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Abstract 

Recent advancements in space exploration platforms, such as NASA’s Artemis lunar base program and the 

Canadian Space Agency’s Gateway power systems, demand resilient, autonomous, and intelligent energy control 

solutions. These systems operate in dynamic, resource-constrained, and fault-prone environments where 

traditional SCADA or PLC-based controls lack adaptability and predictive capability. 

This paper presents HIRACLE—Hybrid Intelligent Resilient Adaptive Control and Learning Engine—a novel 

parallel AI framework specifically designed for microgrid systems in extraterrestrial habitats and highaltitude 

UAV missions. HIRACLE features a modular, edge-deployable architecture combining transformer-based 

forecasting, deep reinforcement learning, spiking neural fault detection, and graph-based rerouting, all supported 

by meta-learning for continuous mission adaptation. 

The software implementation utilizes containerized deep learning models (TensorFlow/PyTorch) optimized for 

edge inference using platforms such as NVIDIA Jetson AGX Orin and Xilinx Versal AI Edge SoCs. These models 

are deployed as distributed agents capable of parallel operation via high-speed buses (CAN-FD, SpaceWire), 

ensuring real-time coordination across subsystems. Fault classification, ripple anticipation, load optimization, and 

health-aware scheduling are executed concurrently without centralized computation. 

On the hardware front, HIRACLE integrates reconfigurable logic (FPGAs), neuromorphic processors (Intel Loihi 

2), SiC-based power conditioning units, and secure telemetry interfaces into a ruggedized control environment. A 

new chip-level proposal—HIRACLE-IC—is introduced, consolidating all AI, logic, sensing, and secure 

communication into a single embedded platform ready for deployment in lunar, Martian, or stratospheric UAV 

energy systems. 

This approach not only surpasses existing state-of-the-art autonomous energy controls but also positions 

HIRACLE as a foundational control paradigm for future NASA and CSA missions requiring scalable, intelligent, 

and mission-adaptive microgrid autonomy. 
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I. Introduction 

We present a comprehensive and uniquely 

conceptualized model that combines deep learning, 

artificial intelligence algorithms, and advanced 

optimization techniques for the control, stability, error 

detection, and power optimization of Islanded DC 

Microgrids used in space habitats and UAVs, as 

discussed in previous research paper by the same 

author ,Tiled as ” Deep Neural Control Module 

(DNCM) AI-Driven Adaptive Deep Learning Control 

Framework for Islanded DC Microgrids in Space 

Habitats and UAVs” 

Mathematical Equations used in Deep Neural Control 

Module (DNCM) 

AI-Driven Adaptive Deep Learning Control 

Framework for Islanded 

DC Microgrids in Space Habitats and UAVs 

1. Data Normalization 

  (1) 

RESEARCH ARTICLE                    OPEN ACCESS 
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2. Transformer Attention Mechanism 

 
 (2) 

3. Mean Squared Error Loss 

  (3) 

4. Online Gradient Descent Update 

 

θt+1 ← θt − η∇θLnewbatch 

 

5. State of Charge Dynamics 

(4) 

  (5) 

6. Load Prioritization Rule  

Lserved(t) = Xwi · 1{Li(t) ≤ Eavailable(t)} 

                         i 

 

7. Reinforcement Learning Reward 

Function 

(6) 

Rt = α1Rutil + α2Rpriority − α3Rloss − 

α4Rbatterystrain 

 

8. Bellman Equation (DQN Update) 

(7) 

  (8) 

9. CNN Output with Softmax  

yˆ = softmax(fθ(x)) 

 

10. Categorical Cross-Entropy Loss 

(9) 

               N C 

L(θ) = −XXyi,c log ˆyi,c 

i=1 c=1 

11. Real-Time Fault Classification 

(10) 

diagnosis(t) = argmaxfθ(S(t)) 

 

12. Fault Path Optimization 

(11) 

 Palt = arg min cost(P), P ∩ vf = ∅ (12) 

P∈P 

13. Health Degradation Forecasting 

 H(t) = H0 − αt + β log(t + 1) (13) 

14.  

Classification Metrics 

 

 

 

 

15. GNN Message Passing Rule 

  (16) 

16. Voltage Forecasting Loss 

  (17) 

17. Droop Control Equation 

  (18) 

18. Proportional Voltage Controller 

ut = Kp(Vsetpoint − Vt) (19) 19. SoC Forecasting 

via LSTM 

SOCˆ 
t+1 = LSTM(SOCt,Loadt) (20) 20. Q-Learning 

Policy 

 Q(st,at) = Rt + γ maxQ(st+1,a) (21) 

a 

Novel Parallel Algorithm: HIRACLE 

HIRACLE: Hybrid Intelligent Resilient Adaptive 

Control & Learning Engine is a new, 

mathematically integrated algorithm designed for 

parallelized processing of control, forecasting, 

optimization, and fault healing in microgrids. It 

unifies five AI layers under one resilient, self-learning 

architecture. 

