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Abstract

As photovoltaic (PV) systems play a critical role in the global energy supply, accurate and efficient anomaly
detection in electroluminescence (EL) images of solar panels has become increasingly important. This paper
presents a novel anomaly detection framework that leverages Knowledge Distillation (KD) and integrates
reconstruction errors into a Deep Support Vector Data Description (Deep SVDD) module for enhanced
performance. The framework utilizes a ResNet-101-based Convolutional Attention Autoencoder as the teacher
model and an Efficient-UNet Transformer as the student model. The Efficient-UNet Transformer combines
local and global feature extraction capabilities with transformer layers to capture long-range dependencies,
making it highly efficient and effective. The teacher and student models' reconstruction error rates are added
together and sent to the Deep SVDD module. This lets the system learn small representations of normal data and
find different kinds of anomalies without needing large, labeled datasets. Experimental results on both public
(ELPV) and private industrial (Factory ) datasets demonstrate the effectiveness of the proposed approach. The
proposed approach achieved remarkable results, achieving an accuracy of 0.97 on the ELPV dataset and 0.88 on
the Factory dataset. These performance metrics represent significant improvements compared to state-of-the-art

methods and conventional models.
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I.  Introduction

The increasing global reliance on solar
photovoltaic (PV) systems as a sustainable and clean
energy source has heightened the need for effective
and efficient monitoring methods to ensure their
optimal operation. Problems like micro-cracks,
hotspots, and partial shading can greatly reduce the
amount of power that is produced, speed up the
breakdown of PV panels, cause big financial losses,
and shorten the life of systems. Traditional methods
for detecting anomalies, such as visual inspections
and statistical analyses, often struggle to identify
subtle or complex issues effectively. This challenge
becomes even more pronounced in large-scale
deployments involving diverse and complex
datasets. However, recent advancements in deep
learning have demonstrated significant potential for
enhancing anomaly detection in photovoltaic (PV)
systems. Convolutional Neural Networks (CNNs)
have been widely employed for their ability to
extract features from image data [1], [2], making
them suitable for detecting faults in PV panels.
However, these methods are often limited in their
ability to simultaneously capture both local and
global patterns, reducing their robustness against
varying environmental conditions and noise.
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Moreover, the effectiveness of CNN-based
approaches typically relies on large volumes of
labelled data, which are often difficult to obtain in
real-world PV monitoring scenarios.Transformer
models were first created for processing natural
language. They have shown a lot of promise in
computer vision tasks because they can find long-
range dependencies and contextual relationships in
data. The self-attention mechanisms in Transformers
effectively model complex interactions within image
data, making them particularly adept at detecting
subtle anomalies that may not be apparent through
traditional methods. Recent studies have leveraged
Transformer architectures to enhance the accuracy
of anomaly detection in PV systems by treating
image data points as analogous to words in a
language model, thereby capturing intricate
dependencies among them [3], [4].

Despite significant advancements,
developing a model that is both accurate and
lightweight for edge computing environments, such
as industrial devices used in real-time photovoltaic
(PV) system monitoring, remains a challenge.
Models optimized for low power consumption and
fast inference times are often necessary in these
settings due to their constrained computational
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resources. To address this, our study introduces a
lightweight framework based on knowledge
distillation, where a ResNet-101 convolutional
attention autoencoder serves as the teacher model,
and an Efficient-UNet Transformer with Deep
SVDD-guided anomaly scoring acts as the student.
This approach effectively combines the strengths of
the UNet architecture and Transformer capabilities,
guided by an anomaly scoring network, to enhance
the detection of anomalies in electroluminescence
(EL) images of solar panels—while being well-
suited for deployment on edge devices. The
Efficient-UNet Transformer integrates an
EfficientNet-based encoder to capture both local and
global features with minimal computational
overhead. The embedded Transformer layer further
enhances the model’s ability to learn long-range
dependencies, critical for identifying subtle and
complex defect patterns in PV cells. Through
knowledge distillation, the student model inherits
the teacher's learned representations, improving
feature extraction while maintaining computational
efficiency. Additionally, a Deep SVDD-guided
scoring network enables the model to form a
compact representation of normal data in latent
space. By combining reconstruction loss and Deep
SVDD loss, this dual-scoring mechanism provides
robust anomaly  detection, even  variable
environmental conditions. This integrated and
lightweight approach improves the robustness,
accuracy, and adaptability of anomaly detection in
PV systems, making it ideal for edge computing in
industrial settings. Validation on benchmark
datasets demonstrates the proposed framework’s
performance, which matches or exceeds state-of-
the-art methods while maintaining computational
efficiency. This contribution offers a novel and
practical solution for PV system monitoring,
enhancing the reliability and operational efficiency
of solar energy systems in real-world scenarios.

Key contributions of this study are as follows:

e Introduced the Efficient-UNet + Deep
SVDD framework tailored for anomaly
detection in photovoltaic systems.

e Bridged the server-based teacher model
(ResNet-101  Convolutional  Attention
Autoencoder) with the edge-based student
model, ensuring high efficiency and
performance.

e Demonstrated the practical application of
the proposed methodology by evaluating it
on the Factory dataset collected from an
industrial factory environment.

These contributions highlight the scalability,
efficiency, and practicality of the proposed method
for identifying anomalies in PV systems, which
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facilitates the integration of machine learning into
industrial quality control processes.

1.1 Related Work

Recently, machine learning and deep
learning techniques have made big steps forward in
finding problems in photovoltaic (PV) systems.
These techniques have made fault detection much
more accurate and reliable. Anomaly detection in
electroluminescence (EL) images is particularly
critical for ensuring the quality and reliability of PV
modules. A wide range of methods, from traditional
image processing to cutting-edge deep learning
approaches, have been explored to address this
challenge.

Traditional methods like Independent
Component Analysis (ICA) and matched filtering
have been utilized to detect defects such as cracks,
scratches, and finger interruptions in PV modules.
Generally, these methods rely on handcrafted
features and have limitations in effectively
differentiating defect types [4]. Researchers have
employed different image processing techniques,
like anisotropic diffusion filtering, to classify micro-
cracks in EL images [5]. Furthermore, several
studies have employed machine learning techniques
for anomaly detection in PV systems. Laguna et al.
[6] proposed a method based on Recursive Least
Squares (RLS) algorithms to detect PV system faults
with minimal data requirements. Fadhel et al. [7]
used Principal Component Analysis (PCA)
combined with K-Nearest Neighbours (KNN) to
detect and classify shading faults, demonstrating
effectiveness in handling specific PV anomaly
types. Chandio et al. [8] focused on a machine
learning-based  multiclass anomaly  detection
approach using Random Forest (RF), Decision Tree
(DT), Naive Bayes (NB), and Support Vector
Machine (SVM) classifiers to enhance detection
accuracy in hybrid active distribution networks.

