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ABSTRACT 

Electric power systems have witnessed significant development in recent years due to technological 

advancements. There is an urgent need to improve the performance of these systems to ensure their efficiency and 

save energy consumption, especially with the increasing demand for electricity and the complexity of its 

distribution. The use of smart technology contributes to improving the response of electrical networks and 

enhancing the ability of electrical load prediction systems. Smart technology in electrical power systems includes 

the use of smart sensors, big data analysis, automated control tools, and artificial intelligence, which enhances the 

network's ability to react to changes in demand and distribute energy more efficiently. The aim of this research 

was to identify the effectiveness of applying smart technology in improving the performance of electrical power 

systems and predicting electrical loads. To achieve the objectives of the study, the research relied on the 

descriptive approach by studying the literature, books, and academic articles related to modern smart technologies 

and analyzing their effectiveness in improving performance and predicting loads. The results of the research 

showed that the application of smart technology in improving the performance of electrical power systems and 

predicting electrical loads is an important step towards achieving greater efficiency in energy distribution and 

reducing losses. With the increasing use of artificial intelligence and big data, it has become possible to predict 

future loads more accurately, which contributes to the sustainability and improvement of the performance of 

electrical networks. 

Keywords: Smart technology, electrical power systems, predicting electrical loads, artificial intelligence, machine 

learning, forecasting, algorithms 
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I. INTRODUCTION 
Electrical power systems are witnessing a 

remarkable development with the advancement of 

modern technology, as it has become necessary to use 

smart technologies to improve their performance and 

meet the needs of population and industrial growth. 

The problem of predicting electrical loads is one of 

the main challenges in operating and managing 

electrical networks effectively. Therefore, 

developments in information technology, artificial 

intelligence, and smart systems have improved the 

ability to predict electrical loads, which helps 

improve network performance, reduce losses, and 

increase operational efficiency. The demand for 

advanced research and technology has been steadily 

increasing in the power grid sector [1]. Over time, in 

response to the development needs, automation and 

intelligent technologies have gained widespread 

application [2]. 

To maintain the stability, efficiency and 

sustainability of the grid, advanced prediction and 

optimization methods must be developed and put into 

practice due to the rapid development of power 

systems resulting from the integration of renewable 

energy sources (RESs) and the increasing complexity 

of grid operations. The importance of intelligent 

prediction and optimization in power grids will 

increase in a more powerful and sustainable energy 

future. As a result, intelligent prediction and 

optimization methods have become crucial for the 

efficient operation and maintenance of power grids 

[3]. These advanced computational techniques, based 

on data science and artificial intelligence, of which 

machine learning (ML) is a fundamental part, allow 

us to navigate the complexity of contemporary power 

systems more accurately and efficiently [4]. While 

machine learning is an important subset of AI that 

focuses on algorithms that can learn and improve 

from data without explicit programming, AI itself 

encompasses a broad range of computational 

techniques that seek to emulate human intelligence. 

A wide range of predictive methods are used in 

intelligent power system forecasting to anticipate 

different system states and properties [5].  

Maintaining system stability [6], optimally 

allocating resources [7], and enhancing overall 

efficiency [8] all rely on the idea of forecasting. For 

example, load forecasting has long been an essential 

part of power system management and planning. 

Traditional approaches are mostly based on historical 

data and basic statistical models. However, this topic 
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has undergone a revolution with the introduction of 

artificial intelligence and machine learning (ML) [9]. 

Complex nonlinear relationships in data can be 

captured by sophisticated algorithms such as artificial 

neural networks (ANNs) [10], support vector 

machines (SVMs) [11], and more recently, deep 

learning (DL) models [12]. This allows for more 

accurate forecasts of electricity demand over a range 

of time horizons, from the short term (hours to days 

ahead) [13] to the long term (years ahead) [14]. 

Similarly, with the proliferation of wind [15] 

and solar [16], renewable energy forecasting has 

become increasingly important. To forecast 

electricity production from renewable energy 

sources, these forecasting models often combine 

machine learning (ML) methods with numerical 

weather prediction (NWP) data. To capture the 

inherent uncertainty of renewable energy, for 

example, ensemble approaches that combine multiple 

forecasting models have shown encouraging results 

[17].  

However, there are many different and 

challenging optimization applications in power 

systems. However, more sophisticated optimization 

algorithms and applications of intelligent technology 

are needed as power systems become more complex 

due to the integration of renewable energy sources 

and the consideration of multiple objectives (e.g. 

maximizing reliability, minimizing cost, and 

reducing emissions pollution) [18]. When it comes to 

tackling complex, nonlinear, and sometimes non-

convex optimization problems, intelligent 

technology applications have proven remarkably 

successful. Even in very limited settings, these 

nature-inspired algorithms are able to efficiently 

search through large solution spaces to identify 

nearly optimal answers. Furthermore, the field of 

reinforcement learning (RL) in machine learning is 

becoming increasingly popular in power system 

optimization. Power systems are ideally suited for 

reinforcement learning algorithms, which learn 

optimal solutions by interacting with the environment 

[19]. 

In the context of power systems, it is 

particularly useful to use prediction and optimization 

techniques. For example, stochastic optimization 

techniques that take into account uncertainty in 

prediction may result in more flexible decision 

making [20]. Demand response programs and energy 

storage management are just two of the power system 

issues increasingly addressed by model-based 

predictive control (MPC) frameworks, which use 

predictions to optimize system performance over a 

renewable time horizon [21]. The creation of 

advanced energy management systems (EMSs) is 

aided by the application of smart technology. In order 

to make proactive choices and improve system 

efficiency and reliability, modern energy 

management systems use real-time data, forecasts, 

and optimization algorithms [22].  

Based on renewable generation forecasts and 

energy pricing, smart energy management systems 

can maximize the use of local generation [23], energy 

storage systems [24], and variable loads [25] in MG 

operations, ensuring reliable and economical 

operation. Furthermore, these advanced approaches 

aid demand response systems, which motivate 

customers to adjust their energy usage in response to 

grid conditions [26]. In addition, machine learning 

algorithms can predict customer behavior and 

optimize incentive schemes [27], and smart 

optimization technology applications can identify the 

most effective load shifting and peak reduction 

tactics [28]. 

 

A. Research Problem and Questions  

Electricity worldwide faces increasing 

challenges related to increasing demand, low 

efficiency, changing consumption patterns, 

increasing population and economic growth, lack of 

necessary data and analysis, weak and obsolete 

infrastructure, and more. These challenges have been 

more acute in emerging market countries, where low 

efficiency is a particular problem. The energy sector 

in developed countries has already begun to adopt 

artificial intelligence and use related technologies 

that allow communication between components of 

smart grids, such as Internet of Things devices, as 

these technologies can help improve energy 

management, increase efficiency, and increase the 

use of renewable energy sources. The use of artificial 

intelligence in the electric power sector is reaching 

emerging markets, to have a decisive impact in 

addressing most of the challenges in the electric 

power sector, because artificial intelligence simply 

has the ability to reduce electricity waste and reduce 

its costs, facilitate the use of renewable energy 

sources in electric grids, and accelerate them to 

provide distinctive functions, such as prediction, 

monitoring, verification, estimation, etc. Artificial 

intelligence can also improve the planning, operation, 

protection, and control of electric power systems. 