1. Temporal-Spatial Forecast Embedding (GAT-

LSTM Transformer) 

Step 1: Temporal-Spatial Forecast Embedding What it 

does: This step uses a combination of deep learning 

techniques (LSTM and Graph Attention Networks) to 

predict the future state of the microgrid. It takes into 

account voltage, power, battery charge levels, and 

system health. 

Why it matters: By anticipating future changes, the 

system can make better control decisions ahead of 

time. It acts like the ”foresight” or ”early warning 

system” of the algorithm. 

 Zt+1 = GAT LSTM(Vt−k:t,Pt−k:t,SOCt−k:t,Ht−k:t)

 (22) 

This equation embeds graph-based attention and 

LSTM forecasting to predict multi-modal state vectors 

for future action synthesis. 
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2. Resilience-Aware Deep Q Policy Optimization 

Step 2: Resilience-Aware Policy Optimization What it 

does: This is the core decision-making engine. It 

chooses the best action at any moment (like charging, 

discharging, or switching loads) based not just on 

immediate reward but also on long-term impacts such 

as battery health and fault risks. 

Why it matters: This step makes HIRACLE smarter 

than traditional algorithms—it cares about both 

current performance and future resilience, reducing 

wear and avoiding dangerous states. 

Q∗(st,at) = Rt + γ maxQ(st+1,a) − λ1 · ∆H(t) − λ2 · 1fault

 (23) a 

This modifies classical Bellman formulation to 

penalize battery health deterioration and fault triggers 

using a hybrid loss-reward structure. 

 

3. Predictive Droop Stabilization Layer 

(Advanced Forecast Control) 

Step 3: Predictive Droop Stabilization What it does: 

Using the forecasted values from Step 1, this 

component adjusts electrical resistance settings in 

advance to prevent voltage instability. It works like a 

stabilizer that reacts before a disturbance happens. 

Why it matters: In space or aerial microgrids, stability 

is crucial. This proactive behavior ensures smooth 

operation even under sudden load changes or power 

dips. 

  (24) 

The forecasted ripple from layer 1 is used to 

preemptively adjust the control droop resistance. 

 

4. Multi-Criteria Fault Rerouting 

Step 4: Multi-Criteria Fault Rerouting What it does: If 

a fault (like a short circuit or component failure) is 

detected or predicted, this step finds a new way to 

route electricity through the system. It does so based 

on not just cost, but how stable and redundant the new 

route is. 

Why it matters: This ensures that the microgrid 

continues operating even when part of it fails, without 

depending on human intervention. It mimics 

biological self-healing. 

= arg min [cost(P) − µ · stability(P) + κ · 

redundancy(P)] (25) P∈P 

This path optimization extends Dijkstra’s algorithm 

with resilience-aware cost augmentation. 

5. Meta-Learning Fine-Tuner 

Step5 : Meta−LearningFine−TunerWhatitdoes : 

Thisisaself−improvementloop.Thealgorithmperiodica

lly 

Why it matters: It allows the system to adapt to new 

environments, like going from a lunar base to a 

Martian base, or from one UAV mission to another, 

without retraining from scratch. L

 
The algorithm periodically retrains using meta-

gradient updates from mission variation sets to 

enhance domain adaptability. 

 

Parallel Execution Pipeline 

Each submodule (control, forecasting, optimization, 

fault healing, droop correction) executes as a 

distributed agent on an edge-processing core. 

Step 6: Parallel Execution Pipeline What it does: All 

of the above components are designed to work in 

parallel—meaning they run simultaneously on 

different edge processors or AI chips in the system. 

Why it matters: This greatly speeds up computation 

and decision-making, which is essential in space or 

aerial missions where time and resources are limited. 

[H] HIRACLE Parallelized Agent Loop [1] Initialize: 

GAT-LSTM, DQN, GNN, CNN, Droop & 

MetaLearner each time window t in parallel Zt+1 ← 

ForecaststatesusingGAT − LSTM at ← argmaxa 

Q∗(st,at) from Equation 

(2) Execute at & monitor ripple Zripple > ϵ Adjust  

from Equation (3) 

Fault detected by CNN Compute reroute Palt
∗ from 

Equation (4) Update Qvalues & fine-tune with Lmeta 

Innovation HIRACLE doesn’t just control a power 

system — it thinks ahead, protects itself, adapts 

continuously, and heals itself. These qualities are 

crucial for mission-critical environments like space 

habitats, military UAVs, and remote autonomous 

microgrids. 