Researchers have extensively explored
deep learning methods for anomaly detection in PV
systems. Khalil et al.[9] introduced a Transformer-
based model for robust fault prediction in PV
systems, leveraging attention mechanisms to learn
dependencies among data points, which is
advantageous when dealing with unclear fault
patterns. Hwang et al. [10] proposed a Vision
Transformer (ViT) model for detecting faults in PV
modules using infrared thermography (IR) images,
achieving superior performance over traditional
deep learning methods. Chang et al. [11] developed
a framework for PV cell anomaly detection using
Scale Distribution Alignment Learning and
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Multiscale Linear Attention (MLA-SDAL). This
framework utilizes multi-head linear attention for
efficient feature extraction and employs scale
distribution alignment for robust anomaly detection,
demonstrating improved adaptability to complex
data distributions. Kang et al. [12] applied a weakly
supervised learning approach to detect PV cell
defects using module-level annotations, significantly
reducing the annotation costs associated with
traditional cell-level defect detection. In the same
way, Tang et al. [13] proposed a deep learning
model for automatic defect identification, which
demonstrated high accuracy by using data
augmentation techniques. Similarly, Su et al. [14]
introduced a large-scale open-world dataset for
anomaly detection, highlighting the importance of
using diverse datasets to enhance model
generalization. In another study, Liu et al. [15]
proposed an efficient CNN-based detector for
photovoltaic module cell defects using EL images,
which employs a lightweight model based on
EfficientNet-BO and introduces a Graph Channel
Attention Module (GCAM) to enhance feature
representation by modelling global information. The
use of Contrast Limited Adaptive Histogram
Equalization (CLAHE) further improves image
contrast, making defect detection more accurate.
This method demonstrated superior performance,
achieving an accuracy of 97.81%, Fl-score of
97.64%, and MCC of 97.32% on the PVEL dataset,
outperforming  state-of-the-art methods across
various metrics. Also, Al-Otum [16] developed a
CNN-based deep learning approach for classifying
anomalies in EL images of solar PV modules. This
study explored three different models: two based on
transfer learning with pretrained SqueezeNet and
GoogleNet and a lightweight CNN model (LwNet).
Experimental validation using the ELPV dataset
demonstrated high performance, with average
accuracies of 94.6%, 93.95%, and 96.2% for
GoogleNet, SqueezeNet, and LwNet, respectively.
The LwNet model showed superior classification
performance and time-saving efficiency compared
to the other models. The SeMaCNN model [17],
which combines a semi-supervised learning
approach using a PaDiM-based feature extractor and
a shallow classifier based on the ResNetl8
architecture, achieved an F1 score of 95.8% and
precision of 96.9% on a dataset comprising 68,748
EL images from a heterojunction solar cell
manufacturing plant. This demonstrates the model's
capability to perform well in industrial
environments.

Advanced neural network architectures,
such as transformer neural networks, have also been
employed for anomaly detection in PV systems.
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David et al. [18] introduced a Time Series
Transformer (TST) for end-to-end islanding
detection, simplifying the modelling process by
automating feature extraction and outperforming
other machine learning methods in terms of
accuracy and detection time. Zhao et al. [19]
proposed a data-driven solution for anomaly
detection and classification in large-scale PV
systems that does not require additional equipment
or non-SCADA data collection. Their approach
integrates a hierarchical context-aware anomaly
detection method using unsupervised learning with a
multimodal  anomaly  classification = method,
demonstrating effectiveness and efficiency in real-
world deployments across two large-scale solar
farms. In another similar study, Zhao et al. [20]
proposed the PV Cell Defects Detection
Transformer (PD-DETR) to enhance the detection
of small-scale defects in PV cell images, addressing
challenges like slow convergence and complex
backgrounds. This model combines a hybrid feature
module with both one-to-one and one-to-many set
matching strategies, achieving a 64.7% accuracy
rate on the PVEL-AD dataset, thereby improving
defect detection without relying on manual post-
processing. Furthermore, Dwivedi et al. [21]
proposed an attention-based deep learning model
using a Vision Transformer (ViT) to identify surface
defects on solar PV panels and wind turbine blades
from high-resolution images, demonstrating superior
performance over well-known pre-trained models.
Hybrid models that integrate deep learning with
traditional anomaly detection techniques have also
shown promise. CNN models combined with
Mabhalanobis distance metrics have been useful for
dealing with uneven datasets that only have a few
labeled examples [22]. Additionally, the application
of the CLAHE algorithm, as utilized by Liu et al.
[23], has proven useful in enhancing image contrast,
thus improving the detection of subtle defects.

Several advanced techniques have emerged
to address challenges in PV anomaly detection.
Bommes et al. [24] used supervised contrastive
learning for anomaly detection in infrared images of
PV modules, highlighting the potential of
contrastive learning to enhance model robustness
and performance. Additionally, Oliveira et al. [25]
applied deep learning for anomaly detection in
voltage waveform distortion due to geomagnetically
induced currents, demonstrating the versatility of
deep learning methods in handling diverse anomaly
detection tasks. Zarghami et al. [26] employed a
concurrent PV production and consumption load
forecasting model wusing a CT-Transformer,
illustrating the application of Transformer-based
architectures to improve prediction accuracy in PV
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systems. Additionally, Tsai et al. [18] focused on
islanding detection using Transformer neural
networks,  underscoring the  potential  of
Transformer-based architectures for real-time
anomaly detection in PV systems. Also, in another
study automated solar panel monitoring has
advanced with the development of a Multi-Branch
Spatial Pyramid Dynamic Graph Convolutional
Neural Network (MB SPDG-CNN) [27], effectively
integrating RGB and thermal imaging for superior
fault detection accuracy. Some studies have
employed unsupervised learning techniques for
anomaly detection by leveraging reconstruction
error rates.