Predicting the occurrence and locations of 

faults is one of the main applications of smart 

technology in the electric power sector, along with 

maintenance and determining their scheduling and 

appropriate times. Failure of electrical equipment, 

such as generating units, networks, transformers, 

cables, substations, etc., is a common occurrence that 

can have serious consequences. Therefore, the 

application of smart technology and artificial 

intelligence, along with appropriate sensors, can be 

useful in monitoring equipment and detecting faults 

before they occur, thus protecting lives and saving 
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resources, effort and time. The electric power sector 

has a promising future with the advent of smart grids 

that can be managed intelligently and competently by 

artificial intelligence. Because smart electricity grids 

allow communication in two different directions, i.e. 

between utilities and consumers, they include an 

information layer that allows communication 

between its various components so that it can better 

respond to rapid changes in electricity demand. The 

information layer is created by installing smart 

meters and sensors that allow data to be collected and 

then analyzed later. With the presence of data 

analysis through the application of smart technology 

and artificial intelligence, smart grids help improve 

the reliability, safety and efficiency of electricity 

transmission and distribution.  

AI can also help predict renewable energy 

production due to its ability to improve the reliability 

of solar and wind energy, by analyzing huge amounts 

of meteorological data and making predictions and 

decisions about when to collect, store and distribute 

wind and solar energy. AI is used to help balance the 

electrical grid, where its components are analyzed by 

processing intermittent units and helping to 

decongest the grid, which is really useful for the grid 

operator. In the field of improving energy efficiency, 

AI monitors electricity consumption in buildings and 

factories in order to control evaluate and manage 

their consumption. Accordingly, AI has the ability to 

control electricity use during peak hours, and even 

identify and flag sources of high consumption by 

detecting building equipment failures before they 

occur. 

The need for this research is due to a number 

of reasons. First, predictions and optimizations have 

undergone significant changes in recent years due to 

the rapid development of artificial intelligence and 

machine learning. These days, methods such as deep 

learning (DL), reinforcement learning (RL), and 

hybrid models are used to address highly complex 

power system issues. These techniques can analyze 

massive amounts of data, handle nonlinear 

interactions, and adapt to the dynamic nature of 

contemporary grids, especially when renewable 

energy is integrated. Even if they are still useful, 

older statistical methods and classical optimization 

techniques have often been the subject of previous 

evaluations. These methods are not fully capable of 

managing the complexity of today’s power systems. 

Therefore, to provide researchers and engineers with 

the latest information on these advanced methods, a 

new review is needed that includes the application of 

contemporary smart technology. 

By providing insights into practical smart 

technology applications, this research goes beyond 

academic arguments. Many of the evaluations 

available now tend to be theoretical in nature, 

describing technologies in general terms without 

providing specific examples of their application in 

real-world settings. On the other hand, this article 

presents case studies and real-world implementations 

of intelligent forecasting and optimization methods in 

areas including demand response, energy storage 

management, and electricity price forecasting. In 

doing so, it provides insights for practitioners and 

scientists who are trying to use these methods in 

practical contexts. Therefore, the problem of the 

current research lies in answering the following main 

research question: How effective is the application 

of smart technology in improving the 

performance of electrical power systems and 

predicting electrical loads?  
 

The main question is divided into the following sub-

questions: 

1. How can the application of smart technology 

contribute to improving the performance of 

electrical power systems and predicting 

electrical loads more accurately and effectively? 

2. What are the different applications of smart 

technology in improving electrical power 

systems? 

3. How to use artificial intelligence and machine 

learning in predicting electrical loads? 

4. What are the challenges and opportunities 

related to adopting the application of smart 

technology to contribute to improving the 

performance of electrical power systems and 

predicting electrical loads? 

 

B. Research Objectives 

The main objective of this study is: "To identify the 

effectiveness of applying smart technology in 

improving the performance of electrical power 

systems and predicting electrical loads." 
This main objective is subdivided into the following 

sub-objectives: 

1. To highlight the ways in which the application of 

smart technology can improve the performance 

of electrical power systems and increase the 

accuracy of load forecasting. 

2. To study the various applications of smart 

technology in improving electrical power 

systems. 

3. To understand how artificial intelligence and 

machine learning are used in predicting electrical 

loads. 

4. To identify the challenges and opportunities 

related to adopting the application of smart 

technology to contribute to improving the 

performance of electrical power systems and 

predicting electrical loads. 
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C. Research Significance 

The importance of this study stems from the 

importance of applying smart technology in electrical 

power systems, which represents a global issue and 

an important research field. Studies that have 

addressed the application of smart technology in 

improving the performance of electrical power 

systems and predicting electrical loads are rare. 

Therefore, it is expected that conducting such 

research on this topic will have high positive 

repercussions and importance that can be 

summarized as follows: 

1) The importance of the study comes from the 

importance of applying smart technology, as the use 

of advanced technology contributes to enhancing the 

efficiency of electrical networks, reducing costs, and 

improving sustainability. 

2) Applying smart technology to improve the 

performance of electrical power systems and predict 

electrical loads is a fundamental step towards 

enhancing the efficiency of electrical grids and 

increasing their sustainability. Through accurate load 

forecasting and the use of technologies such as 

artificial intelligence and smart grids, energy 

management can be improved and costs reduced. As 

technology advances, more achievements are 

expected in this field, contributing to enhancing 

sustainability and achieving energy security. 

3) The application of smart technology in 

improving the performance of electric power systems 

and predicting electrical loads is an important 

dimension towards improving energy efficiency and 

ensuring the sustainability of electric grids in the 

future. This research will provide a useful tool for 

understanding the future impacts of these 

technologies and the challenges they may face, which 

will contribute to improving planning and 

implementation in the energy sector. 

4) This study will provide new literature in the 

field of smart technology in electrical power, which 

will enhance academic knowledge on how these 

technologies can be used to improve the performance 

of electrical networks and predict loads. This 

literature will be a valuable reference for researchers 

in this field who study artificial intelligence, smart 

grids, and energy management. 

5) This research will provide a useful tool for 

understanding the future impacts of smart technology 

applications in electrical power systems, as 

researchers will be able to identify the challenges that 

these technologies may face in the future, such as 

integration problems with legacy infrastructure or 

challenges related to cybersecurity in smart grids. 

6) Smart technology will contribute to 

achieving a complete digital transformation in the 

energy sector, so that electrical systems become 

smarter and more adaptable to future needs, leading 

to improved performance and accurate load 

prediction. 

 

II. METHODOLOGY  

The methodology used in this study is based 

on the descriptive analytical approach, which is 

mainly used to understand and analyze current 

phenomena related to the application of smart 

technology in electrical power systems, specifically 

in predicting electrical loads. This approach allows 

for the interpretation and study of the tools and 

techniques used in this field based on the data 

available from previous studies and practical 

experiences, and aims to provide an accurate 

description of the phenomena and analyze their 

relationships and effects. 

