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Abstract 
As photovoltaic (PV) systems play a critical role in the global energy supply, accurate and efficient anomaly 

detection in electroluminescence (EL) images of solar panels has become increasingly important. This paper 

presents a novel anomaly detection framework that leverages Knowledge Distillation (KD) and integrates 

reconstruction errors into a Deep Support Vector Data Description (Deep SVDD) module for enhanced 

performance. The framework utilizes a ResNet-101-based Convolutional Attention Autoencoder as the teacher 

model and an Efficient-UNet Transformer as the student model. The Efficient-UNet Transformer combines 

local and global feature extraction capabilities with transformer layers to capture long-range dependencies, 

making it highly efficient and effective. The teacher and student models' reconstruction error rates are added 

together and sent to the Deep SVDD module. This lets the system learn small representations of normal data and 

find different kinds of anomalies without needing large, labeled datasets. Experimental results on both public 

(ELPV) and private industrial (Factory ) datasets demonstrate the effectiveness of the proposed approach. The 

proposed approach achieved remarkable results, achieving an accuracy of 0.97 on the ELPV dataset and 0.88 on 

the Factory  dataset. These performance metrics represent significant improvements compared to state-of-the-art 

methods and conventional models. 
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I. Introduction 
The increasing global reliance on solar 

photovoltaic (PV) systems as a sustainable and clean 

energy source has heightened the need for effective 

and efficient monitoring methods to ensure their 

optimal operation. Problems like micro-cracks, 

hotspots, and partial shading can greatly reduce the 

amount of power that is produced, speed up the 

breakdown of PV panels, cause big financial losses, 

and shorten the life of systems. Traditional methods 

for detecting anomalies, such as visual inspections 

and statistical analyses, often struggle to identify 

subtle or complex issues effectively. This challenge 

becomes even more pronounced in large-scale 

deployments involving diverse and complex 

datasets. However, recent advancements in deep 

learning have demonstrated significant potential for 

enhancing anomaly detection in photovoltaic (PV) 

systems. Convolutional Neural Networks (CNNs) 

have been widely employed for their ability to 

extract features from image data [1], [2], making 

them suitable for detecting faults in PV panels. 

However, these methods are often limited in their 

ability to simultaneously capture both local and 

global patterns, reducing their robustness against 

varying environmental conditions and noise. 

Moreover, the effectiveness of CNN-based 

approaches typically relies on large volumes of 

labelled data, which are often difficult to obtain in 

real-world PV monitoring scenarios.Transformer 

models were first created for processing natural 

language. They have shown a lot of promise in 

computer vision tasks because they can find long-

range dependencies and contextual relationships in 

data. The self-attention mechanisms in Transformers 

effectively model complex interactions within image 

data, making them particularly adept at detecting 

subtle anomalies that may not be apparent through 

traditional methods. Recent studies have leveraged 

Transformer architectures to enhance the accuracy 

of anomaly detection in PV systems by treating 

image data points as analogous to words in a 

language model, thereby capturing intricate 

dependencies among them [3], [4]. 

 

Despite significant advancements, 

developing a model that is both accurate and 

lightweight for edge computing environments, such 

as industrial devices used in real-time photovoltaic 

(PV) system monitoring, remains a challenge. 

Models optimized for low power consumption and 

fast inference times are often necessary in these 

settings due to their constrained computational 
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resources. To address this, our study introduces a 

lightweight framework based on knowledge 

distillation, where a ResNet-101 convolutional 

attention autoencoder serves as the teacher model, 

and an Efficient-UNet Transformer with Deep 

SVDD-guided anomaly scoring acts as the student. 

