
Manickam Muthiah, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 5, May 2025, pp 135-139

www.ijera.com DOI: 10.9790/9622-1505135139 135 | Page

An Adaptive Simulation Termination Controller for a

Test Environment

Manickam Muthiah*
*(Principal Engineer, ARM Inc., Chandler, Arizona, USA.)

ABSTRACT
The Adaptive Simulation Termination Controller is a methodology-independent, standalone module for pre-

silicon functional simulation/verification using object-oriented programming. It dynamically predicts when to

end a simulation by analyzing packet-level latency statistics for each DUT data path, rather than relying on a

fixed wait time. The controller maintains Active, Complete, and Inactive queues per DUT data path, along with a

Latency Record that tracks expected, minimum, maximum path latencies, sample count, and timeout values per

DUT data path. Timestamp Packets are inserted into the expected DUT output packets by the scoreboard to

measure actual latencies; these measurements feed an adaptive algorithm that updates the expected latency. A

Sim End Timer uses these predictions to raise and drop simulation objections automatically, minimizing idle

cycles and manual timing adjustments. The approach improves efficiency across any industry-standard

verification methodology (OVM, UVM, etc.) and can issue fatal errors for excessive time-outs, ensuring both

robustness and adaptability.

Keywords - Adaptive Simulation Termination, Dynamic End Time Prediction, Latency Record per DUT Data

Path, Packet-Level Latency Statistics, Sim End Timer

--- ----------

Date of Submission: 10-05-2025 Date of acceptance: 21-05-2025

--- ----------

I. INTRODUCTION

Pre-silicon functional simulation is a

cornerstone of modern hardware verification,

leveraging object-oriented methodologies and

languages like SystemVerilog under the Universal

Verification Methodology (UVM) or Open

Verification Methodology (OVM) frameworks [2],

[6]. Accurate determination of simulation end-

conditions is critical: terminating too early risks

undiscovered errors, while over-waiting wastes

compute resources and extends project schedules

[1]. Efficient simulation termination is critical to

optimize verification cycles and resource utilization

under IEEE Std 1800-2017 SystemVerilog flows [1].

Traditional approaches use a constant safety margin

after applying all test stimuli, but this cannot adapt

to variations in DUT data-path delays, pipeline

depths, or conditional behavior. Automated, latency-

aware termination promises to optimize verification

cycles without manual intervention.

II. PROBLEM STATEMENT

In functional simulations, the interval

between input stimulus and observed output can

vary widely across tests based on DUT data paths

and DUT configurations. If a DUT data path

involves different delays for various input packets,

using a fixed, conservative wait time for all tests

often leads to either premature simulation

termination (risking undetected errors) or

unnecessarily long idle cycles, both of which

degrade verification productivity. Manual

recalculation of per-test wait intervals upon changes

in DUT behavior or test scenarios incurs further

overhead and is prone to human error [3].

• Fixed Wait-Time Drawbacks: A single

conservative wait time may cover worst-

case delays but leads to idle cycles when

most transactions complete faster [3].

RESEARCH ARTICLE OPEN ACCESS

Manickam Muthiah, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 5, May 2025, pp 135-139

www.ijera.com DOI: 10.9790/9622-1505135139 136 | Page

• Manual Tuning Overhead: Recomputing

per-test wait times after DUT changes or

new scenarios is labor-intensive and error-

prone.

• Variable Input Rates: Low stimulus rates

or bursty traffic can leave occasional

packets in flight long after others complete,

complicating static timeout selection.

These factors degrade simulation efficiency and

increase verification turnaround time, motivating a

dynamic, self-adjusting mechanism.

III. PROPOSED SOLUTION

Figure 1: Adaptive Simulation Termination

Controller in a OVM/UVM Test Environment.

The standalone Adaptive Simulation Termination

Controller added to a standard UVM / OVM test

environment as shown in Fig. 1 predicts and controls

simulation end-conditions based on on-the-fly

latency measurements, obviating manual timing

adjustments [4], [5].

