
Sid Pasumarthi, et.al, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 7, July 2025, pp 84-87

www.ijera.com DOI: 10.9790/9622-15078487 84 | Page

Time Synchronization in Automotive Systems: A

Conceptual Review and Prototype-Based Demonstration

Sid Pasumarthi*, Sivani Manisha Vankayala**

*(Automotive Professional and Independent Researcher, Michigan, USA, Email: sidpasumarthi@gmail.com)

** (Automotive Professional and Independent Researcher, Michigan, USA, Email: sivani.manisha@gmail.com)

ABSTRACT
Modern automotives have numerous Electronic Control Units (ECU) that operate in distributed networking

systems using protocols such as CAN, Ethernet, LIN, Flex-Ray. Among the networking protocols CAN remains

to be widely used in automotive systems due to its reliability, cost effectiveness, real-time communication and

prioritization. One of the limitations of CAN would be lack of native support for precise time synchronization

which would be a critical requirement for ensuring data consistency and event coordination for distributed

networking systems. Existing protocols such as CANopen, Time Triggered Communication (TTC) provide

synchronized solutions but involve hardware-specific configurations or lack two-way time validation

mechanisms. The paper presents a low cost and novel time synchronization solution based on the concepts of

IEEE 1588 Precision Time Protocol (PTP) and CANopen Protocol. The solution is demonstrated over the Arduino

Uno R4 connected over CAN Bus, the solution incorporates periodic time broadcast, slave clock correction, and

acknowledgement based synchronization. The work includes a conceptual foundation, practical implementation

details, results, limitations, and potential real-world applications. This accessible methodology provides a stepping

stone toward cost-effective synchronization solutions in educational, prototyping, and low-end automotive

environments.

Keywords: ECU, CAN, PTP, TTC, CANopen

--- ----------

Date of Submission: 15-07-2025 Date of acceptance: 30-07-2025

--- ----------

I.INTRODUCTION
Time synchronization errors may happen between

ECUs with inconsistent timestamps causing potential

incorrect ordering of events.

IEEE 1588 Precision Time Protocol (PTP), is a time

synchronization protocol that can enable incredibly

precise synchronization of distributed clocks in

Ethernet-based systems. PTP is a widely adopted

protocol, especially in industries where deterministic

behavior is necessary, like telecommunications,

industrial automation, and power grid systems.

PTP works by establishing a master-slave clock

relationship. The master sends synchronization

messages with timestamps to slave devices.

The protocol is usually expressed in terms of a four-

message exchange which can be analyzed as follows:

Sync message – The Master transmits the timestamp.

Follow_Up message – The Master sends the exact

transmission time of the Sync message.

Delay_Req message – The Slave sends the message

to Master to understand the time associated with its

propagation delay.

Delay_Resp message – The Master sent to Slave to

allow the determination of offset and delay.

PTP can provide time synchronization accurately,

and often to the sub-microsecond level. This

precision however makes the standard difficult to

implement on low-cost, resource constrained

microcontrollers (like an Arduino Uno), which do not

have the Ethernet hardware necessary to conform to

the standard and additional hardware must be

included to add the timestamping capability that a

low-cost embedded system does not provide.

CANopen, is a higher-layer protocol based on CAN

for communication. CANopen offers

synchronization by using two types of messages.

SYNC Object message – Broadcast message that the

Master sends to inform all Slave ECUs to be

synchronized in their operations

RESEARCH ARTICLE OPEN ACCESSC

Sid Pasumarthi, et.al, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 7, July 2025, pp 84-87

www.ijera.com DOI: 10.9790/9622-15078487 85 | Page

TIME Object message – The Master transmits the

message to Slave to provide absolute time

CANopen has challenges of synchronization

operations such as two-way delay compensation and

clock adjustment to account for drift, which leads to

a lower accuracy of synchronization. However, it has

relatively low overhead and is directly compatible

with CAN, which makes it attractive for lightweight

systems.

This paper outlines a low-cost, low complexity time

synchronization methodology based on principles

found in both the IEEE 1588 PTP standard and the

CANopen Protocol, and implemented over a standard

CAN Protocol.

II.PROPOSED METHODOLOGY
The proposed methodology utilizes a simple time

synchronization scheme over the CAN using

inexpensive Arduino Uno microcontrollers.

Following an industrial protocol like the IEEE 1588

Precision Time Protocol (PTP) and the CANopen

SYNC, this solution outlines a reliable periodic

synchronization scheme, without requiring high-end

hardware.

The system consists of two nodes, a Master ECU and

a Slave ECU, with each node being an Arduino Uno

with a CAN transceiver (MCP2515).

The Master ECU is the time authority by periodically

broadcasting time messages over the CAN bus. Each

time message contains the Master ECU’s internal

timestamp based on the Master ECU’s own

millisecond counter which counts the number of

milliseconds since boot.

The Slave ECU of the system reads the time message,

and compares it with its own internal timer and

computes its offset from the Master ECU’s time.

