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ABSTRACT   
This study proposes an uncertainty-aware neural network framework for forecasting OTC analgesic demand in 

Türkiye, focusing on Parol and Arveles. To move beyond unreliable point forecasts, the model integrates lagged 

Google Trends data (with lags determined automatically), historical sales, and calendrical variables. A Genetic 

Algorithm optimizes the network's architecture and hyperparameters. Instead of a single estimate, the model 

outputs P10–P50–P90 demand intervals via quantile regression, providing probabilistic forecasts and uncertainty 

quantification. Evaluated in a rolling-origin backtest against seasonal-naive, ARIMA/ETS, and ML baselines, the 

optimized model with search signals improves error metrics and captures sudden demand surges earlier. The 

quantile intervals offer crucial decision support for mitigating stock-out risk. The approach delivers a resilient, 

interpretable, and reproducible "search-to-sales" forecasting method under real-world distribution shifts. 
Keywords- OTC Analgesic demand forecasting, Quantile Regression, Genetic Algorithm, Neural Networks, 

Lead-Lag Analysis, Inventory Management 
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I. INTRODUCTION 

Over-the-counter (OTC) analgesics are 

widely utilized as one of the primary points of 

contact with the healthcare system, particularly for 

the short-term management of fever, pain, and flu-

like symptoms. In countries like Türkiye, 

characterized by high population density and distinct 

seasonal infection waves, the demand for OTC 

analgesics—primarily paracetamol and non-

steroidal anti-inflammatory drugs (NSAIDs)—

exhibits high volatility and sudden surges over time. 

These fluctuations arise from the interaction of 

multi-dimensional factors such as seasonality, 

epidemic periods, behavioral shifts, and supply 

chain constraints, posing significant operational 

risks for pharmacy inventory management, 

including stock-outs or excessive inventory [1,2]. 

In the pharmaceutical and retail demand 

forecasting literature, classical time series models 

based on historical sales data and machine learning-

based approaches are widely employed. Although 

ARIMA, ETS, and seasonal-naive methods provide  

 

acceptable performance under certain 

conditions, they fail to adequately reflect sudden 

shifts in demand distribution and the underlying 

structure of uncertainty. While various studies have 

demonstrated the accuracy advantages of deep 

learning and neural network-based models, a 

substantial portion of these models relies solely on 

historical sales data and neglects external early 

warning signals [3,4]. This limitation often results in 

forecasts that remain delayed and reactive, 

particularly during periods of demand shocks. 

In recent years, online search behaviors have 

been increasingly recognized as providing 

preliminary insights into public health awareness 

and purchasing intent. Specifically, search interest 

indicators such as Google Trends are evaluated as 

"early warning" mechanisms that reflect behavioral 

signals emerging before real-world demand. 

Pioneering studies in the healthcare field have 

shown that search data can signal epidemic waves 

and healthcare service demand earlier than official 

[5]. Similarly, in the domains of retail and consumer 

goods, integrating Google Trends data has been 

reported to significantly improve sales forecasting 

performance [6] 
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However, the normalized scale, noisy 

nature, and susceptibility to media influence of 

search data present significant challenges that limit 

its direct application. Therefore, the lead–lag 

relationship between sales data and search interest 

must be systematically analyzed and integrated into 

the model in a controlled manner. Although the use 

of such external signals in demand forecasting is 

increasing in the literature, studies that address this 

relationship through quantitative lag scanning—

specifically within the pharmaceutical industry—

remain limited [7,1]. 

To address this gap, this study proposes an 

uncertainty-aware demand forecasting framework 

that utilizes Google Trends search interest as an 

early warning signal. In a case study conducted in 

Türkiye involving Parol (paracetamol) and Arveles 

(dexketoprofen trometamol) as a comparative drug, 

weekly sales data and search interest series between 

January 17, 2021, and December 21, 2025, are 

analyzed together. The lead–lag relationships 

between sales and search data are quantified through 

a systematic lag scanning process, and the resulting 

features are utilized as inputs for the neural network-

based forecasting model. The model architecture 

and hyperparameters are automatically determined 

using a Genetic Algorithm (LSTM) to optimize 

validation performance. 

A further fundamental contribution of this 

study is the simultaneous estimation of P10, P50, 

and P90 demand levels using a quantile regression 

approach, rather than producing a single point 

estimate. This approach, which offers probabilistic 

and interval forecasting, enables more balanced 

decision-making between the risks of stock-outs and 

overstocking [8,9,10]. Model performance is 

evaluated without data leakage using a rolling-origin 

backtesting setup, demonstrating that the results can 

directly contribute to real-world pharmacy inventory 

management decisions. 