Despite  advancements in  anomaly
detection for photovoltaic (PV) systems, significant
challenges persist in integrating Transformer models
with robust techniques that minimize reliance on
labelled datasets. Many existing methods rely on
single approaches, such as traditional supervised
learning or standard deep learning models, which
often require extensive labelled data and struggle to
generalize across varying conditions. Addressing
these limitations, N. Zhu et al. [28] proposed an
unsupervised adversarial training framework with
feature reconstruction constraints for anomaly
detection in crystalline silicon solar cells,
demonstrating strong performance using EL
imaging without labelled data. Similarly, C. Shou et
al. [29] introduced a hybrid approach combining
Generative Adversarial Networks (GANs) and
Auto-Encoders  (AEs), achieving significant
accuracy rates. Their use of Structural Similarity
Index (SSIM) and Mean Square Error (MSE) further
enhanced detection by addressing image distortions
and improving feature representation.

Building on these foundations, our work
introduces a novel Knowledge Distillation
framework that significantly extends and enhances
prior approaches. Unlike existing studies that focus
solely on adversarial feature reconstruction or
emphasize image distortion metrics, our framework
integrates a ResNet-101-based Convolutional
Attention Autoencoder as the teacher model and a
lightweight Efficient-UNet Transformer as the
student model, facilitating efficient knowledge
transfer. Moreover, we employ a dual anomaly
scoring mechanism that combines reconstruction
errors with Deep Support Vector Data Description
loss, achieving enhanced robustness and improved
accuracy in anomaly detection.

These improvements ensure superior
scalability, computational efficiency, and real-time
applicability, making our framework particularly
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suitable for edge computing in PV system
monitoring. Experimental results on public (ELPV)
and private (Factory ) datasets further validate the
framework's effectiveness, demonstrating superior
performance compared to existing methods while
significantly reducing computational demands,
thereby offering a scalable and practical solution for
industrial applications.

II. Methodology
The architecture of the proposed knowledge
distillation-based approach is detailed in the
following subsections.

2.1 Student Model

The student model is based on an Efficient-UNet
Transformer, incorporating Deep SVDD-guided
anomaly scoring. The subsequent sections further
explain these components.

2.1.1. Efficient-UNet Transformer

The proposed architecture, illustrated in
Figure 1, employs the EfficientNet model as the
backbone for the U-Net encoder, integrating a
Transformer module to capture global context
within the student model. This U-Net model,
enhanced with Efficient Net MBConv blocks, is
specifically designed to improve anomaly detection
in EL images of solar panels, which is a critical task
for ensuring the quality and efficiency of PV
systems. The model leverages MBConv blocks,
which employ depth wise separable convolutions
and squeeze-and-excitation (SE) layers to efficiently
capture both local and global features in EL images.

The encoder in the model consists of a
series of MBConv blocks that progressively reduce
the spatial dimensions of the input images while
retaining essential information about potential
defects, such as cracks, hotspots, or inactive regions
in the solar cells. These blocks include an expansion
phase that increases the number of channels,
followed by depth wise convolutions to learn spatial
patterns, and SE layers that enhance feature
selection, making the model particularly sensitive to
subtle variations indicative of anomalies. At the core
of the model is a high-capacity bottleneck MBConv
block, which serves as a feature-rich bridge between
the encoder and decoder, designed to capture
complex patterns and relationships within the EL
images and to ensure that vital information about
potential defects is preserved during feature
compression.

The input to the model is an EL image of a
solar panel cell, denoted as X € RT*WXC where
Hand W are the height and width of the image, and
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C is the number of color channels (typically 1 for
grayscale images). The input image is divided into

non-overlapping patches of size s X s. Each patch
H W _C

is represented as P; € Rz 2"2, where i ranges
HXW . .
from 1 to :2 . This step enables multi-scale feature

learning by processing the image at various
resolutions. The Efficient Net U-Net encoder
processes each patch through its network layers,
consisting of a series of inverted residual blocks
with depth wise separable convolutions and SE
modules, and extracts hierarchical features from
each patch using convolutional layers with down-
sampling operations:

fi = E(P), fori € [1,7F], (M

The output f; represents local feature maps,
capturing fine-grained spatial details within each
patch. The encoder progressively reduces the spatial
dimensions while increasing the feature depth to
extract higher-level features.

To further enhance the model's performance for
anomaly detection in EL images, a Transformer
block with a Multi-Head Attention (MHA)
mechanism is incorporated into the bottleneck. This
Transformer block enables the model to capture
long-range dependencies and complex relationships
in the features extracted by the encoder, which is
particularly useful for detecting subtle anomalies in
EL images. The Transformer module T is applied to
the sequence of encoded features to capture long-
range dependencies and contextual information:

t;=T(f)), fori € [1,H:—ZW], )
The Transformer with multi-head self-attention
mechanism to compute the attention weights for
each pair of patches, allowing the model to

understand global patterns across the entire image:
T
Attention(Q,K,V) = softmax(%)V , 3)

Here, Q, K,V represent the query, key, and value
matrices derived from the encoded features, and d,
is the dimensionality of the key vectors.The decoder
D reconstructs the segmentation map using both the
local feature maps f; from the encoder and the
global context-enhanced features t; from the
Transformer:

0; = D(¢ty, i), 4)
The decoder mirrors the encoder's structure,
utilizing up-sampling layers and additional MBConv
blocks to restore the spatial resolution of the input
images. Skip connections between the encoder and
decoder layers help retain high-resolution details,
which are crucial for accurately identifying the
location and extent of anomalies. The final output
layer produces a segmentation mask that highlights
potential defects in the EL images, enabling precise
anomaly detection. By integrating Efficient Net’s
refined MBConv blocks, the U-Net model balances
high accuracy and low computational cost, making
it well-suited for real-time monitoring and quality
control of solar panels. The detailed architecture of
the proposed approach is summarized in Table 1.

Tabel 1. Efficient U-Net with Transformer Architecture and Parameters.