 

Mathematical Modules Used Previously 

(Summarized) 

• MinMax Scaling 

• Transformer Attention (Eq. 2) 

• MSE Loss (Eq. 3) 

• Gradient Descent (Eq. 4) 

• State of Charge Dynamics (Eq. 5) 

• CNN + Softmax Classification (Eq. 9) 

• Graph Neural Network Message Passing (Eq. 15) 
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• Droop Control Formulation (Eq. 17) 

• Q-Learning Policy (Eq. 20) 

Designing an Innovative Hardware Architecture for 

HIRACLE Implementation 

Space and UAV-Based Deployment of AI-Controlled 

Microgrid Systems 

1. Edge AI Processing Units (EAPUs) 

Procedure: Each HIRACLE submodule (forecasting, 

optimization, self-healing) runs on an independent 

container deployed on an embedded SoC. 

Connections: Interconnected via high-speed serial 

links (PCIe or I2C) with CAN/SpaceWire backhaul. 

Hardware Embedding: Modules like NVIDIA 

Jetson AGX Orin or Xilinx Versal AI Edge are 

mounted onto a thermally shielded control board. 

Specifications: 

Parameter 

Operating Power 

GPU/TPU Cores 

Memory 

Range/Value 

15–30W 

512–1024 CUDA/AI cores 

32–64 GB LPDDR5 

 Inference Latency < 20 ms per frame 

 Radiation Tolerance > 100 krad (space-grade 

variant) 

 

2. FPGA Acceleration Layer 

Procedure: Implements real-time logic for droop 

control, ripple suppression, and redundancy 

management. 

Connections: FPGA links to EAPUs via AXI 

interface and configures I/O to battery, load, and bus 

modules. 

Hardware Embedding: Xilinx Kintex UltraScale or 

Microsemi RTG4 placed on reprogrammable 

daughterboards. 

Specifications: 

Parameter 

Logic Cells 

I/O Voltage Levels 

Range/Value 

1M–2.5M 

1.2V, 1.8V, 3.3V 

 Response Time < 10µs 

 Clock Speed 300–500 MHz 

 

3. Photonic AI Interconnect (Optional) 

Procedure: Optical matrix multiplication units 

accelerate transformer computations. 

Connections: Interfaces with transformer engines 

inside the EAPUs using PCIe-to-photonic bridges. 

Hardware Embedding: Lightmatter Envise photonic 

processor installed in testbed environment. 

Specifications: 

Parameter 

Compute Throughput 

Optical Delay 

Range/Value 

> 1 PFLOP/s photonic 

ops 

< 1 ns 

 Thermal Dissipation Passive or water-cooled 

 Form Factor ≤ 6U rackmount 

4. Neuromorphic Sensor Grid 

Procedure: Edge sensors detect faults and ripple 

patterns using SNNs. 

Connections: Neuromorphic ICs connected directly 

to current/voltage sense lines via ADC front-ends. 

Hardware Embedding: Intel Loihi 2 or SynSense 

DYNAP cores distributed near power buses. 

Specifications: 

Parameter 

Spiking Core Count 

Latency to Detection 

Range/Value 

128–1024 

<1 ms 

 Power Consumption < 50 mW per chip 

 Data Output Rate 500–1000 events/sec 

5. Backplane Bus Communication 

Procedure: All intelligent agents communicate via 

deterministic protocols like CAN-FD and SpaceWire. 

Connections: Wired serial interfaces with error 

correction and priority queues. 

Hardware Embedding: Onboard bus transceivers 

integrated into custom backplane. 

Specifications: 

Parameter 

Data Rate 

Protocol 

Layers 

Range/Value 

100 kbps–400 Mbps 

CAN-FD ISO 11898-7, ECSS-E-

ST-50-12C 

 Bus 

Redundancy 

Dual-loop supported 

 Jitter Tolerance <10 ns 

 

6. Redundant Power Conditioning Units (PCUs) 

Procedure: Receive control signals to manage 

charge/discharge of BESS and handle rerouting. 

Connections: Linked to FPGA for pulse-width 

modulation and digital switching. 

Hardware Embedding: Based on SiC MOSFETs 

with AI-enabled controllers (TI C2000). 

Specifications: 

Parameter 

Switching Frequency 

Thermal Limits 

Range/Value 

20–100 kHz 

< 80◦C continuous 

 MOSFET Type SiC 650V–1200V 

 Control Accuracy ±1% 

 

7. Secure Control Interface 

Procedure: Maintains telemetry and override control 

via secure middleware. 

Connections: Connected via Ethernet or radio uplinks 

to ground/mission control. 