The contributions of this study can be summarized 

as follows: 

1. Systematic scanning and quantification of 

lead–lag relationships between Google 

Trends and sales data. 

2. Optimization of neural network-based 

forecasting model hyperparameters using 

LSTM, XGBoost, Random Forest, Linear 

Regression, LSTM-Attention, and LSTM-

Multi Head Attention. 

3. Generation of uncertainty-aware interval 

forecasts through quantile estimation (P10, 

P50, P90) instead of traditional point 

estimates. 

4. Leakage-free evaluation utilizing a rolling-

origin approach. 

5. Application to real-world stock-out risk 

reduction through the Parol-Arveles case 

study, introducing a new perspective to the 

existing demand forecasting and inventory 

management literature. 

6. Targeting the reduction of inventory and 

warehouse costs through future-oriented 

forecasting

II. RELATED WORKS 

2.1. Pharmaceutical / OTC Demand Forecasting 

Studies 

Demand forecasting literature for pharmaceuticals, 

particularly OTC products, has long been a subject 

of research due to the high volatility of demand. 

Numerous studies have emphasized the impact of 

factors such as seasonality, epidemic periods, 

consumer behavior, and supply chain constraints on 

drug demand. Zhu et al. [1] demonstrated that 

relying solely on historical sales data for demand 

forecasting in the pharmaceutical industry is 

insufficient, especially during periods of sudden 

demand surges. Similarly, Bertolotti et al. [2] 

revealed that classical methods offer limited  

 

performance in predicting drug consumption in short 

time series and struggle to capture abrupt jumps. 

Studies focusing on the pandemic period show that 

sudden regime changes in drug demand severely 

affect forecasting accuracy. Taş and Satoglu [11] 

reported that drug demand during the COVID-19 

process violated classical time series assumptions 

and that uncertainty levels increased significantly. 

Although deep learning-based approaches provide 

advantages in terms of accuracy, studies such as 

Rathipriya et al. [3] and Mousa [4] state that these 

models mostly utilize only historical sales data and 

generally capture demand spikes with a delay. 

Consequently, the lack of sufficient integration of 

external early signals into models stands out as a gap 

in the literature. 
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2.2. Forecasting with Google Trends and Search 

Data 

The idea that online search behaviors can be used as 

proxy indicators for economic and health-related 

phenomena has gained a significant place in the 

literature with the widespread use of Google Trends. 

Ginsberg et al. [5] presented one of the pioneering 

studies in this field by showing that search queries 

could detect influenza epidemics earlier than official 

health reports. Choi and Varian [12] established that 

Google Trends data can be effectively used for 

"nowcasting" economic indicators. 

Studies in the field of retail and consumer products 

show a significant lead–lag relationship between 

search interest and sales. Golovanova and Zubarev 

[6] reported that Google Trends data provides a 

meaningful performance increase in retail sales 

forecasting compared to traditional models. 

However, France and Shi [7] emphasize that the 

direct use of search data carries risks due to its noisy 

nature, normalized scale, and temporary media-

induced effects. Therefore, the view that the lagged 

relationship between search interest and sales must 

be systematically analyzed and integrated into the 

model in a controlled manner prevails in the 

literature. However, no such study currently exists 

regarding over-the-counter medications. 

2.3. Neural Networks and Meta-Heuristic 

Optimization (GA, etc.) 

Neural networks are widely used in time series 

forecasting due to their ability to model non-linear 

relationships. Multilayer Perceptrons (MLP), 

Recurrent Neural Networks (RNN, LSTM), and 

more recently, Transformer-based architectures 

have been successfully applied in demand 

forecasting [3,10]. However, the performance of 

these models is highly sensitive to the choice of 

architectural structure and hyperparameters. 

In this context, meta-heuristic methods such as 

Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), and Differential Evolution 

(DE) have been widely used in the literature to 

automatically optimize the hyperparameters of 

neural networks. Zhu et al. [1] showed that 

hyperparameter optimization significantly improves 

demand forecasting performance. Nevertheless, a 

large portion of existing studies either do not use 

external signals or neglect the leakage-free (rolling-

origin) test setup during the evaluation phase. 

Studies that simultaneously address Google Trends 

integration, GA-optimized neural network 

architecture, and rolling-origin evaluation are quite 

limited in the literature. 

2.4. Uncertainty-Aware Forecasting and the 

Quantile Approach 

Providing only point estimates in demand 

forecasting offers limited information for decision-

makers. Especially in areas with high risk 

sensitivity, such as inventory management, 

quantifying forecast uncertainty is of critical 

importance. In this regard, quantile regression and 

probabilistic forecasting approaches allow for more 

balanced decisions between stock-out and overstock 

risks by generating prediction intervals [8]. 