The applications of smart technology in 

electrical power systems will be described, with a 

focus on how to use artificial intelligence, machine 

learning, and modern technologies such as smart 

grids and smart meters to improve electrical load 

prediction. The literature on modern smart 

technologies will be studied and their effectiveness in 

improving performance and predicting loads will be 

analyzed. This will include books and academic 

articles. 

 

III. LITERATURE REVIEW 
A. Smart technology in electrical power systems 

Smart grids have received significant 

attention in a number of technical fields, including 

academia and business, in recent times [29]. For 

legacy power systems, they are seen as a wise 

alternative [30]. As they integrate a variety of 

technologies, including cloud computing (CC), big 

data (BD), Internet of Things (IoT), etc., they have 

tremendous potential to provide smart services [31]. 

In order to improve the security, efficiency, 

flexibility, and reliability of electric power systems to 

increase electric power generation using the latest 

communication technologies, smart grids are 

described as a revolutionary digital electric power 

network that provides two-way communication [32]. 

It is a two-way power distribution and transmission 

system that gives customers the ability to reduce 

energy costs by taking energy-related actions [33]. 

When natural disasters and other human attacks 

occur, smart grids enhance the security measures in 

place [34]. Conversely, they reduce the possibility of 

harming people and other physical infrastructure 

necessary for routine grid-related operations. In terms 

of setup, solar power systems modernize the 

transportation field and include electric vehicles. In 

the context of global warming concerns and energy 

efficiency requirements, solar energy systems reduce 

energy waste and environmental pollution caused by 

greenhouse gas emissions. 
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Solar energy systems provide a number of 

smart solutions for all electricity-related tasks. Real-

time energy consumption monitoring, dynamic 

pricing, faster and more efficient energy restoration 

after power outages, home electrical displays, 

adjusting electricity consumption during the day 

based on pricing signals and consumption rates, 

enabling the consumer to act as an energy producer, 

and monitoring energy consumption online through 

smart applications such as web pages and mobile 

applications are all features they offer [35,36]. 

Load forecasting (LF), which is often 

required for many applications to enhance the 

performance of power generation units, has received 

a great deal of attention. These applications include 

energy management, energy cost optimization, 

microgrids, smart meter misreading detection, and 

electricity theft detection [37]. Moreover, load 

forecasting - especially the efficient energy process 

of grid-interactive buildings - is a distinct area of 

study in power generation units. In order to provide 

efficient energy to buildings, load forecasting is an 

essential component of complex management and 

operation planning. 

LF is important in the construction of grid 

groups such as demand response and load 

management [38]. It is the key player to improve the 

communication between the demand part and SGs, 

which is important for the coordination of power 

system charging, power system reliability, and 

economic power deployment and distribution [39]. 

Finally, LF contributes greatly to the initial stage of 

power parameter construction and performance 

evaluation of SGs. Meanwhile, it is a regression-

based problem, thus many machines learning (ML) 

models have been overused in this field [40]. 

 

B. The importance of Predicting electrical loads 

(Load Forecasting) 

In electric power systems, load forecasting 

is a crucial use of smart forecasting techniques that 

support the transition to a more efficient and 

sustainable energy infrastructure [41]. According to 

Ibrahim et al. [42], load forecasting is particularly 

important in the context of smart grids, where the 

security and reliability of the power system are 

critical considerations. Accurate load forecasting is 

now more important and challenging than ever before 

due to the liberalization of the energy sectors and the 

inclusion of renewable energy sources (RESs), which 

have increased the complexity of contemporary 

power grids. Many operational and planning tasks in 

power systems can benefit from the use of load 

forecasting. For example, Giap et al. emphasize that 

accurate load forecasting is essential to ensure 

adequate power supply and avoid financial losses due 

to overcapacity or power shortages [43]. The need for 

load forecasting has increased in more sophisticated 

power grids, such as those in Europe.  

According to Escalabez et al., the 

computational load on forecasting systems in Europe 

has increased significantly as they now have to 

operate on a quarter-hour basis. In order to reduce 

computing resources while maintaining or even 

increasing accuracy, this circumstance has led to the 

emergence of new techniques in load forecasting, 

such as algorithms that selectively update forecasts 

[44]. The study by Stamatellos and Stamatellos [45] 

showed that a basic feed-forward artificial neural 

network (ANN) could provide hourly power load 

forecasts 24 hours in advance with accuracy 

comparable to that of a Greek system operator using 

public domain electrical load data and regular 

weather data. These uses demonstrate the adaptability 

of load forecasting methods in many power system 

scenarios. Load forecasting is a key component of 

contemporary power system management, enabling 

everything from the integration of renewable energy 

and smart grids to optimization of day-to-day 

operations and long-term planning. 

 

1) Generation Strategy Development   

Load forecasting is essential for optimizing 

power generation, as it provides insights into the 

anticipated demand for electricity. This allows power 

producers to enhance their operations and maintain a 

reliable and cost-effective energy supply. In terms of 

generation planning, accurate predictions of future 

load trends enable power generators to choose the 

most effective mix of thermal, hydroelectric, nuclear, 

and renewable energy sources. Such precise 

forecasting reduces operational costs, increases the 

efficiency of generation assets, and helps avoid both 

surplus and deficits in production. Economical 

distribution is also improved through AI algorithms 

that optimize how output from different units is 

allocated based on forecasted demand and unit 

characteristics. This approach not only lowers total 

production expenses but also ensures that the most 

efficient resources are utilized effectively. While 

incorporating variable renewable sources like solar or 

wind into the grid, precise load forecasts are vital for 

smooth integration. By predicting backup or 

balancing resource requirements during peak 

renewable production periods accurately, power 

generators can minimize reliance on traditional plants 

while facilitating seamless incorporation of 

renewables. 

 

2) Power Grid Energy Distribution   

Accurate load forecasting is pivotal in 

ensuring effective energy distribution within power 

grids by aiding operators in managing and optimizing 

their networks. With reliable forecasts regarding load 
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growth, operators can pinpoint regions requiring 

additional substations or infrastructure enhancements 

to accommodate rising demand efficiently. This 

foresight aids in preventing congestion issues and 

voltage fluctuations by confirming that the network 

can adequately support expected loads through 

proactive planning. For balancing loads across 

distribution networks effectively, operators rely 

heavily on data derived from load forecasting 

techniques [29]. By precisely anticipating demand 

patterns, they can allocate resources appropriately 

while adjusting network design for balanced 

distributions—thereby improving voltage profiles 

and maintaining high-quality power across all areas 

while minimizing losses and wasteful consumption 

of energy reserves. 

Moreover, this capacity to foresee 

emergencies allows operators to bolster network 

resilience against potential overload conditions or 

stability challenges presented via accurate 

predictions informed by existing literature [47]. One 

notable proposal involves a hybrid machine learning 

algorithm (SaDE-LSTM), aimed at enhancing short-

term load prediction abilities utilizing differential 

adaptive evolution strategies alongside memory-

based algorithms driven by system demands for 

accuracy benchmarks. 

