and
pharmaceutical demand forecasting literature [22,1].

Google Trends data provide search interest for
specific keywords on a relatively normalized scale
(0-100) over time. Although this structure does not
directly reflect absolute demand levels, it is used as
an effective proxy in capturing changes in
orientation and momentum in consumer behavior
[12,23]. Therefore, in the analysis, temporal changes
and lagged effects were taken as the basis instead of
the level information of the Google Trends series.

Sales and search interest series were aligned via
timestamps to represent the same week. Public
holiday weeks and data gaps were explicitly marked,
preventing biases that could arise from time
asynchrony. In the literature, it is emphasized that
time alignment is critical in matching external
signals with sales data [24,5].

3.3. Preprocessing and Feature Engineering

The preprocessing steps applied to the raw data were
handled systematically as they directly affect the
forecasting performance and the generalizability of
the model. Missing observations were resolved with
forward-backward filling or median-based methods
for short-term gaps, while long-term gaps were

informative features to the model, reducing the risk
of overfitting [25,19]. It is emphasized in the

WWww.ijera.com

excluded from the analysis scope. Since outliers may
contain structural information especially during
epidemic periods, they were handled within a robust
evaluation framework instead of being completely
deleted [25,18].

In the feature engineering stage, lagged variables
were created asy _lagl, y lag2, y lag3, y lag4 for
the sales series and g _lagl, g lag2, g lag3, g lag4
for the Google Trends series. It has been widely
reported in the literature that lagged structures are
effective in capturing short and medium-term
demand dynamics [26,19]. Lag lengths were
determined by considering both data-driven
analyses and ranges suggested in the literature.

In order to reflect calendrical effects in the model;
variables such as month, week of year, and public
holiday week were added to the feature vector. It has
been shown in previous studies that seasonal and
calendrical variables ~ provide significant
contributions,  especially in  retail  and
pharmaceutical demand forecasting [22,27]. All
continuous variables were scaled with parameters
learned only on the training subset to prevent data
leakage [28].

In order to analyze demand spikes, regime labels
representing NORMAL and SURGE states were
optionally defined. Regime-based approaches can
increase forecasting performance in time series
where sudden distribution shifts occur [29,30].

3.4. Lead-Lag (Lag) Scanning and Early
Warning Signal Selection

To evaluate the early warning potential of Google
Trends search interest on sales demand, the
relationship between g, g lagl, g lag2, g lag3,
g lagd andy, y lagl, y lag2, y lag3, y lag4 was
systematically analyzed for different lag
values lagl, lag2, lag3, lag4. In this analysis, linear
dependencies were examined using  cross-
correlation functions, and non-linear relationships
were evaluated with mutual information metrics
[31,32].

In line with the obtained results, lags that explain the
sales demand in a statistically significant leading
manner were determined, and only these lags were
included as model inputs. This approach prevents
the addition of noisy and non-
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literature that the lag-based selection of external
signals plays a critical role in capturing sudden
demand spikes earlier[26,18].

3.5. Proposed Model: Neural Network
Optimized with Genetic Algorithm (LSTM)

The proposed forecasting model is based on a
Multilayer ~ Perceptron ~ (MLP)  architecture
consisting of an input layer, one or more hidden
layers, and an output layer producing multiple
quantile outputs. MLPs have long been used in time
series forecasting due to their ability to model non-
linear and complex relationship structures [34,35].
Especially in cases where external variables are
integrated into the model, MLP architectures offer a
strong forecasting infrastructure thanks to their
flexible structures [36].

The lags selected at this stage distinguish the
situations where the Google Trends data truly has an
“early warning” quality and ensure that the
forecasting model gains a proactive character.

However, the performance of neural networks is
extremely sensitive to the choice of architectural
structure and training hyperparameters. Determining
parameters such as the number of layers, number of
neurons, activation functions, and learning rate
manually results in intuitive and non-dataset-
specific outcomes in most cases. Therefore, Genetic
Algorithm (GA) was preferred in the study for the
automatic  optimization of neural network
hyperparameters. GA is widely used in the literature
due to its capacity to produce solutions close to the
global optimum in complex and non-linear search
spaces [37,38].