This approach effectively combines the strengths of 

the UNet architecture and Transformer capabilities, 

guided by an anomaly scoring network, to enhance 

the detection of anomalies in electroluminescence 

(EL) images of solar panels—while being well-

suited for deployment on edge devices. The 

Efficient-UNet Transformer integrates an 

EfficientNet-based encoder to capture both local and 

global features with minimal computational 

overhead. The embedded Transformer layer further 

enhances the model’s ability to learn long-range 

dependencies, critical for identifying subtle and 

complex defect patterns in PV cells. Through 

knowledge distillation, the student model inherits 

the teacher's learned representations, improving 

feature extraction while maintaining computational 

efficiency. Additionally, a Deep SVDD-guided 

scoring network enables the model to form a 

compact representation of normal data in latent 

space. By combining reconstruction loss and Deep 

SVDD loss, this dual-scoring mechanism provides 

robust anomaly detection, even variable 

environmental conditions. This integrated and 

lightweight approach improves the robustness, 

accuracy, and adaptability of anomaly detection in 

PV systems, making it ideal for edge computing in 

industrial settings. Validation on benchmark 

datasets demonstrates the proposed framework’s 

performance, which matches or exceeds state-of-

the-art methods while maintaining computational 

efficiency. This contribution offers a novel and 

practical solution for PV system monitoring, 

enhancing the reliability and operational efficiency 

of solar energy systems in real-world scenarios. 

 

Key contributions of this study are as follows: 

• Introduced the Efficient-UNet + Deep 

SVDD framework tailored for anomaly 

detection in photovoltaic systems. 

• Bridged the server-based teacher model 

(ResNet-101 Convolutional Attention 

Autoencoder) with the edge-based student 

model, ensuring high efficiency and 

performance. 

• Demonstrated the practical application of 

the proposed methodology by evaluating it 

on the Factory  dataset collected from an 

industrial factory environment. 

These contributions highlight the scalability, 

efficiency, and practicality of the proposed method 

for identifying anomalies in PV systems, which 

facilitates the integration of machine learning into 

industrial quality control processes. 

 

1.1 Related Work 

 

Recently, machine learning and deep 

learning techniques have made big steps forward in 

finding problems in photovoltaic (PV) systems. 

These techniques have made fault detection much 

more accurate and reliable. Anomaly detection in 

electroluminescence (EL) images is particularly 

critical for ensuring the quality and reliability of PV 

modules. A wide range of methods, from traditional 

image processing to cutting-edge deep learning 

approaches, have been explored to address this 

challenge. 

 

Traditional methods like Independent 

Component Analysis (ICA) and matched filtering 

have been utilized to detect defects such as cracks, 

scratches, and finger interruptions in PV modules. 

Generally, these methods rely on handcrafted 

features and have limitations in effectively 

differentiating defect types [4]. Researchers have 

employed different image processing techniques, 

like anisotropic diffusion filtering, to classify micro-

cracks in EL images [5]. Furthermore, several 

studies have employed machine learning techniques 

for anomaly detection in PV systems. Laguna et al. 

[6] proposed a method based on Recursive Least 

Squares (RLS) algorithms to detect PV system faults 

with minimal data requirements. Fadhel et al. [7] 

used Principal Component Analysis (PCA) 

combined with K-Nearest Neighbours (KNN) to 

detect and classify shading faults, demonstrating 

effectiveness in handling specific PV anomaly 

types. Chandio et al. [8] focused on a machine 

learning-based multiclass anomaly detection 

approach using Random Forest (RF), Decision Tree 

(DT), Naive Bayes (NB), and Support Vector 

Machine (SVM) classifiers to enhance detection 

accuracy in hybrid active distribution networks. 

 

Researchers have extensively explored 

deep learning methods for anomaly detection in PV 

systems. Khalil et al.[9] introduced a Transformer-

based model for robust fault prediction in PV 

systems, leveraging attention mechanisms to learn 

dependencies among data points, which is 

advantageous when dealing with unclear fault 

patterns. Hwang et al. [10] proposed a Vision 

Transformer (ViT) model for detecting faults in PV 

modules using infrared thermography (IR) images, 

achieving superior performance over traditional 

deep learning methods. Chang et al. [11] developed 

a framework for PV cell anomaly detection using 

Scale Distribution Alignment Learning and 
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Multiscale Linear Attention (MLA-SDAL). This 

framework utilizes multi-head linear attention for 

efficient feature extraction and employs scale 

distribution alignment for robust anomaly detection, 

demonstrating improved adaptability to complex 

data distributions. Kang et al. [12] applied a weakly 

supervised learning approach to detect PV cell 

defects using module-level annotations, significantly 

reducing the annotation costs associated with 

traditional cell-level defect detection. In the same 

way, Tang et al. [13] proposed a deep learning 

model for automatic defect identification, which 

demonstrated high accuracy by using data 

augmentation techniques. Similarly, Su et al. [14] 

introduced a large-scale open-world dataset for 

anomaly detection, highlighting the importance of 

using diverse datasets to enhance model 

generalization. In another study, Liu et al. [15] 

proposed an efficient CNN-based detector for 

photovoltaic module cell defects using EL images, 

which employs a lightweight model based on 

EfficientNet-B0 and introduces a Graph Channel 

Attention Module (GCAM) to enhance feature 

representation by modelling global information. The 

use of Contrast Limited Adaptive Histogram 

Equalization (CLAHE) further improves image 

contrast, making defect detection more accurate. 