Additionally referenced literature [48] 

merges user-load data from JH City with weather 

information employing deep random forest 

methodology producing optimal predictions followed 

closely by results from support vector regression 

methods; overall performances indicate relative 

rankings among several tested algorithms such as 

Bayesian ridge regression coupled with various 

structures leveraging multidimensional neural nets 

characterized under four assessment criteria [49]. 

 

C. Existing Applied Load Forecasting Techniques 

Intelligent forecasting in power systems uses 

advanced computing techniques, including artificial 

intelligence and machine learning, to predict energy 

production and demand. In complex power grids, this 

forecasting is essential to maintaining grid security 

and stability. By predicting the factors that affect 

energy supply and demand, the method helps utilities 

make informed decisions about energy storage 

management, hybrid energy optimization, and 

system security. Accurate forecasting generates 

financial benefits in competitive markets by 

providing unambiguous price signals. This method 

uses artificial intelligence techniques, particularly 

machine learning algorithms, to examine large data 

sets. These advanced computational techniques are 

able to detect complex patterns that traditional 

techniques might typically miss. As a branch of 

artificial intelligence, machine learning is 

particularly good at using data to learn and gradually 

increase the accuracy of forecasting. This method 

produces more accurate forecasts [1]. 

 By utilizing resources and managing energy 

storage, smart forecasting can be used for both power 

systems and solar photovoltaic systems. The 

proliferation of solar photovoltaic systems and the 

increasing integration of renewable energy sources 

are increasing the importance of this field. Among the 

methods used in this field are advanced artificial 

intelligence algorithms and traditional statistical 

techniques. Research in intelligent forecasting must 

continue as power systems change in order to 

improve system reliability and efficiency. This paper 

discusses all the different methods used in predictive 

analytics, from traditional statistical models to 

advanced artificial intelligence and machine learning 

algorithms, because intelligent forecasting is 

essential to ensure efficient and reliable operation of 

large and small power systems [41]. 

 

1) Traditional Load Forecasting Techniques   

Traditional load forecasting (LF) techniques 

encompass a variety of strategies and algorithms 

aimed at predicting future electricity usage. For many 

years, electric utility firms and power system 

managers have relied on these methods to organize 

and oversee their power generation as well as 

distribution systems. A set of five sliding window-

based forecasting methodologies was introduced by 

Alberg et al. [50] specifically for projecting 

electricity demand in smart meters (SMs). These 

tools merge seasonal with non-seasonal time series 

models utilizing an advanced learning method called 

online information network (OLIN). The 

construction of models via these algorithms differs, 

adapting accordingly to seasonal fluctuations. The 

data were organized beforehand through the 

researchers' utilization of SM technology. The 

findings indicated that the SWDP2A algorithm 

surpassed others in performance, revealing that using 

daily consumption figures paired with hourly 

transactions during model input could yield precise 

hourly forecasts for electricity demands. 

 

Employing a time-sensitive data-driven approach, 

Kaneriya et al. [51] estimated energy requirements 

through a weather-oriented LF model. Their findings 

demonstrated accurate predictions for both 

residential and commercial electrical consumption 

within the model employed. Zhang et al. [52] 

introduced an innovative hybrid framework 

combining three distinct models: wavelet neural 

network (WNN), fine-tuned with the fruit fly 

optimization algorithm (FOA), improved empirical 

mode decomposition (IEMD), and ARIMA 

components. This newly crafted hybrid model 
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capitalizes on each constituent's strengths to enhance 

reliability and efficiency in LF for electricity needs, 

showcasing exceptional accuracy and stability 

through experimental results [29].   

 

2) AI-Based Load Forecasting Techniques   

Artificial intelligence enhances predictive 

maintenance—a vital function that anticipates 

equipment failures to prevent unexpected 

breakdowns—by analyzing data gathered from 

various sensors and systems across power grids to 

forecast necessary maintenance intervals, thereby 

prolonging equipment lifespan while minimizing 

downtime. AI is fundamental in managing demand 

forecasting within electrical networks; it utilizes 

sophisticated machine learning techniques capable of 

accurately estimating electricity consumption 

patterns influenced by historical data, weather 

conditions, and other critical factors relevant to 

demand prediction efforts. Such predictive 

capabilities are essential since they afford grid 

operators real-time adjustments in electricity supply 

management—this flexibility helps avert potential 

overloads or outages particularly during peak 

utilization times [1]. 

The application of AI in demand forecasting 

is transformative. It enables grid operators to make 

informed decisions by providing insights into 

expected electricity consumption patterns, 

facilitating more effective load management 

strategies. The ability to accurately predict demand 

allows for proactive adjustments in electricity supply, 

ensuring a balance between supply and demand. This 

not only enhances grid stability, but also contributes 

to optimizing energy resources. The proactive nature 

of AI-based demand forecasting is the cornerstone of 

the smooth operation of power grids, enhancing 

reliable and efficient electricity supply to consumers. 

AI can optimize electricity distribution, ensuring that 

the right amount of power reaches the right places at 

the right time. This not only enhances efficiency, but 

also facilitates the integration of renewable energy 

sources, which are often intermittent and difficult to 

predict, effectively leveraging AI in power grids to 

improve resource management. 

 Artificial intelligence (AI) has become a 

significant asset for improving grid resilience and 

identifying faults in power systems. Its capability to 

swiftly detect issues or disruptions enhances the 

stability and dependability of power grids. By 

employing sophisticated machine learning 

algorithms, AI acts as a proactive tool in spotting 

irregularities and anomalies across the grid. It 

effectively pinpoints potential concerns, isolates 

them promptly, and dynamically reallocates power to 

alleviate disturbances, thus boosting overall grid 

reliability. This capacity for rapid adaptation to 

evolving grid conditions fosters a stronger and more 

flexible power supply framework. The utilization of 

AI in fault detection is transformative; it not only 

identifies disturbances instantly but also plays an 

essential role in addressing these proactively. Such 

foresight helps avert possible power outages while 

reducing the repercussions of disruptions, ensuring 

an uninterrupted and smooth electricity supply. 

 

For load forecasting (LF), techniques 

powered by AI—including support vector regression 

(SVR) and artificial neural networks (ANN)—are 

increasingly being adopted. These methods can be 

trained to replicate the intricate nonlinear 

relationships between various input factors and 

electricity demand—an output variable that 

traditional statistical or economic approaches often 

struggle to articulate. This section highlights several 

existing methodologies showcasing advanced AI 

models, particularly focusing on machine learning 

and deep learning frameworks applied within LF 

tasks. A decision tree strategy for energy modeling 

was introduced in previous research; experimental 

findings revealed that the C4.5 model could 

accurately classify building energy requirements 

with 93% accuracy based on training data and 92% 

accuracy with test data—employing intensity levels 

automatically during the identification process of 

critical building energy parameters while providing 

key characteristics along with threshold values 

pertinent to predicting superior building energy 

performance. 

