Tareq Ali Al-kandari, International Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 15, Issue 7, July 2025, pp 65-68

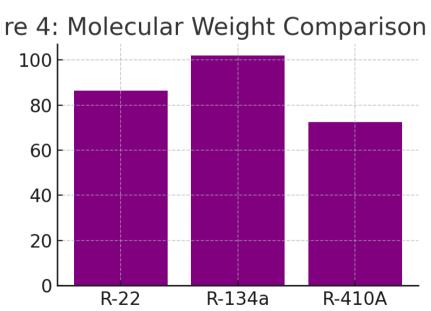
RESEARCH ARTICLE

OPEN ACCESS

Eco-Friendly Fluorinated RefrigerantsTechnological Progress

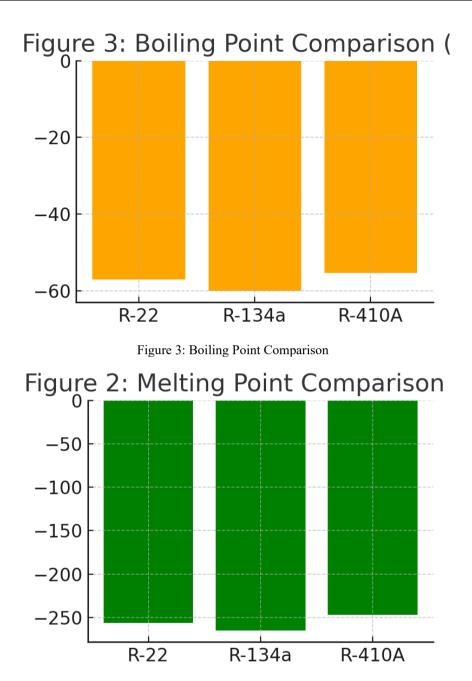
Tareq Ali Al-kandari

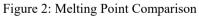
Shuwaikh Industrial Institute


ABSTRACT

Originally developed in 1991 by Honeywell (previously Allied Signal), the refrigerant R-410A was introduced as a successor to R-22, following environmental regulations. After January 1, 2020, the U.S. Environmental Protection Agency (EPA) enforced a ban on manufacturing and importing R-22 due to its ozone-depleting characteristics. The emergence of R-410A was backed by major HVAC manufacturers such as Carrier Corporation, Emerson Climate Technologies, and Copeland Scroll Compressors. Carrier was the first to launch a residential air conditioner using R-410A in 1996 under the trade name "Puron." R-410A gradually replaced R-22 in the U.S., Japan, and Europe. Though produced under various brand names like AZ-20 and Suva-410A, Honeywell remains the leading supplier. The decline of R-22 production—prompted by the Montreal Protocol and U.S. legislation—spurred R-410A's widespread adoption. Today, R-410A dominates the air conditioning industry.

Date of Submission: 13-07-2025	Date of acceptance: 27-07-2025


I. Introduction


This study investigates the evolution of R-410A refrigerant—marketed under names such as Puron and AZ-20—highlighting its advantages over the now-obsolete R-22. We evaluate R-410A in terms of thermodynamic properties, calculate temperature behaviors using gas laws, and compare its performance with other hydrofluorocarbons (HFCs). The purpose is to understand why R-410A became the preferred alternative and examine its role in modern HVAC systems.

Thermophysical Characteristics

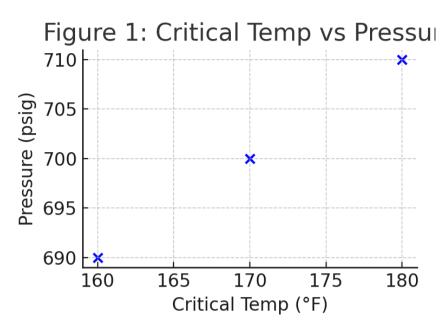


Figure 1: Critical Temp vs Pressure

R-410A is a binary zeotropic blend composed of difluoromethane (CH₂F₂, R-32) and pentafluoroethane (CHF₂CF₃, R-125). We assess key thermodynamic parameters, including saturation pressure and critical temperature, relative to other HFC refrigerants, as shown in Figure 1.