This method demonstrated superior performance, 

achieving an accuracy of 97.81%, F1-score of 

97.64%, and MCC of 97.32% on the PVEL dataset, 

outperforming state-of-the-art methods across 

various metrics. Also, Al-Otum [16] developed a 

CNN-based deep learning approach for classifying 

anomalies in EL images of solar PV modules. This 

study explored three different models: two based on 

transfer learning with pretrained SqueezeNet and 

GoogleNet and a lightweight CNN model (LwNet). 

Experimental validation using the ELPV dataset 

demonstrated high performance, with average 

accuracies of 94.6%, 93.95%, and 96.2% for 

GoogleNet, SqueezeNet, and LwNet, respectively. 

The LwNet model showed superior classification 

performance and time-saving efficiency compared 

to the other models. The SeMaCNN model [17], 

which combines a semi-supervised learning 

approach using a PaDiM-based feature extractor and 

a shallow classifier based on the ResNet18 

architecture, achieved an F1 score of 95.8% and 

precision of 96.9% on a dataset comprising 68,748 

EL images from a heterojunction solar cell 

manufacturing plant. This demonstrates the model's 

capability to perform well in industrial 

environments. 

 

Advanced neural network architectures, 

such as transformer neural networks, have also been 

employed for anomaly detection in PV systems. 

David et al. [18] introduced a Time Series 

Transformer (TST) for end-to-end islanding 

detection, simplifying the modelling process by 

automating feature extraction and outperforming 

other machine learning methods in terms of 

accuracy and detection time. Zhao et al. [19] 

proposed a data-driven solution for anomaly 

detection and classification in large-scale PV 

systems that does not require additional equipment 

or non-SCADA data collection. Their approach 

integrates a hierarchical context-aware anomaly 

detection method using unsupervised learning with a 

multimodal anomaly classification method, 

demonstrating effectiveness and efficiency in real-

world deployments across two large-scale solar 

farms. In another similar study, Zhao et al. [20] 

proposed the PV Cell Defects Detection 

Transformer (PD-DETR) to enhance the detection 

of small-scale defects in PV cell images, addressing 

challenges like slow convergence and complex 

backgrounds. This model combines a hybrid feature 

module with both one-to-one and one-to-many set 

matching strategies, achieving a 64.7% accuracy 

rate on the PVEL-AD dataset, thereby improving 

defect detection without relying on manual post-

processing. Furthermore, Dwivedi et al. [21] 

proposed an attention-based deep learning model 

using a Vision Transformer (ViT) to identify surface 

defects on solar PV panels and wind turbine blades 

from high-resolution images, demonstrating superior 

performance over well-known pre-trained models. 

Hybrid models that integrate deep learning with 

traditional anomaly detection techniques have also 

shown promise. CNN models combined with 

Mahalanobis distance metrics have been useful for 

dealing with uneven datasets that only have a few 

labeled examples [22]. Additionally, the application 

of the CLAHE algorithm, as utilized by Liu et al. 

[23], has proven useful in enhancing image contrast, 

thus improving the detection of subtle defects. 

 

Several advanced techniques have emerged 

to address challenges in PV anomaly detection. 