The Master ECU has a predefined tolerance of time

offsets to account for message delay. If the offset is

greater than this threshold, the Slave ECU will

correct its internal time to match that of the Master

ECU. After performing the correction, the Slave ECU

will also send an ACK (acknowledge) message back

to the master confirming the synchronization.

The synchronization status which would be “Time

Synchronized” or “Not Synchronized” is displayed

on the Master ECU LCD screen. Both Master ECU

and Slave ECU also log their active time and status

of time synchronization to the Serial Monitor, for

debugging and performance measurement.

It is assumed that there is minimal network delay in

this method and therefore does not need any delay

compensation that would be required in PTP, thereby

making it suitable for education and low-cost

applications.

The method operates in real-time with a fixed cycle

period, (with an example cycle period of 2 seconds),

where each node is still active during the entire cycle,

and maintains temporal coherence.

Fig 1: Flow chart of Proposed Methodology

The proposed method used a combination of the

SYNC and TIME objects in CANopen and master-

slave time authority in PTP to allow an effective time

sync mechanism for embedded prototypes, limited

automotive systems, or distributed automotive

systems.

III.PROTOTYPE SYSTEM OVERVIEW
The prototype is aimed to create a straightforward

time synchronization system over CAN with Arduino

Uno's using a master-slave communication system

with feedback acknowledgement and a status display

using an LCD.

Hardware:

Master ECU: Arduino Uno + MCP2515 CAN

module + LCD1602 (I2C)

Slave ECU: Arduino Uno + MCP2515 CAN module

CAN Bus: 2-wire CAN cable with 120Ω termination.

Sid Pasumarthi, et.al, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 7, July 2025, pp 84-87

www.ijera.com DOI: 10.9790/9622-15078487 86 | Page

Communication Design:

The master sends its local time (HH:MM:SS) every 2

seconds as a CAN message with CAN ID 0x100.

The slave receives this and updates its internal clock

with offset logic using millis().

The slave responds to the master with an ACK

message with CAN ID 0x101 and includes the

corrected time.

Fig 2: LCD Display, when the Time

Synchronization is successful

The master receives the ACK message and uses it to

update the LCD with the result of the

synchronization.

Fig 3: LCD Display, when the Time

Synchronization is Failed

Functionality Behavior:

Periodic Sync: The Master sends sync messages

every 2 seconds

Clock Correction: The Slave compares the Master

and adjusts its internal timer

Acknowledgment Protocol: The Slave sends an

acknowledgement message to the Master to confirm

a sync was successful

LCD Feedback (Master): Displayed though the LCD,

"ACK Received" or "SYNC FAILED"

Fig 4: Snippet of Master and Slave Module Time

Synchronization Code

IV.Limitation and design constraints

Software based timers: Proposal is based on the on

millis(), therefore, can only be accurate to

milliseconds

No delay compensatory: Proposal doesn’t account

for CAN transmission delay, which is the opposite

from PTP of which would add delay compensation

No hardware timestamps: Proposal doesn’t account

for gated jitter or accurate message timing

One-to-one system: Proposal is designed to be

connected between One master node and One slave

node

Volatile time base: Proposal doesn’t have RTC,

resets the time lose upon power

V.REAL WORLD APPLICATIONS

Low-Cost Fleet Monitoring: Commercial vehicles

or non-critical systems, rough time alignment of a

few milliseconds is frequently considered to be "good

Sid Pasumarthi, et.al, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 7, July 2025, pp 84-87

www.ijera.com DOI: 10.9790/9622-15078487 87 | Page

enough" for remote health monitoring and behavior

monitoring.

Sensor Fusion: Data allocation management from

multiple types of sensors, which require some

response time from the system to sync data across

networked nodes

Educational and Demonstration Platforms:

A useful platform for teaching about CAN, time

synchronization and embedded networking in

academic labs.

VI.COMPARISON OF PROPOSED

METHODOLOGY

Fig 5: Comparison between PTP, CANopen and

Proposed methodology Time Synchronization

VII.CONCLUSION
We have demonstrated that a lightweight,

Arduino-based time synchronization system over

CAN could work and be constructed. While it does

not have the same scale of precision or complexity of

IEEE 1588, or even the entire CANopen stack, it

accomplishes the task of making the basic principles

available to Academic prototypers, and embedded

developers on a small scale.

With further development work—RTC

integration, multi-node capacity, or delay

compensation—it could become a more sophisticated

option for semi-critical and testing deployments.

REFERENCES
[1]. IEEE 1588-2019 Standard: Precision Clock

Synchronization

[2]. CAN in Automation (CiA) 301 – Application

Layer and Communication Profile

[3]. ISO 11898-4 – Time-Triggered

Communication on CAN (TTCAN)

[4]. Microchip AN2280 – Using CAN for Time

Synchronization

[5]. NXP Semiconductors – CANopen

Synchronization Application Notes