 

To assess buildings' energy performance 

effectively, various data mining strategies have been 

reviewed previously, including artificial neural 

networks, classification trees, chi-square automatic 

interaction detectors (CHAID), generalized linear 

regression models, combined inference models, SVR 

among others. Comparisons indicate that SVR 

excelled at predicting cooling loads while a combined 

approach using both SVR and ANN worked best for 

heating loads—with mean absolute percentage error 

(MAPE) below 4%. Notably, this joint model 

achieved reductions in root mean square error 

(RMSE) by at least 39% for cooling load predictions 

compared to earlier studies. 

 

Furthermore, Sha et al., proposed a more 

straightforward LF method suited for engineering 

applications utilizing just three features as inputs into 

their model—which included transforming daily 

average dry bulb temperature into degrees per day as 

an input feature improving performance 

considerably. Additionally proposed was a technique 

determining equilibrium point temperature through 

representations based on type-of-day/month 
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reflecting usage characteristics of buildings; they 

tested three machine-learning frameworks: ANN 

targeting superiority over multivariate linear 

regression alongside enhanced performances seen 

within both SVR against MLR particularly 

highlighted discrepancies between heating/cooling 

prediction effectiveness underscoring significance 

regarding training dataset size adopted influencing 

predictive successes overall. 

 

In exploring ways to forecast energy 

consumption more accurately Fan et al., introduced 

an improved prediction model termed DEMD-SVR-

AR which demonstrated advancement over original 

SVR especially effective when facing challenges 

inclusive complex systems/imbalanced datasets—

their statistical framework extends improved 

predictive capabilities towards novel inputs 

maintaining accurate representation derived from 

established training sets itself yielding notable 

superiority across metrics surrounding prediction 

precision interpretability generalizability 

predictiveness against alternatives utilized preceding 

theirs.Moreover, Fan et al. [56] discussed the 

potential use of DL in LF cooling from two 

perspectives, including developing prediction models 

and extracting important features. The results showed 

that nonlinear prediction methods performed better 

than linear methods. Compared to previous methods, 

the extreme gradient boosting (XGB) strategy 

performed better. The greatest prediction results are 

obtained when XGB models are adapted using 

features learned by unsupervised DL models, 

including deep autoencoders. 

In [57], a novel multi-directional long short-

term memory (MLSTM) model was used to predict 

the stability of SGs. In terms of accuracy (3% higher), 

precision, loss, and ROC curve metrics, the proposed 

model performed better than traditional ML models, 

including LSTM, gated recurrent unit (GRU), and 

RNN. Data obtained from a small payload, roughly 

equivalent to one transformer, were examined by 

Marinescu et al. [58]. Data from ANN, fuzzy logic, 

autoregressive, autoregressive moving average, 

autoregressive integrated moving average, and WNN 

were analyzed using six distinct methods. They found 

that the different methods produced comparable and 

approximately equal results. 

Bader et al. [59] proposed a cryptographic 

energy prediction technique to preserve privacy of 

net metering systems based on federated learning 

(FL).They devised an efficient data aggregation 

strategy as well as a hybrid deep learning-based 

energy prediction model. To protect user privacy, 

they used functional encryption (FE) to encrypt their 

model parameters during federated learning training. 

In short, integrating AI into fault detection and 

response mechanisms is a cornerstone in the quest for 

a more resilient power grid. Its adaptive capabilities 

not only strengthen the grid against disturbances, but 

also contribute to maintaining a reliable and stable 

power supply that is essential for our modern-day 

needs [60]. 

Applications of Intelligent Forecasting 

Optimizing the energy mix, managing 

energy storage, and coordinating hydrothermal 

processes are just a few of the many smart approaches 

used in power systems. These approaches also 

facilitate efficient and reliable power system 

performance by making electricity demand more 

predictable and providing advance informed 

conditions for renewable energy development. They 

are also expected to improve market competitiveness 

and reduce costs. 

 

1) Electricity Price Prediction   

Forecasting electricity prices has become an 

essential application of advanced predictive 

techniques in today's energy market. As power 

systems grow more intricate and variable, precise 

price forecasts are crucial for market players, system 

managers, and consumers to make well-informed 

choices and enhance their strategies [1].   

The fluctuation and uncertainty of 

electricity pricing—affected by elements such as 

consumption trends, climatic conditions, outages, 

geographical factors, and economic indicators—

highlight the need for sophisticated forecasting 

approaches. Koribeau et al. emphasize this 

complexity, noting that the ability to anticipate these 

prices provides significant advantages for both 

consumers and utility providers [61]. Their findings 

showcase the success of computational intelligence 

and neural networks in evaluating historical 

electricity pricing data to forecast future rates with 

remarkable accuracy; they achieved a root mean 

square error (RMSE) of 0.476 along with a mean 

absolute percentage error (MAPE) of 3.61%.  

In relation to smart grids and demand 

response initiatives, predicting electricity prices is 

vital for minimizing investment needs as well as 

operating expenses. Rezaei et al. introduced a novel 

technique utilizing gated recurrent units (GRUs) for 

forecast modeling [62]. This method incorporates 

electrical load usage as an input factor while also 

employing an adaptive noise reducer to optimize 

model performance. Such innovation enhances the 

efficiency of demand response efforts while 

equipping producers with essential tools for making 

knowledgeable decisions within the energy market 

leading potentially to considerable cost reduction 

through optimal resource management. 

The significance of long-term electricity 

price predictions is underscored by Ortiz et al., who 
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put forth two methodologies tailored specifically for 

the Spanish energy sector [63]. Their analysis used 

actual data to highlight the necessity of price 

forecasting across all participants in the marketplace. 

Long-range forecasts hold particular value in 

strategic planning processes, investment 

considerations, and policy formulation within the 

energy industry. 

Advances in DL techniques have enhanced 

the accuracy and reliability of electricity price 

forecasting. Pourdaryaei et al. presented a new 

framework that combines multi-head self-attention 

techniques and CNNs. Their approach, which 

includes feature selection method using mutual 

information and neural networks, demonstrated 

superior performance across different seasons. The 

proposed model achieved the lowest average MAPE 

of 1.75% and RMSE of 0.0085, outperforming other 

DL models and setting a new standard in forecast 

accuracy [64]. The application of electricity price 

forecasting goes beyond mere forecasting. As Kleev 

et al. highlighted in their literature review, various 

forecasting methods, including regression, 

autoregressive models, probabilistic forecasting 

techniques, and deep machine learning algorithms, 

can be applied to electricity price forecasting. The 

choice of method often depends on the specific 

forecast horizon and the unique characteristics of the 

electricity market in question [65]. 

 

1) Renewable Energy Generation Forecasting   

As power grids evolve, the significance of 

renewable energy generation forecasts continues to 

rise. Precise forecasting is essential for ensuring grid 

stability, enhancing energy management, and 

supporting the shift toward sustainable energy 

systems amid increasing integration of renewables 

into power networks. The Smart4RES project 

exemplifies leading advancements in this field, as 

outlined by Camal et al. in [66]. This initiative seeks 

to enhance the effectiveness of short-term forecasting 

models related to renewable energy sources and their 

associated weather predictions while informing 

decisions within power systems and electricity 

markets. Given the fluctuating nature of renewable 

resources, this initiative particularly targets 

distribution networks, tackling issues like grid 

congestion, voltage fluctuations, and challenges 

pertaining to power quality. 