R-410A has a critical temperature of approximately 163.04°F and a corresponding pressure of 699.8 psig. Its melting point, as compared to related refrigerants, is provided in Figure 2.

At -247°F, R-410A exhibits a very low melting point. The boiling point, which is a crucial metric in HVAC applications, is shown in Figure 3.

R-410A has a boiling point of -55.3°F—higher than some competing refrigerants. A comparison of molecular weights, shown in Figure 4, emphasizes R-410A's relatively low mass.

This lighter weight is attributed to its unique chemical formulation, making it favorable for certain applications.

Temperature Estimation Using Ideal Gas Law The ideal gas law is defined as:

PV = nRT

Where:

- P = Pressure (101.325 kPa or 1 atm),

- V = Volume (22.414 L),

-n = Moles (1 mole),

www.ijera.com

- R = Ideal gas constant (8.314 J/mol·K),

- T = Temperature (Kelvin).

Rearranging for temperature:

T = PV / nR = (101.325 × 22.414) / (1 × 8.314) \approx 273.165 K

This result confirms the standard temperature value of 273 K (0°C) under normal conditions.

Cooling Time of a Room Based on R-410A Performance

We estimate the cooling time for a cubic room (3m \times 3m \times 3m = 27 m³), given:

- Atmospheric pressure: 1 atm (101325 Pa),

- Heat load: 10,000 BTU/h = 2.9 kW = 2900 J/s,
- Compressor flow rate: 700 CFM,
- Heat capacity of air: $Cp = 29 \text{ J/mol} \cdot \text{K}$,
- Desired temperature drop: from 303 K (30°C) to 293 K (20°C).

1. Moles of air: n = PV / RT = (101325 \times 27) / (8.31 \times 303) \approx 1086.5 mol

2. Energy to remove: $Q = Cp \times n \times \Delta T = 29 \times 1086.5 \times 10 \approx 315,085 \text{ J}$

3. Cooling time: t = O / Heat L oad = 315085 /

t=Q / Heat Load = 315085 / 2900 \approx 108.65 seconds \approx 1 minute and 49 seconds

This shows R-410A can efficiently cool a standard-

sized room in under two minutes.

Ecological Considerations

The Global Warming Potential (GWP) assesses a substance's ability to trap heat in the atmosphere. R-410A's GWP is 2088—higher than R-22's 1810—but it lacks ozone-depleting potential (ODP = 0), making it environmentally safer. In contrast, R-22 has an ODP of 0.05. Thus, R-410A's benefits in ozone protection outweigh its greenhouse impact.

Benefits of R-410A Compared to R-22

The widespread transition to R-410A was fueled by several key advantages:

Reduced Environmental Harm: Unlike R-22, which can damage the ozone layer when leaked, R-410A is ozone-neutral.
Higher Energy Efficiency: R-410A systems often achieve SEER ratings of 14.5 or more, compared to around 13 for R-22, due to superior heat transfer properties.

3. Lower Operating Costs: As R-22 becomes scarcer due to international phase-out agreements, its cost has risen, making R-410A a more economical option. 4. Improved Equipment Longevity: R-410A systems use synthetic lubricants, reducing mechanical wear versus the mineral oils used with R-22.

II. Conclusion

This analysis clearly supports the superiority of R-410A over R-22 across multiple criteria, especially environmental impact and system efficiency. Given the global phase-out of R-22, the adoption of R-410A stands as a significant milestone in advancing sustainable air conditioning technologies.

References

- Silberstein, E., Obrzut, J., Tomczyk, J., Johnson, B., & Whitman, B. (2020). Refrigeration & Air Conditioning Technology. Cengage Learning.
- [2]. AirCon Service Company. (2019). What are the Benefits of Switching to R-410A Refrigerant? <u>https://www.airconhouston.com</u>
- [3]. Johnson, A. (2021). R-410A Refrigerant History. Refrigerant HQ. https://refrigeranthq.com
- [4]. Mahdiuk, C. (2019). R22 vs. R410a Refrigerant. Four Seasons. https://fourseasonsfurnace.com