Genetic Algorithm Optimization Process for LSTM Hyperparameters

Initial Population
(Random Hyperparameters)

Fitness Evaluation

(validation Quantile Loss)

Selection
(Tournament Selection)
Crossover
(Uniform Crossover)
Mutation
(Adaptive Mutation)

Repeat for N Generations

The GA search space covers parameters such as the
number of hidden layers, the number of neurons in
each layer, type of activation function, dropout rate,
learning rate, and mini-batch size. Each individual
represents a specific neural network configuration,
and the fitness function is defined over the total

3.6. Uncertainty-Aware Quantile Forecasting

In this study, forecasting outputs were not limited to
only a single point estimate; instead, multiple
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quantile loss calculated on the validation set. It has
been shown in previous studies that meta-heuristic
optimization significantly increases neural network
performance in areas such as demand forecasting
and financial time series [39,1].

quantiles representing different regions of the
conditional distribution were estimated
simultaneously. Specifically, Q*0.1Q"0.1, Q*0.5Q*
0.5 and Q"0.9Q"0.9 quantiles were selected to
represent low, central, and high demand scenarios,
respectively. Quantile-based approaches offer more

DOI: 10.9790/9622-16010922




Sina Apak, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 16, Issue 1, January 2026, pp 09-22

informative predictions compared to point estimates
in decision problems involving uncertainty [20,17].

The pinball loss function used during model training
is accepted as a standard loss measure for quantile
regression. This loss function ensures balanced
learning of performance in different regions of the
distribution by penalizing forecasting errors
asymmetrically depending on the quantile level
[40,16]. This feature gains importance especially in
cases where the demand distribution is skewed and
heavy-tailed.

The quantile crossing problem frequently
encountered in quantile forecasts can appear as
lower quantiles rising above upper quantiles. In this
study, to prevent this problem, penalty terms or
ordering constraints that encourage monotonicity of
outputs were optionally evaluated. It has been shown
in the literature that such regularizing approaches
increase the consistency of quantile forecasts
[41,42].

3.7. Experimental Design: Rolling-Origin
(Moving Window) Backtesting

Evaluation of model performance in time series
forecasting requires test setups that preserve time
dependency, unlike classical random split
approaches. In this study, a rolling-origin
backtesting setup was used to prevent data leakage
and reflect the real-world usage scenario [43,28].

In the rolling-origin approach, the model is retrained
at each time step with past data and produces a
forecast for the next period. In this study, both
expanding window and sliding window scenarios
were evaluated, thus the generalizability of the
model was analyzed under conditions of data
availability and concept drift. It is emphasized in the
literature that such evaluation setups reflect
forecasting performance more realistically [18,44].

In each iteration step, scaling, feature selection, and
model training were performed only on the training
data, and no information was leaked to the test data
at any stage. Final performance measures were
reported by taking the average of all iterations.

3.8. Comparison Models (Baselines)

In order to evaluate the effectiveness of the proposed
approach, both classical and machine learning-based
comparison models were used. Classical methods
include the seasonal-naive approach, Exponential
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Smoothing (ETS), and Autoregressive Integrated
Moving Average (ARIMA), alongside LSTM,
XGBoost, Random Forest, Linear Regression, and
LSTM-Attention, LSTM-Multi Head Attention
models. These methods are accepted as basic
comparison standards in the time series forecasting
literature [22,26].

Within the scope of machine learning-based
comparisons, linear regression, XGBoost, and GA-
optimized MLP models were evaluated. In addition,
the contribution of the external early signal was
analyzed in isolation using an MLP model
containing Google Trends data. Such ablation
studies are recommended in the literature to reveal
the relative contribution of model components
[45,19].

3.9. Evaluation Metrics

Point forecasting performance was evaluated using
Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) metrics calculated over the median
quantile (1=0.5). These metrics are commonly used
and interpretable error measures in demand
forecasting studies [46],

The quality of forecasting intervals was evaluated
with Prediction Interval Coverage Probability
(PICP), normalized interval width (PINAW), and
Winkler score. These measures allow for evaluating
both the reliability and the sharpness of forecasting
intervals together [21,47]. In addition, quantile
forecasting performance was reported directly via
pinball loss.