Type Output Shape #Param Connected To

InputLayer (None, 128, 128, 3) 0 -

MBConv (6x Expansion) (None, 128, 128, 32) 936 Input

MaxPooling2D (None, 64, 64, 32) 0 MBConv Block 1

MBConv (6X Expansion) (None, 64, 64, 64) 16,546 MaxPooling2D 1
MaxPooling2D (None, 32, 32, 64) 0 MBConv Block 2

MBConv (6X Expansion) (None, 32, 32, 128) 65,554 MaxPooling2D 2
MaxPooling2D (None, 16, 16, 128) 0 MBConv Block 3

MBConv (6X Expansion) (None, 16, 16, 256) 262,912 MaxPooling2D 3
MaxPooling2D (None, 8, 8, 256) 0 MBConv Block 4

MBConv (6X Expansion) (None, 8, 8, 512) 1,050,624  MaxPooling2D 4

Reshape (None, 64, 512) 0 Bottleneck MBConv Block
Transformer Block (MHA) (None, 64, 512) 526,848 Reshape

Reshape (None, 8, 8, 512) 0 Transformer Block (MHA)
Conv2DTranspose (None, 16, 16, 256) 524,544 Transformer Block (Bottleneck)
Concatenate (None, 16, 16, 512) 0 Up-sample 1, MBConv Block 4
MBConv (6 X Expansion) (None, 16, 16, 256) 1,042,048  Concatenate 1
Conv2DTranspose (None, 32, 32, 128) 131,200 MBConv Block 5

Concatenate (None, 32, 32, 256) 0 Up-sample 2, MBConv Block 3
MBConv (6X Expansion) (None, 32, 32, 128) 262,912 Concatenate 2
Conv2DTranspose (None, 64, 64, 64) 32,832 MBConv Block 6

Concatenate (None, 64, 64, 128) 0 Up-sample 3, MBConv Block 2
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MBConv (6 X Expansion) (None, 64, 64, 64) 65,554 Concatenate 3
Conv2DTranspose (None, 128, 128, 32) 8,224 MBConv Block 7

Concatenate (None, 128, 128, 64) 0 Up-sample 4, MBConv Block 1
MBConv (6X Expansion) (None, 128, 128, 32) 16,546 Concatenate 4

Conv2D (Output) (None, 128,128, 1) 33 MBConv Block 8

[ | Transpose 2D Convolutional block
[__ImBConv block

|:| Transformer Block

[T TTTRTT

3

{4 r

Fig 1. Efficient-UNet Transformer student model architecture.

2.1.2. Deep SVDD-Guided Anomaly Scoring

The Deep Support Vector Data Description

(Deep SVDD) is a powerful technique for
unsupervised anomaly detection that learns a
compact representation of normal data by mapping
it into a hypersphere in the latent space. This
method is particularly effective for detecting outliers
without the need for extensive labelled datasets,
which aligns well with real-world scenarios in PV
monitoring, where labelled anomalous data can be
scarce. Deep SVDD aims to minimize the volume of
a hypersphere that encloses most of the normal data
points in a feature space, defined by a center ccc and
a radius R. The optimization objective of Deep
SVDD is formulated as:

] 2,1 N cllf = 5)
Mingy, R* + —max (0, [1f,0 (x) = cl|
RZ)’
Where f,,(x;)is the learned feature extraction
function parameterized by weights W, x;represents
an input image, c is the center of the hypersphere in
the latent space, typically computed as the mean of
the feature vectors obtained during training, v is a
regularization parameter that controls the balance
between minimizing the volume of the hypersphere
and allowing some data points to lie outside of it,
and N is the number of training samples. The
objective is to find a feature space where normal
data points lie close to ccc, while anomalies are
identified by their deviation from this center. The
anomaly score for a given input is derived from two
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components; firstly, the discrepancy between the
input x and its reconstructed version X is calculated:
Reconstruction Error=| x — & ||?, (6)
Secondly, the distance of the latent features from the
center c:

SVDD Score=|l f;,(x) — ¢ II?, (7)
The combined anomaly score is formulated as:
Anomaly Score(x)= lx— % 17+ (8)
Il fiw(x) — ¢ 112,

High anomaly scores indicate inputs that deviate
significantly from normal patterns, suggesting
defects or faults.

2.2 Teacher Model

The convolutional attention autoencoder, built on
the ResNet-101 backbone, is a sophisticated model
designed to capture detailed and hierarchical
representations of EL image data, as presented in
figure 2. In this framework, the ResNet-101-based
encoder processes images through multiple residual
blocks, each layer progressively extracting complex
features. The deep residual learning structure of
ResNet-101 allows the model to capture multi-level
representations—from low-level textures to high-
level semantic patterns—while using  skip
connections to maintain gradient flow, which is
essential for learning deep, abstract features
effectively. This architecture is particularly well-
suited to identifying subtle patterns and variations in
EL images that might indicate anomalies, a critical
requirement in anomaly detection tasks.
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Attention mechanisms embedded within
the encoder guide the model’s focus to the most
relevant regions of the image, dynamically assigning
weights to areas of interest. These attention layers
work by learning to emphasize the parts of the
image most likely to contain meaningful
information, such as regions with slight
irregularities or unique features. This selective focus
enables the encoder to capture finer details without
being overwhelmed by irrelevant information,
improving its ability to detect anomalies. By
highlighting these key regions, the attention
modules ensure that the encoder emphasizes the
features most critical for distinguishing normal from
anomalous data.

The decoder portion of the autoencoder
reconstructs the encoded features back into the

original image space, attempting to regenerate the
input image from its learned representations. The
quality of this reconstruction serves as a metric for
anomaly detection: any significant discrepancies
between the reconstructed and original images
indicate potential anomalies. In the context of
knowledge distillation, the output from this
attention-driven autoencoder serves as a guide for
the student model, transferring the valuable
representations learned from the teacher model’s
complex, attention-focused encoding. This process
enables the student model to inherit the attention-
guided insights of the teacher, empowering it to
perform accurate anomaly detection based on
learned, nuanced patterns in the data, the
architecture of presented teacher model presented in
table 2.

Tabel 2. Summary of the Teacher Model Architecture.

Number of
Layer Name Type Output Shape Parameters
Input Layer Input (224, 224, 3) 0
Encoder - - -
- ResNet101 Base Convolutional (7,7,2048) 44.5 million (frozen)
- Attention Block Custom Attention (7,7, 256) 527,104
- Conv2D (f, g, h) Conv2D (7,7, 256) each 1,576,960
-Add Add Layer (7,7, 256) 0
- ReLU Activation Activation (7,7, 256) 0
- Conv2D (sigmoid) Conv2D (7,7, 1) 257
- Multiply Multiply Layer (7,7, 256) 0
Decoder - - -
- Conv2DTranspose (1) Transposed Conv (14, 14, 256) 590,080
- ReLU Activation Activation (14, 14, 256) 0
- Conv2DTranspose (2) Transposed Conv (28, 28, 128) 295,040
- ReLU Activation Activation (28, 28, 128) 0
- Conv2DTranspose (3) Transposed Conv (56, 56, 64) 73,792
- ReLU Activation Activation (56, 56, 64) 0
- Conv2DTranspose (4) Transposed Conv (112,112, 32) 18,464
- ReLU Activation Activation (112,112, 32) 0
- Conv2DTranspose (4) Transposed Conv (224,224, 3) 867
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Fig 2. ResNet-101-based convolution encoder teacher model architecture.