Hardware Embedding: Uses cryptographic 

processors and blockchain timestamping. 

Specifications: 

Parameter 

Security Protocol 

Telemetry Rate 

Range/Value 

TLS 1.3 + Blockchain 

Logs 1–10 Hz 

 Authentication Delay < 50 ms 

 Interface Type SpaceWire + RS485 

Ethernet 
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HIRACLE Hardware Implementation Goals 

This proposed hardware system enables a fully 

parallel, resilient, and adaptive realization of the 

HIRACLE algorithm in high-risk aerospace 

environments. Leveraging the latest edge AI, 

neuromorphic processors, FPGAs, and photonics, it 

enables unmatched intelligence, speed, and autonomy 

in DC microgrid control. 

Implementation Pathway for HIRACLE Algorithm: 

Software to Hardware 

Deployment 

Including Proposal for a Novel Integrated Control 

Device (HIRACLE- 

IC) 

Step-by-Step HIRACLE Implementation from 

Software to Hardware 

Step 1: Software Architecture Design 

The HIRACLE algorithm is structured as modular AI 

agents, each handling tasks like forecasting, 

optimization, and fault recovery. These modules are 

developed using Python frameworks like TensorFlow 

and PyTorch, trained using synthetic and real-world 

power system data, and validated in MATLAB 

Simulink or PLECS simulation environments. 

Outcome: Self-contained, containerized AI agents 

capable of edge execution via ONNX Runtime or 

TensorRT. 

Step 2: Firmware Deployment on Edge Processors 

The AI modules are deployed on embedded hardware 

platforms: 

• NVIDIA Jetson AGX Orin for Transformer 

inference. 

• Xilinx Versal AI Edge SoC for real-time 

deterministic tasks. 

• TI C2000 Microcontroller for 

charge/discharge switching. 

Each AI agent is containerized and deployed with 

hardware abstraction for mission-specific reuse. 

Step 3: Sensor Interfacing and Signal Routing 

Edge sensors (voltage, current, temperature) are 

connected to the EAPUs through high-resolution 

ADCs (e.g., ADS8688). Fault patterns and ripple 

metrics are extracted by neuromorphic coprocessors 

(e.g., Intel Loihi 2), enabling localized AI response. 

Connection: All processors communicate using 

CAN-FD or SpaceWire with timestamping for 

synchronization. 

Step 4: Closed-Loop Simulation and Learning 

The system is validated using digital twin simulations 

of lunar, Martian, and aerial microgrids. These 

environments inject faults, demand fluctuations, and 

irradiance variations to test adaptability. 

Self-Improvement: The meta-learning module 

dynamically adapts control strategies across 

environments without retraining. 

Step 5: Proposal for HIRACLE-IC – A Dedicated 

Control Device 

We propose the development of a specialized SoC 

named HIRACLE-IC integrating all AI logic, 

neuromorphic processing, reconfigurable logic, and 

secure telemetry. 

Key Features: 

• AI Inference Core (Transformer + LSTM) 

• FPGA/FPAA-style reconfigurable logic for 

droop control 

• Spiking Neural Detection for ripple/fault 

response 

• Analog interfacing for sensors and SiC 

switching 

• Blockchain telemetry + Zero Trust command 

access 

Step 6: Fabrication and Deployment 

Prototype fabrication can be initiated using open-

access foundries like SkyWater (130nm node) with 

embedded flash memory and radiation tolerance. 

Device deployment spans: 

• Autonomous microgrids for lunar habitats 

• Mars rovers and remote exploration outposts 

• UAV energy pods and airborne microgrid 

control 

• Remote military microgrids in off-grid zones 

Conclusion: Uniqueness and Global Relevance 

The HIRACLE architecture and its proposed 

integrated chip represent a disruptive advancement in 

intelligent microgrid control: 

• No previous architecture unifies Transformer 

forecasting, fault graph rerouting, meta-learning, and 

predictive droop control into a parallelized 

edgecapable AI system. 

• The HIRACLE-IC chip concept is the first 

proposal for integrating AI inference, neuromorphic 

sensing, FPGA logic, and secure telemetry into one 

mission-rugged chip. 

• Designed from inception for harsh aerospace 

environments, HIRACLE surpasses traditional PLC, 

SCADA, and remote telemetry systems. • NASA can 

adopt HIRACLE for resilient energy management in 

lunar or Martian habitats. 

• The Canadian Space Agency can leverage 

HIRACLE for Arctic, polar, and orbital platform 
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energy control where intelligent autonomy is 

essential. 

HIRACLE is not just an algorithm—it is a next-

generation control paradigm for intelligent, 

autonomous, and adaptive power systems. 
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