 A. System Architecture

• Queues per Data Path (shown in Fig. 2):

The Adaptive Simulation Termination

Controller has three queues for each DUT

data path ID (string or integer identifier):

1. Active – pending transaction

handles

2. Complete – successfully

timed/completed transactions

3. Inactive – timed-out transactions

• Latency Record (shown in Fig. 3): For each

DUT data path ID, the Adaptive Simulation

Termination Controller stores the following

fields in a Latency Record Object:

o Expected Path Latency

o Minimum Path Latency

o Maximum Path Latency

o Sample Count

o Path Latencies Sum

o Timeout Value (user-configurable safety

margin)

The Scoreboard inserts a Timestamp packet (shown

in Fig. 4) into each expected DUT output packet that

it usually (shown in Fig. 4): upon injection into

DUT, the Input Timestamp is set in the Timestamp

Packet in the respective expected DUT output packet

and the Timestamp packet is sent to the Adaptive

Simulation Termination Controller where its handle

is enqueued in to the respective DUT data path

Active queue; upon DUT output, in a similar

fashion, the Output Timestamp is set in the

Timestamp packet in the respective expected DUT

output packet by the Scoreboard.

Figure 2: Active, Inactive, Complete Queue

Representations

Manickam Muthiah, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 5, May 2025, pp 135-139

www.ijera.com DOI: 10.9790/9622-1505135139 137 | Page

Figure 3: Latency Record Fields per DUT Data

Path ID

Figure 4: Timestamp Packet Fields and Expected

DUT Output Packet with Timestamp Packet

inserted.

B. Active Queue Processing & Latency Update

The Simulation Termination Controller performs the

following functions for the Active Queue:

1. Access the next timestamp packet handle from

the Active queue (FIFO).

2. If the Output Timestamp is populated in the

respective timestamp packet:

a. Compute Δ = Output – Input Timestamp.

b. Move the handle to the Complete queue.

3. If not populated:

a. Compute Δ = Current Time – Input

Timestamp.

b. If Δ exceeds Timeout Value from Latency

Record for the DUT data path, move the handle

to the Inactive queue.

4. Update Latency Record [7] for this DUT data

path:

a. If Sample Count = 0, set Path Latencies Sum,

Min, and Max to Δ.

b. Else, add Δ to Path Latencies Sum; update

Min/Max if Δ is outside current bounds.

c. Increment Sample Count.

d. Compute var1 = (Path Latencies Sum /

Sample Count), var2 = (Min + Max)/2; set

Expected Path Latency = max(var1, var2).

5. Repeat the steps above for all the timestamp

packet handles in the Active queue.

C. Inactive Queue Monitoring

The Simulation Termination Controller periodically

checks the size of each DUT data path ID Inactive

queue; if it exceeds a user-configured threshold, it

issues a fatal error and terminates the simulation.

IV. SIMULATION TERMINATION

CONTROL

The Adaptive Simulation Termination Controller

maintains a Sim End Timer, an End Sim flag, and

variables Current Wait Time and Previous Wait

Time. It periodically executes:

1. For each DUT data path ID, count Active-queue

timestamp packet handles without Output

timestamps.

2. Compute Wait Time per DUT data path =

(Expected or Maximum Path Latency) × (count

of unresolved handles from #1 above). The user

can select whether to use Expected or Maximum

Path Latency for this calculation.

3. Determine the maximum Wait Time across all

DUT data paths as Current Wait Time; store the

old value in Previous Wait Time.

4. If the Sim End Timer is not running or Current

Wait Time ≠ Previous Wait Time, (re)start it

with Current Wait Time and clear the End Sim

flag (e.g., raise a UVM objection) [8], [2].

5. Upon Sim End Timer expiry, set End Sim flag

(e.g., drop the UVM objection).