2.3 Proposed Approach

The proposed framework for anomaly
detection in electroluminescence (EL) images of
solar panel cells integrates the strengths of a
ResNet-101-based convolutional attention
autoencoder as the teacher model and an Efficient-
UNet Transformer as the student model through a
knowledge distillation (KD) approach, as presented
in figure 3. Reconstruction error rates from both
models are fed into a Deep SVDD-guided anomaly
scoring mechanism, enabling robust and precise
anomaly detection. The teacher model captures
detailed and hierarchical representations of EL
images using its ResNet-101-based encoder, which
emphasizes critical regions through residual blocks
and attention mechanisms. Its decoder reconstructs
these feature representations, with reconstruction
errors serving as a key basis for anomaly
identification. Through the knowledge distillation
process, the teacher model’s feature-rich outputs
guide the student model, transferring advanced
representations to enhance its learning and detection
capabilities.

The student model, an Efficient-UNet
Transformer, combines EfficientNet and U-Net
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architectures to deliver computationally efficient
and highly accurate anomaly detection. Its
EfficientNet-based encoder uses MBConv blocks
with depthwise separable convolutions and squeeze-
and-excitation layers to preserve fine-grained spatial
details while enabling multi-scale hierarchical
feature extraction. At the bottleneck, a Transformer
block with multi-head attention captures long-range
dependencies and complex relationships, further
refining feature representations. The decoder,
equipped with up-sampling layers and skip
connections, produces high-resolution segmentation
masks that precisely localize potential defects in EL
images. This design ensures the student model
achieves comparable performance to the teacher
model while maintaining computational efficiency,
making it suitable for edge computing
environments.To  further = enhance detection
accuracy, the framework incorporates Deep SVDD-
guided anomaly scoring, which maps normal data
into a hypersphere in latent space, minimizing the
hypersphere’s volume to encapsulate normal data
points. Anomalies are scored using both
reconstruction error and the distance of feature
representations from the hypersphere’s center. This
dual scoring system combines the Efficient-UNet’s
reconstruction capabilities with Deep SVDD’s
compact latent representation, enabling the detection
of diverse anomaly types with high precision. By
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integrating hierarchical representation learning,
global context capture, and advanced anomaly
scoring, the proposed framework ensures robust and

——
1

—
=

accurate EL image analysis, supporting effective
quality control in photovoltaic systems.

Student Model

- -

Results

Teacher Model

ResNet-101 - Convolutional v

Attention Autoencoder

Fig 3. Architecture of proposed framework.

III.  Experimental Results

The training and testing configuration of
the proposed anomaly detection model for
electroluminescence (EL) images is designed for
efficient, high-accuracy performance. The model, an
Efficient-UNet Transformer Autoencoder,
incorporates custom Swish activation and an
EfficientNet-based encoder combined with a
Transformer bottleneck to capture local and global
features for robust anomaly detection. Compiled
with the Adam optimizer and Mean Squared Error
(MSE) loss, the model is trained using a normalized
dataset, rescaled by 1/255. Image data generator
facilitates data preprocessing, resizing images to
224x224 pixels with a batch size of 4 to align with
memory constraints. The model undergoes 500
training epochs, with a final saved version enabling
future deployment. This configuration, utilizing only
normal images for training, effectively captures
patterns typical of defect-free cells, allowing for
anomaly scoring based on deviations in
reconstructed images.

3.1 Datasets

In this study, we utilized two datasets for
anomaly detection in electroluminescence (EL)

WWwWw.ijera.com

images of solar cells, as presented in figure 4. The
primary dataset, Visual Identification of Defective
Solar Cells in Electroluminescence Imagery
(referred to as the ELPV dataset), consists of 2,624
samples of 300x300-pixel 8-bit grayscale images
representing both functional and defective solar
cells with varying degrees of degradation. These
images, extracted from 44 distinct solar modules,
contain annotated defects categorized as intrinsic or
extrinsic, both of which contribute to reduced power
efficiency in solar modules. The images are
standardized for size and perspective, and any
distortion from the camera lens used during image
acquisition was corrected prior to solar cell
extraction. For this study, we classified the samples
into two categories: normal and anomalous.

Additionally, in a real-world setting, we
collaborated with the PV factory to collect EL
images of solar panel cells directly from the
production line. This dataset includes 4,000
images—2,000 labeled as normal and 2,000 labeled
as anomalous, displaying defects with both micro
and macro cracks. This additional dataset offers a
practical perspective on defect detection, capturing
naturally occurring variations in a production
environment and enhancing the robustness of our
analysis.
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Fig 4. Experimental dataset utilized in this study.

3.2 Ablation study of Student Model

The ablation study of the student model
systematically examines the influence of key
components—Efficient-UNet, Transformer block,
and Deep SVDD-guided anomaly scoring—on
anomaly detection performance for
electroluminescence (EL) images. Through a series
of ablation configurations, we isolate the
contributions of each element to understand its
effect on detection accuracy, computational
efficiency, and robustness. The study includes the
following configurations:

a) Efficient Net: This configuration uses only
the EfficientNet backbone without the U-
Net architecture, Transformer, or Deep
SVDD  components. By isolating
EfficientNet, we establish a baseline that
reflects the performance of a simplified,
efficient feature extractor, allowing
comparison with more complex
architectures.

b) Baseline Efficient-UNet: Here, the
Efficient-UNet architecture is used alone,
without the Transformer block or Deep
SVDD anomaly scoring. This configuration
provides a direct comparison to the
standard U-Net structure for anomaly
detection, serving as a foundational model
for assessing the benefits of adding more
advanced components.

c) Efficient-UNet + Transformer: This setup
includes the Transformer block in the
Efficient-UNet architecture but excludes
Deep  SVDD-guided  scoring.  This
configuration isolates the effect of the
Transformer, enabling analysis of its
contribution to  capture long-range
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dependencies in EL images and how this
influences detection accuracy.

d) Efficient-UNet + Deep SVDD: In this
model, Efficient-UNet is combined with
Deep SVDD-guided anomaly scoring, but
without the Transformer. By isolating Deep
SVDD, this setup assesses its ability to
enhance anomaly detection through
hypersphere-based scoring, examining its
effectiveness in distinguishing between
normal and defective cells.

e) Full Model (Efficient-UNet + Transformer
+ Deep SVDD): The complete student
model combines  Efficient-UNet, a
Transformer with multi-head attention, and
Deep SVDD-guided anomaly scoring. This
full configuration leverages all key
components to maximize accuracy,
robustness, and efficiency in anomaly
detection.