The daily functions of wind and solar farms 

are significantly dependent on forecasting renewable 

energy. Consequently, Camal et al. emphasize the 

importance of creating accurate forecasting systems 

that are vital for energy traders and grid operators. 

They further demonstrate how these predictions help 

maintain a stable power supply by examining 

methods to forecast short-term variations in wind 

energy and their effects on grid reliability. By 

merging consumption patterns with renewable 

energy forecasts, innovative approaches to resource 

management can arise. Vinagre et al. investigated the 

relationship between solar radiation and electricity 

usage trends to improve forecasts concerning energy 

consumption. Their research at the Polytechnic 

University of Porto utilized various forecasting 

methodologies such as support vector regression, 

multilayer artificial neural networks, and linear 

regression [67]. This study showcases how better 

load management can be achieved through both load 

prediction and renewable energy forecasts within the 

broader framework of managing the energy system 

effectively. The adoption of artificial intelligence 

algorithms for renewable energy forecasting is 

rapidly increasing, particularly highlighted in 

Szczepaniuk's thorough review on AI applications in 

the electric sector, focusing specifically on 

renewables. Their results indicate that AI 

technologies could significantly enhance operations 

related to generation, distribution, storage, 

consumption, and trading of electricity. These 

algorithms provide improved capabilities for 

navigating complex nonlinear relationships tied to 

weather-dependent power sources concerning 

renewable forecasting [68]. In addition, Kleuev et al. 

point out that integrating more renewable sources 

into power systems heightens the urgency to balance 

production against demand even further. Their 

analysis of different forecasting methods emphasizes 

considering forecast horizons—a critical aspect due 

to the variability linked with various time frames 

relevant to renewable energies [65]. 

 

D. Practical applications of smart technology in 

improving the performance of power systems 

Many applications, such as OPF, use 

optimization techniques to help determine the most 

efficient operating conditions for power distribution 

and generation. In order to schedule power plants to 

meet demand as efficiently as possible, these 

algorithms are also used in unit commitment. 

Furthermore, economic load distribution, which 

seeks to minimize the total cost of generation while 

meeting all operational constraints, relies heavily on 

optimization techniques. They are also used in 

demand response management, which aims to 

increase grid stability by regulating customer demand 

to match supply conditions. Additionally, by 

controlling the unpredictability and uncertainty 

associated with these resources, optimizations 

methods help integrate renewable energy sources. In 

order to provide a reliable and economic power 

supply, they are essential for planning and operation 

tasks including maintenance scheduling and 

expansion of transmission networks [1].  
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1) Generation Dispatch and Unit Commitment 

Two fundamental optimization issues in power 

system operations are generation distribution and unit 

commitment. In order to meet expected demand 

while minimizing operating costs and meeting a 

number of system constraints, these applications 

focus on finding the best scheduling and production 

levels for generation units. To address the optimal 

active power distribution (OAPD) problem, Naderi et 

al. proposed a hybrid fuzzy-based PSO-DE method 

for global reinforcement learning. Their method, 

which takes into account the unified power flow 

controller (UPFC) device, shows significant cost 

reductions in simulations performed over a 365-day 

period on an IEEE 30-bus system [69]. Borges et al. 

presented a multi-objective PSO model for energy 

resource management in systems with a high 

penetration rate of distributed generators and electric 

vehicles. Their strategy, implemented on a real 

Spanish electrical grid in Zaragoza with 1300 electric 

vehicles and 70% penetration of distributed 

generators, sought to maximize profit while reducing 

CO2 emissions [70]. 

 

 

2) Optimal Power Flow (OPF) 

OPF refers to a problem in power systems 

optimization that seeks to determine the most 

efficient operating levels of power plants while 

predicting system loads at the minimal cost, all while 

ensuring system security. To enhance the efficiency 

of power distribution systems, Saadnan introduced a 

scalable distributed optimal power flow (D-OPF) 

method grounded in equivalent network 

approximation (ENApp). This strategy is particularly 

resilient against specific failures and tackles the 

computational challenges associated with centralized 

optimization methods [71]. In addition, leveraging 

smart energy management solutions, Foruzandeh et 

al. proposed an innovative business model aimed at 

smart buildings. They formulated a mixed binary 

optimization challenge to ascertain the optimal 

contractual power capacity along with charging and 

discharging schedules for electric vehicles and 

battery storage. Their simulation results indicated an 

impressive 47% decrease in electricity expenses [72]. 

 

3) Renewable Energy Integration 

As the integration of renewable energy 

sources into power grids increases, optimization 

becomes vital to manage the unpredictability and 

uncertainty associated with these sources. Khan et al. 

introduced an optimal decision-making framework 

for the electric power market that incorporates 

various factors such as loads, energy storage systems, 

renewable energy units, and the involvement of 

electric vehicles along with new energy in market 

bidding processes. Their model utilizes a virtual 

power plant (VPP) configuration to demonstrate that 

renewable energy systems can achieve more 

favorable market bids and enhance production 

efficiency while accounting for technological 

limitations related to new energy units and storage 

[73]. Oriza et al. devised a two-tier optimization 

model aimed at facilitating optimal energy trading 

between electricity providers and distribution 

companies (Discos), incorporating elements like 

demand management alongside renewable resources. 

Utilizing their PSO-based method, they identified the 

best solutions for both consumption and trading of 

energy [74]. In addressing nonlinear dynamics in 

battery inverters, Carreras and Kirchsteger proposed 

an improved strategy to tackle nonlinear optimization 

challenges within home energy management 

systems. Their iterative linear optimization approach 

yielded the most effective charging and discharging 

methods, resulting in reduced emissions as well as 

cost savings [75]. 

 

4) Demand Response and Load Management 

In order to pinpoint the most efficient 

pricing strategies and improve the timing of flexible 

loads, optimization methods play an essential role in 

designing and implementing successful demand 

response programs and load management tactics. For 

residential clients, Priolkar and Sriraj advocated for 

initiating a demand response program that employs 

direct load control (DLC), coupled with optimizing 

load scheduling amidst dynamic pricing. Their 

initiatives resulted in significant savings on energy 

costs as well as an enhanced peak-to-average ratio 

(PAR), achieved by reducing expenses and PAR 

using binary Particle Swarm Optimization alongside 

discrete elephant herd optimization algorithms [76]. 

In a similar vein, Fan et al. developed an optimization 

strategy focused on boosting the adaptive 

responsiveness of power systems under financial 

constraints. This method aimed to decrease 

operational expenses by integrating a bidding 

mechanism based on monthly price estimates while 

accounting for factors dampening demand response 

and ensuring feature point reliability across various 

situations [77]. Additionally, Dwijendra et al. 

proposed an ideal approach for managing power 

demand within electricity distribution networks 

through interval optimization techniques blended 

with incentive-driven modeling of demand response 

programs that included reserve scheduling 

components. Their ε-constraining technique 

produced positive results even amid uncertainties 

[78]. 