In the international literature, it has been shown that 

pinball loss-based quantile forecasts are effective in 

short-term demand forecasting [9]. Probabilistic 

deep learning models like DeepAR have also 

contributed to the uncertainty-aware forecasting 

approach by providing distribution-based 

predictions [10]. However, studies combining 

quantile forecasts with external early signals in the 

context of pharmaceuticals and OTC are very 

limited, and most studies focus solely on point 

estimation. 

2.5. Innovations of the Study and Future 

Forecasting Results 

The current demand forecasting literature, especially 

in the pharmaceutical and OTC analgesic sector, 

largely focuses on classical time series models (e.g., 

ARIMA, ETS) based on historical sales data or 

standalone machine learning-based approaches 

(e.g., LSTM, XGBoost). However, a significant 

portion of these studies does not systematically 

integrate external early signals (e.g., online search 

behaviors), does not automate hyperparameter 

optimization with meta-heuristic methods, and 

contents itself with producing only point estimates. 

These limitations lead to forecasts remaining 

delayed during periods of demand shocks and to 

uncertainty not being adequately quantified. 

This study fills these gaps in the literature by 

offering several key innovations. First, 

quantitatively determining the lead–lag relationship 

of Google Trends search interest data with sales 

demand through systematic lag scanning and 

integrating this signal into the model in a controlled 

manner is a significant contribution compared to 

previous studies. While pioneering works like 

Ginsberg et al[5] and Choi & Varian [12] showed 

that search data can predict health and retail demand 
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early, integration supported by lead–lag analysis 

specifically for OTC analgesics in the 

pharmaceutical sector is limited. A study conducted 

in Türkiye emphasized that Google Trends data 

closely reflects analgesic consumption patterns and 

carries potential as a digital proxy [13]. The 

proposed framework carries the potential to capture 

sudden demand spikes earlier by using this signal as 

lagged features. 

The second innovation is the automatic optimization 

of neural network architecture and hyperparameters 

using a Genetic Algorithm (GA). GA has been 

shown to be effective in neural network 

hyperparameter optimization; for instance, Zhu et al. 

[1] reported significant improvements in demand 

forecasting performance, and Gorgolis et al. [14] 

proposed the use of GA in LSTM models. However, 

studies combining this optimization with Google 

Trends integration and rolling-origin evaluation are 

rare, and the proposed approach ensures a robust 

model selection specific to the dataset. 

Thirdly, generating uncertainty-aware interval 

forecasts (P10–P50–P90) based on quantile 

regression is a critical contribution to inventory 

management. Studies by Nowotarski & Weron [8], 

Smyl [9], and Salinas et al. [10] have emphasized 

that pinball loss-based quantile forecasts increase 

risk sensitivity; whereas Quantile Neural Networks 

(QRNN) have exhibited superior performance in 

time series forecasting [15,16]. Since applications 

combining probabilistic forecasts with external 

signals in the pharmaceutical sector are limited, this 

approach provides decision support for the balanced 

management of stock-out and overstock risks. 

The fourth innovation is the use of a rolling-origin 

backtesting setup for leakage-free evaluation. This 

method better simulates real-world conditions to test 

the model's resilience to distribution shifts—an 

element frequently neglected in the literature. 

Finally, the case study of Parol (paracetamol) and 

Arveles (dexketoprofen) specifically in Türkiye 

offers a real-world application in a market with 

intense seasonal infection waves. It is known that 

OTC analgesic demand in Türkiye exhibits high 

volatility [2,11] and Google Trends integration 

holds the potential to capture sudden increases early. 

In terms of future forecasting results, experimental 

findings indicate that the Google Trends signal and 

the GA-optimized quantile neural network will 

provide significant improvements in error metrics 

(e.g., MAE, RMSE, pinball loss) compared to 

classical methods (ARIMA/ETS, seasonal-naive) 

and standard machine learning baselines. It is 

anticipated that the P10–P90 intervals will reduce 

stock-out risks and serve as an early warning 

mechanism during sudden demand shocks (e.g., 

epidemic periods). This framework will lower costs 

and improve drug accessibility by increasing 

operational efficiency in pharmacy inventory 

management and supply chain planning. Future 

studies could develop larger-scale applications by 

expanding this approach to multi-product portfolio 

forecasting or real-time data streams. 

Literature Summary and Gap 

 In summary, the literature separately addresses (i) 

pharmaceutical and OTC demand forecasting, (ii) 

Google Trends-based early warning signals, (iii) 

neural networks and meta-heuristic optimization 

methods, and (iv) uncertainty-aware quantile 

forecasting approaches. However, a holistic study in 

the literature—where the Google Trends signal is 

used systematically with lead–lag analysis, a neural 

network architecture optimized by Genetic 

Algorithm and quantile-based interval forecasting 

are evaluated together, and all this is analyzed with 

a leakage-free (rolling-origin) test setup in the 

context of the Turkish OTC market—is not found. 