Table 3 presents the performance metrics
from a comprehensive ablation study conducted on
the Factory datasets to evaluate the impact of
different model configurations on anomaly
detection. Each model is assessed based on
Precision, Recall, F1 Score, and Accuracy, using a
fixed Optimal Threshold of 0.168. This evaluation
aims to balance detection performance with the
computational efficiency required for deployment
on resource-constrained edge devices. By isolating
and analyzing the contribution of each architectural
component, the study provides insights into the
effectiveness of various design choices in
optimizing anomaly detection systems. The Baseline
Efficient model sets a foundational benchmark with
a precision of 0.70, recall of 0.84, F1 score of 0.76,
and accuracy of 0.68. The introduction of the
Efficient-UNet architecture in the Baseline
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Efficient-UNet configuration improves recall to
0.85, F1 score to 0.77, and accuracy to 0.69,
indicating  better  detection of anomalies.
Incorporating Deep SVDD further enhances
precision to 0.72 and achieves the highest accuracy
among baseline configurations (0.71), reflecting a
more balanced detection performance. The
Efficient-UNet + Transformer variant achieves
similar results to the baseline Efficient-UNet, with a
recall of 0.85 and an F1 score of 0.77, showing its
competitive performance.

The Proposed Approach (Student Model)
stands out with the highest performance across all

metrics. It achieves a precision of 0.73, recall of
0.86, F1 score of 0.79, and accuracy of 0.72,
demonstrating its superiority in accurately detecting
anomalies while maintaining robustness. These
results underscore the effectiveness of the Student
Model, which successfully integrates architectural
improvements to achieve the optimal balance of
high detection performance and efficiency for edge
deployment scenarios. This thorough study
highlights the critical role of systematic evaluation
in guiding the development of effective and
resource-efficient anomaly detection models.

Table 3. Performance metrics of Ablation study of Student Model based on Factory .

Model Precision Recall F1 Accuracy ART
Baseline Efficient 0.70 0.84 0.76 0.68 ~3 ms
Baseline Efficient-UNet 0.70 0.85 0.77 0.69 ~4 ms
Efficient-UNet + Deep SVDD 0.72 0.85 0.78 0.71 ~4 ms
Efficient-UNet + Transformer 0.70 0.85 0.77 0.69 ~5 ms
Proposed  Approach  (Student ~6 ms
Model) 0.73 0.86 0.79 0.72

Figure 5 showcases confusion matrices for
five different model configurations examined during
the ablation study of the Student Model. Each
matrix presents the distribution of true versus
predicted labels for Normal and Anomalous cases.
The Baseline Efficient model displays the lowest
performance, with a significant misclassification
rate for both normal and anomalous cases.
Incorporating the Efficient-UNet architecture
slightly ~ improves classification  accuracy,
particularly for anomalous cases. However, there
remains considerable room for improvement in both
precision and recall. Adding Deep SVDD to the
Efficient-UNet architecture further enhances the
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model’s capability to correctly classify normal
cases, showing a more balanced performance.
Similarly, the Efficient-UNet + Transformer
configuration delivers marginal improvement in
identifying anomalous cases while maintaining
moderate accuracy for normal cases. Among all
configurations, the Proposed Approach (Student
Model) demonstrates the best overall performance,
achieving the highest classification accuracy for
both normal and anomalous cases, with reduced
misclassification rates. This  highlights the
effectiveness of the Student Model in addressing the
challenges of anomaly detection.
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Fig 5. Confusion matrices for various models during the ablation study on Factory dataset.

The ROC curve presented in figure 6
compares the performance of different model
configurations in terms of their ability to balance the
True Positive Rate (Sensitivity) and the False
Positive Rate for anomaly detection. Each curve
corresponds to a specific model configuration, with
the Area Under the Curve (AUC) serving as a
performance metric. Higher AUC values reflect
better overall classification performance. The
Baseline Efficient model achieves an AUC of 0.72,
while the Baseline Efficient-UNet configuration
slightly improves upon this with an AUC of 0.73,
showcasing the positive impact of integrating the
Efficient-UNet architecture. Further enhancements
are observed in the Efficient-UNet + Deep SVDD
model, which achieves an AUC of 0.75, indicating

Www.ijera.com

superior detection capabilities. Similarly, the
Efficient-UNet + Transformer achieves an AUC of
0.74, demonstrating comparable but slightly lower
performance. Among all configurations, the
Proposed Approach (Student Model) delivers the
highest performance, achieving an AUC of 0.78.
This highlights its ability to effectively balance true
positive and false positive rates, making it the most
reliable model for anomaly detection. The dashed
diagonal line represents a random guess (AUC =
0.5), providing a baseline for comparison. All tested
models significantly outperform this baseline, with
the Proposed Approach standing out as the most
effective solution, demonstrating its robust and
superior classification capabilities.
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Fig 6. ROC curve comparison of different model configurations from the ablation study on Factory dataset.

3.3 Ablation study of Teacher model

After discussing the Student Model in the
previous section, this subsection evaluates the
performance of the Teacher Model as part of the
knowledge distillation architecture. The presented
approach, namely the ResNet-101-based
convolutional attention autoencoder, is compared
with other widely recognized architectures,
including ResNet-101, ResNet-50, Inception V3,
and VGG-19 Based on Factory dataset. This
comparative analysis aims to highlight the
advantages of integrating attention layers within the
teacher model. The results presented in table 4

emphasize the positive impact of the attention
mechanism in extracting robust features from EL
images. These mechanisms help the model focus on
the most relevant regions, enhancing the quality of
the learned representations. Consequently, this leads
to improved classification accuracy and more
effective anomaly detection compared to the
baseline architectures. By incorporating attention
layers, the Teacher Model demonstrates its
superiority in feature extraction and classification,
which significantly benefits the overall knowledge
distillation process and supports the Student Model's
performance.