 

5) MG Operation and Control 
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Due to their flexibility, reliability, and 

robustness, generators are becoming a viable option 

for future power generation and distribution systems. 

In order to integrate renewable energy sources, 

address energy balance, and economic concerns, 

generator operations must be optimized. De Somma 

et al. used MATLAB’s MILP to present an 

optimization method for a residential generator. With 

cost reductions ranging from two to four times and 

primary energy use reductions ranging from two to 

five times throughout the winter season for both the 

heating and electricity sectors, their approach 

produced significant savings in both costs and 

primary energy use when compared to standard 

scenarios [79]. Zhang et al. used the enhanced 

Remora optimization (PRO) method to provide an 

optimal approach for generators. Due to their 

flexibility, reliability, and robustness, generators are 

becoming a viable option for future power generation 

and distribution systems. In order to integrate 

renewable energy sources, address energy balance, 

and economic concerns, generator operations must be 

optimized. De Somma et al. used MATLAB’s MILP 

to present an optimization method for residential MG 

units. With cost reductions ranging from two to four 

times and primary energy use reductions ranging 

from two to five times throughout the winter season 

for both the heating and electricity sectors, their 

approach produced significant savings in both costs 

and primary energy use when compared to standard 

scenarios [29]. Zhang et al. used the enhanced 

Remora optimization (PRO) method to provide an 

optimal approach for MG units. 

 

E. Challenges and opportunities for applying smart 

technology 

The incorporation of intelligent prediction and 

optimization into power systems holds great promise, 

yet it also encounters numerous challenges and 

hurdles. Recent research has outlined these obstacles, 

setting the stage for improved efficiency in power 

system operations. Traditional approaches to 

addressing power system issues often rely on 

practical numerical optimization methods; however, 

due to the nonlinear nature of many optimization 

problems combined with various constraints, these 

methods can be slow and complicated. Consequently, 

a range of AI strategies is explored here to tackle 

numerous optimization challenges while reducing 

computational time. Ongoing research is dedicated to 

applying AI algorithms within power plants [80]. 

Nonetheless, traditional AI techniques frequently 

suffer from prolonged cycle times, intricate 

calculations, and difficulties in learning processes. 

With the ongoing advancement of AI algorithms over 

recent years, operational efficiency has seen 

significant enhancements. As data volumes continue 

to rise—leading to the establishment of multi-source 

models encompassing heterogeneous big data—the 

application of AI within power systems presents both 

new opportunities and complexities. Technologies 

such as expert systems, pattern recognition tools, 

genetic algorithms, and neural networks are among 

those categorized under artificial intelligence [41]. 

AI has the potential to improve the 

efficiency of electrical automation management, 

reduce the risk of accidents, and ensure the long-term 

reliable performance of the power system when 

integrated into power system control automation. 

According to the relevant study, machine learning 

(ML) has also been widely used in the creation of new 

materials and in the prediction of the properties of 

rechargeable battery materials, namely electrolyte 

and electrode materials. With the development of 

machine learning technology and the emergence of 

new and distinct problems in the study of 

rechargeable battery materials, the scope of machine 

learning applications will gradually expand [9]. 

Although machine learning has shown great promise 

in modeling complex systems, its practical 

application poses new difficulties. Before machine 

learning can be widely used, several issues must be 

resolved, such as the difficulty of obtaining reliable 

and relevant data sets and the need to correct 

inaccurate model predictions. Strong evidence of the 

effectiveness of machine learning across a variety of 

fields, including manufacturing processes, power 

generation, storage, and management, is essential for 

its widespread use. In addition, it is crucial to have 

trained personnel with specialized knowledge in the 

relevant fields and commercially available software 

[81]. 

Machine learning has been instrumental in 

developing data-driven models that accurately link 

material properties, such as activity, selectivity, and 

stability, to catalytic performance. However, 

applying current machine learning algorithms to 

accurately predict catalyst performance or come up 

with plans to create high-performance catalysts 

remains a challenge [82]. Recognizing the need for 

and availability of autonomous systems now and in 

the future, successful applications of machine 

learning in short-term hydrothermal scheduling will 

improve the link between actual processes and 

problem formulation and prepare the hydropower 

industry for autonomy. A survey of the latest 

developments in machine learning applications for 

the hydropower industry is presented in this study 

[83]. Especially in smart homes, digital technologies 

have a significant impact on the safety of occupants 

and energy users as well as energy market services. 

Decarbonizing heating and cooling systems, 

promoting responsible electric vehicle charging, 

utilizing local renewable energy sources, and 
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increasing energy efficiency are all possible with 

sustainable smart home networks [84]. 

Decarbonizing buildings is a big issue, and 

the next 10 years are critical to reaching aggressive 

global CO2 reduction targets. Resilient housing and 

water-efficient construction are crucial to mitigating 

the effects of climate change. In light of climate 

change, research into energy efficiency and 

sustainability is essential to raise living standards 

[85]. With regard to the present and future of smart 

homes, a number of important points were 

emphasized [86]. It was recognized that there are still 

significant challenges that researchers need to 

overcome in order to gain global acceptance, even if 

smart homes are becoming more common and people 

are becoming more comfortable with them [87]. The 

diversity of manufacturers and devices, each with 

different charging systems, frequencies and 

communication technologies, is one of the 

technological challenges mentioned [88]. This 

fragmentation may hinder the compatibility and 

interoperability of devices and systems. One of the 

main obstacles is the increased adoption of smart 

home technology. This assessment emphasizes the 

importance of convincing customers that these 

technologies are reliable and safe. A method has been 

proposed to create predictive models that can detect 

faults and malfunctions in power equipment [89], and 

these models have been shown to be successful in 

predicting how the degradation phenomenon will 

develop [90]. 

Predictive analysis in power systems, 

especially in the context of smart grids, shows great 

potential thanks to machine learning and data-driven 

methodologies. In a landscape increasingly focused 

on renewable energy, these technologies can 

efficiently analyze massive amounts of data collected 

from smart meters and other devices in real time, 

enabling optimal energy flow [91]. They have 

benefits including increased efficiency, reduced 

costs, and improved accuracy. However, there are 

several hurdles that need to be addressed, such as 

ensuring access to high-quality data and controlling 

the potential risk of information overload [92]. 

Additionally, as energy systems progress and 

enhance through the incorporation of renewable 

energy sources and smart grid innovations, a variety 

of new challenges are anticipated to arise. Upcoming 

research may need to tackle several of these issues, 

including:  

• Creating models that can adjust to evolving 

system conditions and learn from new data instantly.  

• Combining prediction and optimization 

across various time scales, ranging from immediate 

operations to long-term strategies.  

• Managing rising uncertainty and 

fluctuations in power production linked to renewable 

energy sources. 