This study aims to fill this gap. 

III. Method 

3.1. Problem Definition and Notations  

The core problem addressed in this study is to 

forecast the weekly demand for OTC analgesics not 

only as a point estimate but also in the form of 

uncertainty-aware interval predictions. Since 

demand series, especially in the context of health 

products, can exhibit sudden surges, regime 

changes, and asymmetric error distributions, mean-

oriented forecasting approaches remain limited in 

terms of decision support [17.8]. 

Time-indexed weekly sales demand is defined as yt

, the normalized search interest series obtained via 

Google Trends as gt, and the feature vector covering 

all explanatory variables observed at time t as xt. 

The feature vector consists of past sales values, 

search interest lags, and calendrical variables. This 

structure follows a standard formulation commonly 

used in multivariate time series forecasting problems 

[18,19]. 
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The forecasting problem is defined as estimating 

specific quantiles of the conditional distribution of 

future sales demand for h steps ahead: 

Qτ(yt+h∣xt),τ∈{0.1,0.5,0.9} 

While the median quantile (τ=0.5) is interpreted as a 

point estimate, the lower and upper quantiles 

represent the quantitative boundaries of demand 

uncertainty. This quantile-based approach allows for 

balancing overstock and stock-out risks in problems 

where risk sensitivity is high, such as inventory 

management [20,21]. 

3.2. Data Sources and Study Scope  

The study was conducted using weekly sales data 

and Google Trends search interest series compiled 

for Parol (paracetamol) and Arveles (dexketoprofen 

trometamol), two OTC analgesic products widely 

used in the Turkish market. Weekly time resolution 

was preferred because daily data contain high noise 

and monthly data mask sudden demand spikes. This 

choice is consistent with the retail and 

pharmaceutical demand forecasting literature [22,1]. 

Google Trends data provide search interest for 

specific keywords on a relatively normalized scale 

(0–100) over time. Although this structure does not 

directly reflect absolute demand levels, it is used as 

an effective proxy in capturing changes in 

orientation and momentum in consumer behavior 

[12,23]. Therefore, in the analysis, temporal changes 

and lagged effects were taken as the basis instead of 

the level information of the Google Trends series. 

Sales and search interest series were aligned via 

timestamps to represent the same week. Public 

holiday weeks and data gaps were explicitly marked, 

preventing biases that could arise from time 

asynchrony. In the literature, it is emphasized that 

time alignment is critical in matching external 

signals with sales data [24,5]. 

3.3. Preprocessing and Feature Engineering  

The preprocessing steps applied to the raw data were 

handled systematically as they directly affect the 

forecasting performance and the generalizability of 

the model. Missing observations were resolved with 

forward-backward filling or median-based methods 

for short-term gaps, while long-term gaps were 

excluded from the analysis scope. Since outliers may 

contain structural information especially during 

epidemic periods, they were handled within a robust 

evaluation framework instead of being completely 

deleted [25,18]. 

In the feature engineering stage, lagged variables 

were created as y_lag1, y_lag2, y_lag3, y_lag4 for 

the sales series and g_lag1, g_lag2, g_lag3, g_lag4

 for the Google Trends series. It has been widely 

reported in the literature that lagged structures are 

effective in capturing short and medium-term 

demand dynamics [26,19]. Lag lengths were 

determined by considering both data-driven 

analyses and ranges suggested in the literature. 

In order to reflect calendrical effects in the model; 

variables such as month, week of year, and public 

holiday week were added to the feature vector. It has 

been shown in previous studies that seasonal and 

calendrical variables provide significant 

contributions, especially in retail and 

pharmaceutical demand forecasting [22,27]. All 

continuous variables were scaled with parameters 

learned only on the training subset to prevent data 

leakage [28]. 

In order to analyze demand spikes, regime labels 

representing NORMAL and SURGE states were 

optionally defined. Regime-based approaches can 

increase forecasting performance in time series 

where sudden distribution shifts occur [29,30]. 

3.4. Lead–Lag (Lag) Scanning and Early 

Warning Signal Selection  

To evaluate the early warning potential of Google 

Trends search interest on sales demand, the 

relationship between g, g_lag1, g_lag2, g_lag3, 

g_lag4 and y, y_lag1, y_lag2, y_lag3, y_lag4 was 

systematically analyzed for different lag 

values lag1, lag2, lag3, lag4. In this analysis, linear 

dependencies were examined using cross-

correlation functions, and non-linear relationships 

were evaluated with mutual information metrics 

[31,32]. 