6. Continue monitoring by repeating steps #1

through #5 above, allowing the simulation to

Manickam Muthiah, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 5, May 2025, pp 135-139

www.ijera.com DOI: 10.9790/9622-1505135139 138 | Page

extend if new stimuli arrive after Sim End

Timer expiry.

V. IMPLEMENTATION AND

INTEGRATION

A sample implementation can be that the adaptive

simulation termination controller is packaged as a

SystemVerilog class extending UVM component

with the following sample methods in the scoreboard

and data structures in the Adaptive Simulation

Termination Controller:

o task add_timestamp(handle, path_id) – For

adding input timestamp

o task update_output(handle, time) – For adding

output timestamp

o Associative arrays indexed by DUT data path

ID for Active, Inactive and Complete queues.

o UVM events and objections for Sim End Timer

control.

The following is a sample integration plan for the

Adaptive Simulation Termination Controller:

• Instantiate the Adaptive Simulation Termination

Controller in the UVM test environment.

• Connect Adaptive Simulation Termination

Controller to scoreboard / testbench predictor

via TLM ports [2], [8] for receiving timestamp

packet handles for each DUT data path.

VI. DISCUSSION

The Adaptive Simulation Termination Controller

offers several advantages:

• Resource Efficiency: Eliminates wasted

run time, adapting to real latency

distributions [3].

• Scalability: Supports multiple concurrent

DUT data paths with minimal overhead.

• Robustness: Fatal-error thresholds prevent

runaway simulations when DUT behavior

deviates unexpectedly.

• Methodology Independence: Interoperates

with any OOP-based environment (UVM,

OVM, or proprietary) [6].

Potential limitations include sensitivity to path-

identification granularity and the need to calibrate

timeout thresholds for highly bursty traffic. Future

enhancements might incorporate confidence

intervals or machine-learning models for latency

prediction.

VII. CONCLUSION

The Adaptive Simulation Termination Controller

automates end-condition determination in pre-silicon

functional simulation / verification. By learning per-

path latencies through queue-based timestamp

tracking and statistical updating, it dynamically

adjusts simulation wait times and manages UVM

objections without manual tuning. The controller

enhances verification efficiency, reduces idle cycles,

and enforces robustness via error thresholds.

Integration into existing UVM/OVM flows is

straightforward, making it a practical addition to

verification environments. Future work will explore

advanced prediction techniques and mixed-signal

support.

REFERENCES

Standards & Manuals:

[1]. IEEE Standard for SystemVerilog—Unified

Hardware Design, Specification, and

Verification Language, IEEE Std 1800-2017,

Dec. 2017.

[2]. Accellera Systems Initiative, Universal

Verification Methodology (UVM) Class

Reference Manual, Version 1.2, May 2017.

[3]. Accellera Systems Initiative, Open

Verification Methodology (OVM) Reference

Manual, Version 2.1, Apr. 2013.

Books:

[4]. J. E. Bergeron, Writing Testbenches:

Functional Verification of HDL Models,

Springer, 2003.

[5]. G. Tumbush and C. Spear, UVM Cookbook,

DeviceRealization, 2014.

Manickam Muthiah, International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 5, May 2025, pp 135-139

www.ijera.com DOI: 10.9790/9622-1505135139 139 | Page

Journal Papers:

[6]. A. Chandra and M. Rudin, “Adaptive

Simulation Termination in UVM

Environments,” IEEE Design & Test of

Computers, vol. 35, no. 2, pp. 50–58, Apr.–

June 2018.

Conference Proceedings:

[7]. K. Magel and K. Robertson, “Dynamic

Termination Controllers for SystemVerilog

Simulations,” in Proc. IEEE Int. Symp.

Quality Electron. Design (ISQED), Santa

Clara, CA, USA, Mar. 2016, pp. 125–130.

[8]. C. Faanes and A. Bhattacharya, “Queue-based

Latency Analysis for Simulation

Acceleration,” in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design (ICCAD), San Diego,

CA, USA, Nov. 2020, pp. 25–32.