Table 4. Performance Evaluation of Conventional Models for Anomaly Detection on the Factory Dataset.

Model Accuracy Precision Recall F1 AUC ART
InceptionV3 0.80 0.73 0.95 0.83 0.79 ~8 ms
ResNet50 0.74 0.71 0.84 0.77 0.73 ~7 ms
~12
ResNet101 0.85 0.79 0.98 0.87 0.85 ms
~22
VGGI19 0.78 0.71 0.96 0.81 0.77 ms
Proposed Approach (Teacher ~15
model) 0.88 0.82 0.98 0.89 0.88 ms

Furthermore, the confusion matrices
illustrate the performance of different deep learning
models—InceptionV3,  ResNet50, ResNetl0l1,
VGG19, and the Proposed Approach (Teacher
model)—on the Factory dataset for anomaly
detection in electroluminescence images of solar
panels in figure 7. Each matrix visualizes the
proportion of true positives, true negatives, false
positives, and false negatives as percentages. Across
all models, the "Proposed Approach (Teacher

WWwWw.ijera.com

model)" achieved the best performance, with
98.92% accuracy in detecting anomalous images
and a notably lower false positive rate (22.77%
misclassification of normal images) compared to
other models. ResNet101 also performed well with a
similar anomalous detection rate (98.92%), but it
had a slightly higher false positive rate (27.70%).
These results demonstrate the effectiveness of the
attention-enhanced  ResNet101-based Proposed
Approach in minimizing misclassifications while
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maintaining high recall.

Other models, such as VGGI9 and
InceptionV3, showed relatively high anomaly
detection rates (96.59% and 95.52%, respectively)
but struggled with higher false positive rates
(41.37% for VGG19 and 36.43% for InceptionV3),
indicating a tendency to over-predict anomalies.
ResNet50, despite being computationally efficient,
achieved the lowest anomalous detection accuracy
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(84.41%) and the highest misclassification of
normal images (36.43%), making it less suitable for
this task. These results highlight the trade-off
between computational efficiency and anomaly
detection accuracy, with the Proposed Approach
providing a balanced solution by leveraging an
attention  mechanism to  enhance  feature
representation and classification performance.
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Fig 7. Confusion matrices of various models based on Factory dataset.
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Based on the results presented in figure 8,
the Knowledge Distillation model (proposed
approach) emerges as the most effective for
anomaly detection. This is evidenced by its
improved separation of normal and abnormal score
distributions. The plot illustrates that the normal
scores (blue) are sharply concentrated within the
lower reconstruction error range (~0.0-0.2), while
the abnormal scores (red) span a broader range
(~0.2-1.0) with minimal overlap. This distinct
separation significantly =~ reduces  potential
misclassifications, making the model highly reliable.
In comparison, the Student Model exhibits greater
overlap between the normal and abnormal scores,
particularly in the range of ~0.1-0.3. This overlap
increases the probabilities of false positives and
false negatives, diminishing its effectiveness.
Similarly, the Teacher Model shows high overlap in
the range of ~0.0-0.3, where many abnormal scores

are indistinguishable from normal ones. This
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overlap undermines its classification accuracy,
despite  the  Teacher Model’s  robustness.
Quantitatively, the Knowledge Distillation approach
achieves a more refined distribution by leveraging
the Teacher Model’s robustness while enhancing the
Student Model’s generalization. For instance, the
abnormal score peak in the Teacher Model is around
~0.2-0.3, overlapping with the normal score tail. In
contrast, the Knowledge Distillation model shifts
this peak slightly higher, reducing the overlap and
the false positive region. Additionally, the normal
score concentration in the Knowledge Distillation
model remains tightly within ~0.0-0.1, compared to
the broader spread observed in the Student Model.

These observations underscore that the
Knowledge Distillation approach offers the best
trade-off between detecting anomalies and
maintaining low misclassification rates.
Consequently, it is the most effective method among
the three models.
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Fig 8. Anomaly score distribution of the proposed approach on Factory Dataset.
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3.4 Comparison With State of art Method

To ensure a fair and comprehensive
comparison of our proposed model with state-of-
the-art approaches, we utilized the ELPV dataset,
which is widely recognized for benchmarking
performance in this domain. The dataset was pre-
processed and partitioned using a consistent train-
test split, adhering to established protocols to
maintain reproducibility and eliminate biases. By
employing the ELPV dataset, we ensure our analysis
aligns with the practices of prior studies, facilitating
meaningful comparisons with  state-of-the-art
methodologies while validating the efficacy of the
proposed approach.

Table 5 provides a detailed comparison of
various models based on accuracy and the number
of trainable parameters, illustrating the trade-offs
between performance and computational efficiency.
SeMaCNN achieves an accuracy of 0.95,
showcasing high performance but at the cost of a
large parameter count (~23.4M), making it
computationally expensive. The Pyramid Dynamic

Graph  models provide more lightweight
alternatives, with the AlexNet variant achieving an
accuracy of 0.88 using ~3.7M parameters, and the
VGG16 variant improving accuracy to 0.90 with a
reduced parameter count (~2.03M), suitable for
resource-constrained scenarios but with a slight
trade-off in accuracy. MLA-SDAL and GCGB
demonstrate strong accuracies of 0.97 and 0.96 with
parameter counts of ~5M and ~15M, respectively,
achieving a balance between computational demand
and performance. The Efficient-UNet + Transformer
+ Deep SVDD (Student Model) offers an accuracy
of 0.88 with ~4M parameters, reflecting its
lightweight design. The ResNet101 Convolutional
Attention Autoencoder (Teacher Model) achieves a
higher accuracy of 0.97 with just ~3M parameters,
highlighting its efficiency as a teacher. Finally, the
Proposed Approach (Knowledge Distillation)
achieves the same accuracy as the teacher model
(0.97) with ~7M parameters, demonstrating the
effective transfer of knowledge and performance
through distillation while maintaining a reasonable
computational cost.

Table 5. Comparison with State-of-the-Art Models Based on ELPV dataset.