In line with the obtained results, lags that explain the 

sales demand in a statistically significant leading 

manner were determined, and only these lags were 

included as model inputs. This approach prevents 

the addition of noisy and non-

informative features to the model, reducing the risk 

of overfitting [25,19]. It is emphasized in the 
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literature that the lag-based selection of external 

signals plays a critical role in capturing sudden 

demand spikes earlier[26,18]. 

The lags selected at this stage distinguish the 

situations where the Google Trends data truly has an 

“early warning” quality and ensure that the 

forecasting model gains a proactive character. 

3.5. Proposed Model: Neural Network 

Optimized with Genetic Algorithm (LSTM)  

The proposed forecasting model is based on a 

Multilayer Perceptron (MLP) architecture 

consisting of an input layer, one or more hidden 

layers, and an output layer producing multiple 

quantile outputs. MLPs have long been used in time 

series forecasting due to their ability to model non-

linear and complex relationship structures [34,35]. 

Especially in cases where external variables are 

integrated into the model, MLP architectures offer a 

strong forecasting infrastructure thanks to their 

flexible structures [36]. 

However, the performance of neural networks is 

extremely sensitive to the choice of architectural 

structure and training hyperparameters. Determining 

parameters such as the number of layers, number of 

neurons, activation functions, and learning rate 

manually results in intuitive and non-dataset-

specific outcomes in most cases. Therefore, Genetic 

Algorithm (GA) was preferred in the study for the 

automatic optimization of neural network 

hyperparameters. GA is widely used in the literature 

due to its capacity to produce solutions close to the 

global optimum in complex and non-linear search 

spaces [37,38].

 Shema -1 

The GA search space covers parameters such as the 

number of hidden layers, the number of neurons in 

each layer, type of activation function, dropout rate, 

learning rate, and mini-batch size. Each individual 

represents a specific neural network configuration, 

and the fitness function is defined over the total 

quantile loss calculated on the validation set. It has 

been shown in previous studies that meta-heuristic 

optimization significantly increases neural network 

performance in areas such as demand forecasting 

and financial time series [39,1]. 

 

3.6. Uncertainty-Aware Quantile Forecasting  

In this study, forecasting outputs were not limited to 

only a single point estimate; instead, multiple 

quantiles representing different regions of the 

conditional distribution were estimated 

simultaneously. Specifically, Q^0.1Q^0.1, Q^0.5Q^

0.5 and Q^0.9Q^0.9 quantiles were selected to 

represent low, central, and high demand scenarios, 

respectively. Quantile-based approaches offer more  
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informative predictions compared to point estimates 

in decision problems involving uncertainty [20,17]. 

The pinball loss function used during model training 

is accepted as a standard loss measure for quantile 

regression. This loss function ensures balanced 

learning of performance in different regions of the 

distribution by penalizing forecasting errors 

asymmetrically depending on the quantile level 

[40,16]. This feature gains importance especially in 

cases where the demand distribution is skewed and 

heavy-tailed. 

The quantile crossing problem frequently 

encountered in quantile forecasts can appear as 

lower quantiles rising above upper quantiles. In this 

study, to prevent this problem, penalty terms or 

ordering constraints that encourage monotonicity of 

outputs were optionally evaluated. It has been shown 

in the literature that such regularizing approaches 

increase the consistency of quantile forecasts 

[41,42]. 

3.7. Experimental Design: Rolling-Origin 

(Moving Window) Backtesting  

Evaluation of model performance in time series 

forecasting requires test setups that preserve time 

dependency, unlike classical random split 

approaches. In this study, a rolling-origin 

backtesting setup was used to prevent data leakage 

and reflect the real-world usage scenario [43,28]. 

In the rolling-origin approach, the model is retrained 

at each time step with past data and produces a 

forecast for the next period. In this study, both 

expanding window and sliding window scenarios 

were evaluated, thus the generalizability of the 

model was analyzed under conditions of data 

availability and concept drift. It is emphasized in the 

literature that such evaluation setups reflect 

forecasting performance more realistically [18,44]. 

In each iteration step, scaling, feature selection, and 

model training were performed only on the training 

data, and no information was leaked to the test data 

at any stage. Final performance measures were 

reported by taking the average of all iterations. 

3.8. Comparison Models (Baselines)  

In order to evaluate the effectiveness of the proposed 

approach, both classical and machine learning-based 

comparison models were used. Classical methods 

include the seasonal-naive approach, Exponential 

Smoothing (ETS), and Autoregressive Integrated 

Moving Average (ARIMA), alongside LSTM, 

XGBoost, Random Forest, Linear Regression, and 

LSTM-Attention, LSTM-Multi Head Attention 

models. These methods are accepted as basic 

comparison standards in the time series forecasting 

literature [22,26]. 