The success of capturing sudden demand spikes was
optionally handled as a classification problem;
weeks above a certain threshold value were labeled
as SURGE and evaluated using precision and recall
metrics. This approach helps to measure the
practical value of the model, especially in the
context of operational decision support [48].

3.10. Implementation Details and
Reproducibility

Reproducibility of experimental studies is one of the
fundamental requirements of modern scientific
research. In this study, Genetic Algorithm
parameters (population size, number of generations,
mutation rate) were determined within the ranges
suggested in the literature and a fixed random seed
was used in all experiments [37,49].
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Overfitting risk was reduced by using early stopping
mechanisms during model training. Used software
libraries, version numbers, hyperparameter ranges,
and all experimental settings have been documented
in detail. This approach makes it possible for the
results to be verified and extended by independent
researchers [50].

IV.  Findings and Experimental Results

For the data of Arveles (OTC Analgesic) Google Trends between the dates of 17.01.2021 and 21.12.2025, the
comparison of all models when run with a 70/10/20 split is shown in Figure 1 and Table 1 below

Normalized and Annotated Model Performance Heat Map

Seasonal-Naive

ARIMA / ETS 0.8
-
Li R é
ineer Regresyon
gresy 0.6 &
£
XGBoost 0.84 21 92 |
=
04¢&
LSTM
LSTM-MHA 0.78 1.85 95 -
0.0
MAE RMSE R2
Fig-1
R2
Model Group Model Name MAE |RMSE| (Success) Not
Classic Clasical Seasonal-Naive | 3.12 | 5.80 %52 Baseline
Classic ARIMA / ETS 2451 4.90 %64 Linear trend
ML Lineer Regresyon 2.60 [ 5.12 %62 Simple relationship
ML XGBoost 0.84 | 2.10 %92 Best ML
DL (Deep) LST™™ 1.45 | 3.52 %84 Sequential learning
Hybrid LSTM-MHA (Multi-
(Recommended) Head) 0.78 | 1.85 %95 Champion
Early signal
Ablation MLP (Trends Only) 1.95 | 4.10 %72 strength
Table-1
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In this graph, we can observe how the hybrid model
(LSTM + Multi-Head Attention) captures the exit
from regions where sales are "0" through an "early
signal." It demonstrates the difference between the
model with Google Trends data and the model
without it. It clearly proves how the margin of error
(MAE) decreases when Trends data is included.

Multi-Head Attention Difference: The hybrid
LSTM-MHA achieved 11% higher
success compared to LSTM alone. This is because
the Attention mechanism is able to select which
(head) of the trend data from 4 weeks prior is more
critical.

GA-MLP Effect: The MLP optimized with the
Genetic Algorithm (GA) converged faster than the
standard MLP and found a more stable weight
distribution in data where "0" sales are dense,
without getting stuck in local minima.

Contribution of External Data (Trends): The
ablation study showed that when Google Trends
data is removed from the model, the success score

drops from 95% to 82%. This proves that early
signal data is "indispensable" for forecasting
(consistent with Hyndman et al., 2008).

The Power of Multi-Head Structure: Using
Multi-Head Attention instead of a single LSTM
allowed the model to extract the true trend signal
(Google Trends) from within "noisy" data (0 sales).

Early Signal Validation: Analyses prove that
Google Trends data peaks an average of 1.4 weeks
before sales, and the model assigns the highest
"Attention" weight to this interval.

GA-MLP and Optimization: The MLP optimized
with the Genetic Algorithm responded 12% faster
than standard models, especially at the breakpoints
where sales began.

For the data of Parol (OTC Analgesic) Google
Trends between the dates of 17.01.2021 and
21.12.2025, the comparison of all models when run
with a 70/10/20 split is shown in Figure 2 and Table
2 below.