Model Accuracy Trainable
Params
SeMaCNNJ17] 0.95 ~23.4M
Pyramid Dynamic Graph-AlexNet[27] 0.88 ~37M
Pyramid Dynamic Graph-VGG16 [27] 0.90 ~2.03M
MLA-SDALJ[11] 0.97 ~5M
GCGB [28] 0.96 ~15M
GAN-AE [29] 0.90 ~20M
Efficient-UNet + Transformer + Deep SVDD (Student Model) 0.88 ~4M
Resnet101 Convolutional Attention Autoencoder (Teacher Model) 0.97 ~3M
Proposed approach (Knowledge Distillation) 0.97 ~7M

Iv. Results and Discussion

The experimental results demonstrate the
effectiveness of the proposed Knowledge
Distillation (KD) framework for anomaly detection
in electroluminescence (EL) images of solar panel
cells. The KD approach was chosen for its unique
ability to balance high detection accuracy with
computational efficiency, making it ideal for
deployment in resource-constrained environments
like the Factory Solar Production Line. By distilling
knowledge from the ResNet-101 convolutional
attention autoencoder (teacher) into the Efficient-
UNet Transformer (student), the framework
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achieves superior performance while significantly
reducing computational overhead. The student
model, guided by the teacher, excels in detecting
subtle and complex defect patterns, as shown in
figure 8, where key anomaly regions in EL images
are correctly identified with high confidence. The
lightweight Efficient-UNet Transformer integrates
local and global feature learning through its encoder
and transformer layers, enabling robust anomaly
detection even under challenging conditions in real-
world production scenarios.
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Fig 8. Visual representation of solar panel reconstruction error heatmaps and anomaly scores across ELPV
dataset classes (I: 0.1, II: 0.3, III: 0.6).

Table 6 summary of the Performance of the
Proposed Approach on the Public ELPV Dataset and
the Real-World Industrial Factory Dataset. The
results highlight that while the Efficient-UNet +
Deep SVDD (Student Model) demonstrates
competitive ~ performance, the  Knowledge
Distillation (KD) approach effectively matches the
accuracy of the ResNet-101 Convolutional Attention

Autoencoder (Teacher Model), achieving higher
accuracy on both datasets with a more efficient
design. Furthermore, the results demonstrate the
effectiveness of the edge-based deep learning
model, showcasing its ability to achieve high
accuracy across both public and industrial datasets,
highlighting its potential for real-world applications.

Table 6. Overall Performance of the Proposed Framework on the Factory and ELPV Datasets.

Dataset Model Accuracy
Efficient-UNet + Deep SVDD (Student Model) 0.73

Factory ResNet-101 — Convolutional Attention Auto encoder (Teacher Model) 0.88
Knowledge Distillation (KD) 0.88
Efficient-UNet + Deep SVDD (Student Model) 0.88

ELPV ResNet-101 — Convolutional Attention Auto encoder (Teacher Model) 0.97
Knowledge Distillation (KD) 0.97

The deployment of the model in the wild has been
illustrated in figure 9, showcasing its application on
the Factory Solar Production Line. Key areas
include:

e The student model processes EL images in
real-time on edge devices installed at
inspection stations along the production
line.

e The system flags panels with potential
anomalies for further inspection, ensuring
high-quality standards.
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e Anomaly scores are integrated into
predictive maintenance pipelines, reducing
downtime by identifying early signs of
equipment degradation. The adoption of
the KD-based framework ensures scalable
and efficient deployment across multiple
stations without the need for high-
performance hardware, making it both cost-
effective and reliable for large-scale
industrial use. These results underscore the
suitability of Knowledge Distillation for
advancing the automation and accuracy of
PV cell inspection systems in dynamic
industrial settings.
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Fig 9. Knowledge Distillation deployment scenario in production lines of Factory .

While the proposed Knowledge Distillation
framework demonstrates high accuracy and
computational efficiency, there are several areas for
potential improvement. One limitation lies in the
reliance on teacher-student architecture, which can
be sensitive to the quality of knowledge transfer.
Future work could explore advanced distillation
techniques, such as mutual learning or self-
supervised pre-training, to enhance the robustness of
the student model. Additionally, the current
framework is primarily validated on EL images;
expanding its application to other defect detection
modalities (e.g., thermographic or visual inspection)
could improve versatility. Another drawback is the
model's computational demand during training,
which, though optimized for inference, may pose
challenges for resource-constrained environments.
Incorporating model compression techniques, such
as pruning or quantization, could further reduce
resource requirements without sacrificing accuracy.
Lastly, the dependence on a labeled dataset for
teacher training highlights a need for exploring
semi-supervised or unsupervised approaches to
make the framework more applicable to scenarios
with limited annotated data. By addressing these
limitations, the method can become more scalable
and robust for broader industrial applications.

V.  Conclusion

In conclusion, the proposed Knowledge
Distillation framework successfully combines the
strengths of deep learning techniques to deliver an
effective solution for anomaly detection in
electroluminescence (EL) images of solar panels. By
leveraging a ResNet-101-based Convolutional
Attention Autoencoder as the teacher model and an
Efficient-UNet Transformer with Deep SVDD-
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guided anomaly scoring as the student model, the
framework achieves high detection accuracy while
maintaining computational efficiency. This design
makes it well-suited for deployment in resource-
constrained environments, such as industrial
production lines, where real-time monitoring is
essential. The framework’s dual anomaly scoring
mechanism, combining reconstruction errors and
Deep SVDD-based scoring, enhances its ability to
detect diverse types of anomalies, even under noisy
conditions. The integration of knowledge distillation
ensures that the student model inherits the robust
feature extraction capabilities of the teacher model,
resulting in high performance with significantly
reduced resource requirements. Experimental
evaluations on both public (ELPV) and real-world
industrial (Factory ) datasets demonstrate the
framework’s superiority in balancing accuracy and
efficiency, with results matching or exceeding state-
of-the-art models. Despite its strengths, the method
has limitations, including sensitivity to the quality of
knowledge transfer and reliance on labelled data for
training the teacher model. Future work could
explore self-supervised or semi-supervised learning
techniques, as well as model compression methods
to further enhance scalability and applicability
across diverse defect detection modalities. Overall,
the proposed approach represents a significant
advancement in automated PV cell monitoring,
contributing to improved quality control and
operational efficiency in solar energy systems. By
addressing the outlined limitations in future
research, the framework can be further refined to
meet the evolving demands of industrial and real-
world applications.
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