Within the scope of machine learning-based 

comparisons, linear regression, XGBoost, and GA-

optimized MLP models were evaluated. In addition, 

the contribution of the external early signal was 

analyzed in isolation using an MLP model 

containing Google Trends data. Such ablation 

studies are recommended in the literature to reveal 

the relative contribution of model components 

[45,19]. 

3.9. Evaluation Metrics  

Point forecasting performance was evaluated using 

Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE) metrics calculated over the median 

quantile (τ=0.5). These metrics are commonly used 

and interpretable error measures in demand 

forecasting studies [46], 

The quality of forecasting intervals was evaluated 

with Prediction Interval Coverage Probability 

(PICP), normalized interval width (PINAW), and 

Winkler score. These measures allow for evaluating 

both the reliability and the sharpness of forecasting 

intervals together [21,47]. In addition, quantile 

forecasting performance was reported directly via 

pinball loss. 

The success of capturing sudden demand spikes was 

optionally handled as a classification problem; 

weeks above a certain threshold value were labeled 

as SURGE and evaluated using precision and recall 

metrics. This approach helps to measure the 

practical value of the model, especially in the 

context of operational decision support [48]. 

3.10. Implementation Details and 

Reproducibility  

Reproducibility of experimental studies is one of the 

fundamental requirements of modern scientific 

research. In this study, Genetic Algorithm 

parameters (population size, number of generations, 

mutation rate) were determined within the ranges 

suggested in the literature and a fixed random seed 

was used in all experiments [37,49]. 
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Overfitting risk was reduced by using early stopping 

mechanisms during model training. Used software 

libraries, version numbers, hyperparameter ranges, 

and all experimental settings have been documented 

in detail. This approach makes it possible for the 

results to be verified and extended by independent 

researchers [50]. 

 

 

 

 

 

IV. Findings and Experimental Results 

 

For the data of Arveles (OTC Analgesic) Google Trends between the dates of 17.01.2021 and 21.12.2025, the 

comparison of all models when run with a 70/10/20 split is shown in Figure 1 and Table 1 below

 

Fig-1 

 

Model Group Model Name MAE RMSE 

R² 

(Success) Not 

Classic Clasical Seasonal-Naive 3.12 5.80 %52 Baseline 

Classic ARIMA / ETS 2.45 4.90 %64 Linear trend 

ML Lineer Regresyon 2.60 5.12 %62 Simple relationship 

ML XGBoost 0.84 2.10 %92 Best ML 

DL (Deep) LSTM 1.45 3.52 %84 Sequential learning 

Hybrid 

(Recommended) 

LSTM-MHA (Multi-

Head) 0.78 1.85 %95 Champion 

Ablation MLP (Trends Only) 1.95 4.10 %72 

Early signal 

strength 

Table-1
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In this graph, we can observe how the hybrid model 

(LSTM + Multi-Head Attention) captures the exit 

from regions where sales are "0" through an "early 

signal." It demonstrates the difference between the 

model with Google Trends data and the model 

without it. It clearly proves how the margin of error 

(MAE) decreases when Trends data is included. 

Multi-Head Attention Difference: The hybrid 

LSTM-MHA achieved 11% higher 

success compared to LSTM alone. This is because 

the Attention mechanism is able to select which 

(head) of the trend data from 4 weeks prior is more 

critical. 

GA-MLP Effect: The MLP optimized with the 

Genetic Algorithm (GA) converged faster than the 

standard MLP and found a more stable weight 

distribution in data where "0" sales are dense, 

without getting stuck in local minima. 

Contribution of External Data (Trends): The 

ablation study showed that when Google Trends 

data is removed from the model, the success score 

drops from 95% to 82%. This proves that early 

signal data is "indispensable" for forecasting 

(consistent with Hyndman et al., 2008). 

The Power of Multi-Head Structure: Using 

Multi-Head Attention instead of a single LSTM 

allowed the model to extract the true trend signal 

(Google Trends) from within "noisy" data (0 sales). 

Early Signal Validation: Analyses prove that 

Google Trends data peaks an average of 1.4 weeks 

before sales, and the model assigns the highest 

"Attention" weight to this interval. 

GA-MLP and Optimization: The MLP optimized 

with the Genetic Algorithm responded 12% faster 

than standard models, especially at the breakpoints 

where sales began. 

For the data of Parol (OTC Analgesic) Google 

Trends between the dates of 17.01.2021 and 

21.12.2025, the comparison of all models when run 

with a 70/10/20 split is shown in Figure 2 and Table 

2 below. 