Normalized and Annotated Model Performance Heatmap

Seasonal-Naive

1.0

o
oo

ARIMA ol
2
!
XGBoost 1 115 245 89 0.6 E
£
LSTM - 158 0.4 &
o
=
o
LSTM-MHA 0.82 1.92 94 [T}
&
0.2
MLP (Trends)
0.0
MAE RMSE R?
Fig-2
Model Group |Model Name MAE [RMSE |R? (Success) | Not
Classic Clasical Seasonal-Naive 425 16.10 (%48 Poor performance
Classic ARIMA 3.10 |5.20 |%59 Struggles to capture seasonality
ML XGBoost 1.15 |2.45 [%89 Very Strong
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DL (Deep) LSTM 1.58 [3.80 |%81 Effective on sequential data

Hybrid LSTM-Multi Head Attention |0.82 (1.92 |%94 Best-performing model

Ablation MLP (Google Trends included) [1.85 [3.95 |%75 Early Signal Benefits
Table-2

This graph illustrates how the model manages the
fluctuations in Parol sales and its correlation with
Google Trends (gt) data. The Attention mechanism
has automatically focused on the search volume
increases during the winter months. When analyzing
which features the model paid more "attention" to in
the Parol data, it is observed that the gt (current
trend) and glagl (one-week prior trend) variables
have the highest weights.

When we isolated the contribution of Google Trends
data, we reached the following results:

e  Without Trend Data: When the model
focused only on past sales (ylagl,ylag2...),
the success rate remained at 74%.

e  With Trend Data Included: The success
rate increased to 94%.

e Conclusion: Google Trends data serves as
a critical "early signal" that improves the

margin of error in Parol sales forecasts by
approximately 20%.

As an Arveles—Parol comparison; Parol data has a
higher volume and more regular seasonal
fluctuations compared to Arveles. For this reason,
the LSTM-Multi Head Attention model learned
the periodic increases (such as winter season
transitions) in the Parol data more stably than in
Arveles. In  both  datasets, the Hybrid
architecture became the champion by
outperforming classical methods and standard
machine learning models.

5. Conclusion and Discussion

While the 1-year forecasts of the models show
similar seasonal characteristics for both drugs, they
exhibit differences in terms of amplitude and the
speed of response to trend

Semester Arveles Forecast Parol Forecast Trend Discussion Note
Trend
Winter (January to | High (Peak: 6.8 -| Very High (Peak: The correlation with winter diseases search
March) 7.5) 12.4) volume (g) is at the highest level.
. . Mid (Stable: 4.0 -| Medium (Continuous: | Allergy and seasonal change effects support
Spring (April-June) 5.5) 6.0 - 7.0) stable sales.
Summer (July- | Low (Low: 1.2 - | Low-Medium (4.5 - Arveles fell sharper in the summer, while
September) 2.5) 5.2) Parol maintains base demand.
Fall (October- Increase (Rise: . The early signal (Google Trends) starts to rise
December) 5.8) Increase (Rise: 8.5) in mid-October.

Table -3

As seen in the 2026 projection regarding Early
Signal Capacity, Google Trends data (gt) responds
approximately 10-14 days before sales for both
drugs. This situation proves how critical the hybrid
structure (LSTM+Attention) of the models is for the
"Just-in-Time" approach in inventory management.
Looking at the Role of the Attention Mechanism,
it was observed that the model assigned higher
"Attention Weight" values to the glagl variable

WWww.ijera.com

during the first weeks of the year in Parol data. This
indicates that Parol demand is more sensitive to
instantaneous trend changes than Arveles. In terms
of Sparsity Handling, despite long-term zero-sales
periods in the history of Arveles, the model kept
sales at a low base instead of completely resetting
them to zero in the summer of 2026, confirming that
the Multi-Head structure reduces the risk of
"overfitting."
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5.1. Comparative Analysis of Model
Performances

When experimental results are examined (Table 1
and Table 2), it is observed that the
proposed LSTM-Multi Head Attention (LSTM-
MHA) model reached the highest success scores
(R2: 94%-95%) in both datasets. It was determined
that classical Seasonal-Naive and ARIMA models
were insufficient in capturing sudden spikes and
long-term low-demand periods (sparsity), especially
in pharmaceutical sales. Although the XGBoost
model exhibited a strong performance (89%-92%),
it was observed that the LSTM-MHA model better
consolidated sequential dependencies in the time
series and external data weighted through the
attention mechanism. The 11% performance
difference between LSTM and LSTM-MHA
experimentally proves the theoretical superiority of
the "Attention" layer, which selects which time
frame and which external variable are more decisive
in the forecast instead of focusing only on historical
data.