 

F. Related Work 

It is essential to recognize the body of 

literature that has made significant contributions to 

the fields of power system prediction and 

optimization. Over the years, a number of surveys 

have been produced that focus on specific aspects of 

these topics. For example, some reviews have only 

addressed optimization algorithms used in power 

systems, which include both contemporary heuristics 

such as PSO, GA, and ACO, as well as traditional 

methods such as linear programming. Other studies 

have focused on prediction methods, examining the 

transition from sophisticated machine learning-based 

models such as ANN and SVMs to more traditional 

statistical models such as ARIMA (Autoregressive 

Integrated Moving Average) [41]. 

In SG applications, artificial intelligence 

(AI), especially machine learning (ML) and deep 

learning (DL) models, have shown excellent results 

in terms of increasing accuracy, stability, reliability, 

and efficiency, especially in the field of LF. 

Analyzing and evaluating different machine learning 

and deep learning models is crucial to determining 

the most suitable model for use with machine 

learning approaches in decision sets. We present a 

number of survey publications that examined 

machine learning and deep learning-based machine 

learning approaches in this field. A comparative 

analysis including the latest machine learning 

algorithms working in machine learning approaches 

for decision sets is presented in [93]. The decision 

tree model outperformed other machine learning 

approaches, such as logistic regression, support 

vector machines (SVM), K-nearest neighbors (KNN) 

algorithms, neural networks (NN), and naive Bayes 

algorithm, according to the results of the study. The 

accuracy rate of the decision tree was 99.96%, its 

recall rate was close to 100%, its F1 score was 100%, 

and its accuracy rate was flawless. 

Current machine learning strategies were 

examined in [94] to determine the most appropriate 

approach for a given situation. Time frame, input, 

output, scale, data sample size, error type, and value 

were the applicable criteria used to evaluate these 

different methods. The two most commonly used 

methods for LTLF were regression and multiple 

regressions. Machine learning-based methods, 

including artificial neural networks, SVM, and time 

series analysis using autoregressive integrated 

moving average (ARIMA) and autoregressive 

moving average (ARMA), were used for STLF and 

VSTLF applications. 
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Zhang et al. [95] presented an alternative 

literature survey. They examined the use of machine 

learning algorithms in generating LFs that complete 

task T using P in order to evaluate and analyze 

performance and reliance on knowledge gained from 

recognized experts. Task T demonstrated the use of 

machine learning techniques, the performance metric 

P evaluated the quality of task execution, and 

expertise E was collected from several sources, 

including feature extraction and preprocessing. 

Another evaluation of building energy usage 

forecasting methods that incorporate both 

conventional and AI models can be found in [96]. 

The purpose of this survey was to examine each 

model separately and discuss the potential of 

combining the two concepts. Together, SVM and 

swarm intelligence (SI) have produced excellent 

results [97]. 

Khan et al. presented a survey of LF 

approaches based on dynamic pricing systems in 

SGs. They considered a few pricing strategies, 

including critical peak pricing (CPP), time of use 

(ToU), and real-time pricing (RTP). They integrated 

LF approaches into computational models that were 

based on mathematics and AI. 

Nespoli et al. presented a comparison of 

several PLF techniques for estimating load demand 

for tanks and secondary substations in a distributed 

low-voltage network. The methods were analyzed 

using standard KPIs for probabilistic and 

deterministic forecasts. In addition, they evaluated 

how well a number of hierarchical techniques 

improved the performance of lower-level forecasters. 

Studies have found that using smart technology to 

improve the performance of electrical networks can 

enhance the sustainability of electrical systems by 

improving efficiency and predicting electrical loads 

[98]. 

 

 

IV. CONCLUSION AND 

RECOMMENDATIONS 
In electric power systems, the foundation for 

reliable and efficient power supply is accurate 

forecasting and optimization. This research has 

emphasized the need for intelligent forecasting and 

optimization for modern electric power grids. 

However, these advanced methods are now essential 

for managing complex power grids due to the new 

configurations resulting from the integration of 

renewable energy sources and smart technologies. 

Forecasting techniques have greatly improved the 

predictions of load and renewable power generation. 

These techniques range from traditional statistical 

methods to intelligent technology models and 

machine learning. At the same time, new heuristic 

and hybrid optimization methods have replaced 

classical methods, which are more suitable for the 

highly complex and nonlinear nature of modern 

power systems. In conclusion, load forecasting 

supports grid planning, load management, grid 

optimization, outage management, grid stability, and 

grid resilience, all of which are critical for efficient 

power distribution. Reliable load forecasting enables 

grid operators to make informed choices, optimally 

allocate resources, improve system reliability, and 

ensure efficient power supply to customers. A 

reliable, efficient, and robust power supply system is 

facilitated by load forecasting, which matches 

transmission and generation with the expected load. 

AI systems can effectively predict energy 

consumption by examining historical data, weather 

trends, and other relevant variables. The application, 

algorithm models, computational stages, and 

complexity of many AI algorithms differ from each 

other. Accurate load prediction in real-world 

applications depends on the selection of appropriate 

AI algorithms according to the requirements. 

Moreover, new architectures have emerged that 

enhance the stability and efficiency of systems as a 

result of combining prediction and optimization. 

Despite their advantages, smart energy 

management systems face some challenges. The 

initial cost of implementation can be high, and there 

may be compatibility issues with existing building 

infrastructure. Additionally, the complexity of these 

systems requires specialized knowledge to install and 

maintain. Looking ahead, advances in artificial 

intelligence and machine learning are expected to 

enhance the capabilities of smart energy management 

systems. As these technologies become more 

accessible, they are likely to play an increasingly 

important role in achieving energy efficiency and 

sustainability goals. 

The implementation of intelligent 

technology to enhance the efficiency of electric 

power systems and forecast electrical loads boosts 

grid performance, opens avenues for cost savings, 

and promotes environmental sustainability. As the 

use of artificial intelligence, big data, and advanced 

storage increases, so does the capability to refine load 

forecasting and attain an optimal equilibrium 

between supply and demand. The field is anticipated 

to evolve further with advancements in technologies 

like reinforcement learning and quantum computing. 

These innovative strategies will be essential for 

creating effective, dependable, and eco-friendly 

energy systems at decentralized levels as the energy 

sector transitions toward sustainability. Future 

research should emphasize developing more 

computationally efficient and flexible approaches to 

tackle the evolving challenges posed by modern 

power grids while paving the way for a stronger, 

more sustainable energy future. Based on an analysis 
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of existing literature regarding smart technology's 

role in enhancing electric power system performance 

and load prediction, this research suggests that 

upcoming studies should concentrate on these areas:   

1. Creating sophisticated prediction and optimization 

models capable of addressing high variability and 

uncertainty within load data. 

2. Exploring an increased application of neural 

networks that have yielded promising results in load 

forecasting recently. 

3. Examining how renewable energy sources affect 

load forecasting within smart grids while formulating 

models that can accurately reflect their impact on the 

system. 

4. Designing prediction and optimization frameworks 

tailored to accommodate various types of loads such 

as residential, commercial, or industrial categories. 
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