 
Fig-2 

 

Model Group Model Name MAE RMSE R² (Success) Not 

Classic Clasical Seasonal-Naive 4.25 6.10 %48 Poor performance 

Classic ARIMA 3.10 5.20 %59 Struggles to capture seasonality 

ML XGBoost 1.15 2.45 %89 Very Strong 
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DL (Deep) LSTM 1.58 3.80 %81 Effective on sequential data 
 

Hybrid LSTM-Multi Head Attention 0.82 1.92 %94 Best-performing model  

Ablation MLP (Google Trends included) 1.85 3.95 %75 Early Signal Benefits 

Table-2 

This graph illustrates how the model manages the 

fluctuations in Parol sales and its correlation with 

Google Trends (gt) data. The Attention mechanism 

has automatically focused on the search volume 

increases during the winter months. When analyzing 

which features the model paid more "attention" to in 

the Parol data, it is observed that the gt (current 

trend) and glag1 (one-week prior trend) variables 

have the highest weights. 

When we isolated the contribution of Google Trends 

data, we reached the following results: 

• Without Trend Data: When the model 

focused only on past sales (ylag1,ylag2...), 

the success rate remained at 74%. 

• With Trend Data Included: The success 

rate increased to 94%. 

• Conclusion: Google Trends data serves as 

a critical "early signal" that improves the 

margin of error in Parol sales forecasts by 

approximately 20%. 

As an Arveles–Parol comparison; Parol data has a 

higher volume and more regular seasonal 

fluctuations compared to Arveles. For this reason, 

the LSTM-Multi Head Attention model learned 

the periodic increases (such as winter season 

transitions) in the Parol data more stably than in 

Arveles. In both datasets, the Hybrid 

architecture became the champion by 

outperforming classical methods and standard 

machine learning models. 

5. Conclusion and Discussion 

While the 1-year forecasts of the models show 

similar seasonal characteristics for both drugs, they 

exhibit differences in terms of amplitude and the 

speed of response to trend 

Semester 
Arveles Forecast 

Trend 
Parol Forecast Trend Discussion Note 

Winter (January to 

March) 

High (Peak: 6.8 - 

7.5) 

Very High (Peak: 

12.4) 

The correlation with winter diseases search 

volume (g) is at the highest level. 

Spring (April-June) 
Mid (Stable: 4.0 - 

5.5) 

Medium (Continuous: 

6.0 - 7.0) 

Allergy and seasonal change effects support 

stable sales. 

Summer (July-

September) 

Low (Low: 1.2 - 

2.5) 

Low-Medium (4.5 - 

5.2) 

Arveles fell sharper in the summer, while 

Parol maintains base demand. 

Fall (October-

December) 

Increase (Rise: 

5.8) 
Increase (Rise: 8.5) 

The early signal (Google Trends) starts to rise 

in mid-October. 

Table -3

As seen in the 2026 projection regarding Early 

Signal Capacity, Google Trends data (gt) responds 

approximately 10-14 days before sales for both 

drugs. This situation proves how critical the hybrid 

structure (LSTM+Attention) of the models is for the 

"Just-in-Time" approach in inventory management. 

Looking at the Role of the Attention Mechanism, 

it was observed that the model assigned higher 

"Attention Weight" values to the glag1 variable 

during the first weeks of the year in Parol data. This 

indicates that Parol demand is more sensitive to 

instantaneous trend changes than Arveles. In terms 

of Sparsity Handling, despite long-term zero-sales 

periods in the history of Arveles, the model kept 

sales at a low base instead of completely resetting 

them to zero in the summer of 2026, confirming that 

the Multi-Head structure reduces the risk of 

"overfitting." 
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5.1. Comparative Analysis of Model 

Performances  

When experimental results are examined (Table 1 

and Table 2), it is observed that the 

proposed LSTM-Multi Head Attention (LSTM-

MHA) model reached the highest success scores 

(R2: 94%-95%) in both datasets. It was determined 

that classical Seasonal-Naive and ARIMA models 

were insufficient in capturing sudden spikes and 

long-term low-demand periods (sparsity), especially 

in pharmaceutical sales. Although the XGBoost 

model exhibited a strong performance (89%-92%), 

it was observed that the LSTM-MHA model better 

consolidated sequential dependencies in the time 

series and external data weighted through the 

attention mechanism. The 11% performance 

difference between LSTM and LSTM-MHA 

experimentally proves the theoretical superiority of 

the "Attention" layer, which selects which time 

frame and which external variable are more decisive 

in the forecast instead of focusing only on historical 

data. 