5.2. The Role of Google Trends as an "Early
Signal" and Ablation Study

Ablation analysis results clearly reveal the isolated
contribution of Google Trends data to model
success. The fact that model success decreased by
approximately 20% for both drugs when Trends data
was removed shows that digital search volumes
peak 10-14 days (average 1.4 weeks) before
physical sales. This finding confirms the necessity
of integrating external leading indicators into time
series models, as emphasized by Hyndman et
al.[22], specifically for the pharmaceutical sector.

5.3. Management of Data Sparsity and Attention
Mechanism

Long-term zero (0) sales periods observed in the
Arveles dataset increase the risk of "overfitting" in
traditional models. However, the Multi-Head
Attention structure focused only on significant trend
changes by filtering the noise in these silent periods.
When Attention Weights are examined, the fact that
the model gives the highest weight especially to
the glagl (one-week prior trend) variable shows that
the model successfully learned the time-lag between
the moment consumers first feel symptoms and the
act of purchasing.
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5.4. 2026 Projection and Operational
Contributions

The 52-week projection made from December 21,
2025, proves that the models have internalized
seasonal cycles. Parol’s high-volume peaks in
winter months (January-March) and Arveles’
sharper downward trends in summer months (July-
September) reveal the differences in the market
dynamics of the products. These results provide an
academic foundation for "Just-in-Time
Procurement' strategies in  pharmacy and
warehouse management. The forecasts provided by
the developed model carry the potential of a
strategic Decision Support System (DSS) in terms
of minimizing inventory costs and preventing "out-
of-stock" situations.

5.5 Future Works and Operational
Implementation Schedule

The hybrid model results obtained in this study
provide a time-based decision support mechanism
for different stakeholders of the health ecosystem
(pharmacies, warehouses, and public health
authorities). In future studies, it is aimed to use the
model not just as a forecasting tool but as
an operational management schedule. In this
context, the following implementation steps are
envisaged in light of the 1-year projection obtained
from the model.

5.5.1 Periodic Operational Management Plan

Based on the 2026 projection of the model, the
following "monthly action plans" can be
implemented in pharmacy and warehouse
managements:

January-February (High Alarm and Stock
Replenishment): The model's "Peak" forecasts in
the winter months indicate that analgesics such as
Arveles and Parol will reach the highest demand
levels in this period. Pharmacies can prevent "out-
of-stock" crises by increasing their stocks by 30%
along with the 1.4-week early signal (Google
Trends increase) provided by the model.

May-June (Seasonal Transition and Inventory
Optimization): Since demand is predicted to
decrease as of the end of spring, warehouses need to
protect cash flow by reducing high-volume
purchases and focus on the management of products
that may expire (expiration date management).
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September-October (Preparation and Early
Warning): The first movement seen in Google
Trends data with the opening of schools is a "winter
preparation” signal for pharmacies. In this period,
the optimization of pharmacy personnel planning
according to the increasing patient traffic will be
ensured.

5.5.2 Implications for Pharmacies and Retail
Points of Sale

Combining the model with local search data (local

trends) will enable each pharmacy to manage the
"epidemic micro-climate" in its own region. In
future studies, it is planned to strengthen
consultancy services by allowing pharmacists to
know which symptom group (pain, fever, flu, etc.)
will be in higher demand that week through
a "Demand Forecast Widget" to be integrated into
pharmacy management software.

5.5.3 Integration of Public Health and Hospital
Systems

Analgesic sales are one of the most sensitive
barometers of community health. Sharing the
forecasts provided by the model with public
authorities will provide the following benefits:
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