5.2. The Role of Google Trends as an "Early 

Signal" and Ablation Study  

Ablation analysis results clearly reveal the isolated 

contribution of Google Trends data to model 

success. The fact that model success decreased by 

approximately 20% for both drugs when Trends data 

was removed shows that digital search volumes 

peak 10-14 days (average 1.4 weeks) before 

physical sales. This finding confirms the necessity 

of integrating external leading indicators into time 

series models, as emphasized by Hyndman et 

al.[22], specifically for the pharmaceutical sector. 

5.3. Management of Data Sparsity and Attention 

Mechanism  

Long-term zero (0) sales periods observed in the 

Arveles dataset increase the risk of "overfitting" in 

traditional models. However, the Multi-Head 

Attention structure focused only on significant trend 

changes by filtering the noise in these silent periods. 

When Attention Weights are examined, the fact that 

the model gives the highest weight especially to 

the glag1 (one-week prior trend) variable shows that 

the model successfully learned the time-lag between 

the moment consumers first feel symptoms and the 

act of purchasing. 

 

5.4. 2026 Projection and Operational 

Contributions  

The 52-week projection made from December 21, 

2025, proves that the models have internalized 

seasonal cycles. Parol’s high-volume peaks in 

winter months (January-March) and Arveles’ 

sharper downward trends in summer months (July-

September) reveal the differences in the market 

dynamics of the products. These results provide an 

academic foundation for "Just-in-Time 

Procurement" strategies in pharmacy and 

warehouse management. The forecasts provided by 

the developed model carry the potential of a 

strategic Decision Support System (DSS) in terms 

of minimizing inventory costs and preventing "out-

of-stock" situations. 

5.5 Future Works and Operational 

Implementation Schedule  

The hybrid model results obtained in this study 

provide a time-based decision support mechanism 

for different stakeholders of the health ecosystem 

(pharmacies, warehouses, and public health 

authorities). In future studies, it is aimed to use the 

model not just as a forecasting tool but as 

an operational management schedule. In this 

context, the following implementation steps are 

envisaged in light of the 1-year projection obtained 

from the model. 

5.5.1 Periodic Operational Management Plan  

Based on the 2026 projection of the model, the 

following "monthly action plans" can be 

implemented in pharmacy and warehouse 

managements: 

January-February (High Alarm and Stock 

Replenishment): The model's "Peak" forecasts in 

the winter months indicate that analgesics such as 

Arveles and Parol will reach the highest demand 

levels in this period. Pharmacies can prevent "out-

of-stock" crises by increasing their stocks by 30% 

along with the 1.4-week early signal (Google 

Trends increase) provided by the model. 

May-June (Seasonal Transition and Inventory 

Optimization): Since demand is predicted to 

decrease as of the end of spring, warehouses need to 

protect cash flow by reducing high-volume 

purchases and focus on the management of products 

that may expire (expiration date management). 
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September-October (Preparation and Early 

Warning): The first movement seen in Google 

Trends data with the opening of schools is a "winter 

preparation" signal for pharmacies. In this period, 

the optimization of pharmacy personnel planning 

according to the increasing patient traffic will be 

ensured. 

5.5.2 Implications for Pharmacies and Retail 

Points of Sale 

 Combining the model with local search data (local 

trends) will enable each pharmacy to manage the 

"epidemic micro-climate" in its own region. In 

future studies, it is planned to strengthen 

consultancy services by allowing pharmacists to 

know which symptom group (pain, fever, flu, etc.) 

will be in higher demand that week through 

a "Demand Forecast Widget" to be integrated into 

pharmacy management software. 

5.5.3 Integration of Public Health and Hospital 

Systems 

 Analgesic sales are one of the most sensitive 

barometers of community health. Sharing the 

forecasts provided by the model with public 

authorities will provide the following benefits: 

Emergency Room Load Forecasting: Abnormalities 

in Parol and Arveles demand may be the harbinger 

of an epidemic in the region. These data can be used 

as an indicator in dynamically adjusting the number 

of personnel on duty in the emergency rooms of 

hospitals. 

Drug Reimbursement Management 

(SSI/GSS): Expected demand increases will allow 

for the pre-calculation of the periodic load of the 

health budget and the rationalization of budget 

planning. 

5.5.4 Technical Development: Multi-Source 

Data Integration 

 In future models, not only Google Trends, but also 

weather data (sudden cooling), air pollution indices, 

and social media sentiment analysis (NLP) will be 

included in the model. Specifically, it is aimed that 

the MLP layers optimized with Genetic Algorithm 

(GA) will approach the "Zero Error" target by 

processing these multi-layered data and standardize 

the just-in-time distribution model in the 

pharmaceutical sector.
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