Bommes et al. [24] used supervised contrastive 

learning for anomaly detection in infrared images of 

PV modules, highlighting the potential of 

contrastive learning to enhance model robustness 

and performance. Additionally, Oliveira et al. [25] 

applied deep learning for anomaly detection in 

voltage waveform distortion due to geomagnetically 

induced currents, demonstrating the versatility of 

deep learning methods in handling diverse anomaly 

detection tasks. Zarghami et al. [26] employed a 

concurrent PV production and consumption load 

forecasting model using a CT-Transformer, 

illustrating the application of Transformer-based 

architectures to improve prediction accuracy in PV 
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systems. Additionally, Tsai et al. [18] focused on 

islanding detection using Transformer neural 

networks, underscoring the potential of 

Transformer-based architectures for real-time 

anomaly detection in PV systems. Also, in another 

study automated solar panel monitoring has 

advanced with the development of a Multi-Branch 

Spatial Pyramid Dynamic Graph Convolutional 

Neural Network (MB SPDG-CNN) [27], effectively 

integrating RGB and thermal imaging for superior 

fault detection accuracy. Some studies have 

employed unsupervised learning techniques for 

anomaly detection by leveraging reconstruction 

error rates.  

 

Despite advancements in anomaly 

detection for photovoltaic (PV) systems, significant 

challenges persist in integrating Transformer models 

with robust techniques that minimize reliance on 

labelled datasets. Many existing methods rely on 

single approaches, such as traditional supervised 

learning or standard deep learning models, which 

often require extensive labelled data and struggle to 

generalize across varying conditions. Addressing 

these limitations, N. Zhu et al. [28] proposed an 

unsupervised adversarial training framework with 

feature reconstruction constraints for anomaly 

detection in crystalline silicon solar cells, 

demonstrating strong performance using EL 

imaging without labelled data. Similarly, C. Shou et 

al. [29] introduced a hybrid approach combining 

Generative Adversarial Networks (GANs) and 

Auto-Encoders (AEs), achieving significant 

accuracy rates. Their use of Structural Similarity 

Index (SSIM) and Mean Square Error (MSE) further 

enhanced detection by addressing image distortions 

and improving feature representation. 

 

Building on these foundations, our work 

introduces a novel Knowledge Distillation 

framework that significantly extends and enhances 

prior approaches. Unlike existing studies that focus 

solely on adversarial feature reconstruction or 

emphasize image distortion metrics, our framework 

integrates a ResNet-101-based Convolutional 

Attention Autoencoder as the teacher model and a 

lightweight Efficient-UNet Transformer as the 

student model, facilitating efficient knowledge 

transfer. Moreover, we employ a dual anomaly 

scoring mechanism that combines reconstruction 

errors with Deep Support Vector Data Description 

loss, achieving enhanced robustness and improved 

accuracy in anomaly detection. 

 

These improvements ensure superior 

scalability, computational efficiency, and real-time 

applicability, making our framework particularly 

suitable for edge computing in PV system 

monitoring. Experimental results on public (ELPV) 

and private (Factory ) datasets further validate the 

framework's effectiveness, demonstrating superior 

performance compared to existing methods while 

significantly reducing computational demands, 

thereby offering a scalable and practical solution for 

industrial applications. 

II. Methodology 
The architecture of the proposed knowledge 

distillation-based approach is detailed in the 

following subsections. 

2.1 Student Model 

The student model is based on an Efficient-UNet 

Transformer, incorporating Deep SVDD-guided 

anomaly scoring. The subsequent sections further 

explain these components. 

 

2.1.1. Efficient-UNet Transformer 

The proposed architecture, illustrated in 

Figure 1, employs the EfficientNet model as the 

backbone for the U-Net encoder, integrating a 

Transformer module to capture global context 

within the student model. This U-Net model, 

enhanced with Efficient Net MBConv blocks, is 

specifically designed to improve anomaly detection 

in EL images of solar panels, which is a critical task 

for ensuring the quality and efficiency of PV 

systems. The model leverages MBConv blocks, 

which employ depth wise separable convolutions 

and squeeze-and-excitation (SE) layers to efficiently 

capture both local and global features in EL images. 

 

The encoder in the model consists of a 

series of MBConv blocks that progressively reduce 

the spatial dimensions of the input images while 

retaining essential information about potential 

defects, such as cracks, hotspots, or inactive regions 

in the solar cells. These blocks include an expansion 

phase that increases the number of channels, 

followed by depth wise convolutions to learn spatial 

patterns, and SE layers that enhance feature 

selection, making the model particularly sensitive to 

subtle variations indicative of anomalies. At the core 

of the model is a high-capacity bottleneck MBConv 

block, which serves as a feature-rich bridge between 

the encoder and decoder, designed to capture 

complex patterns and relationships within the EL 

images and to ensure that vital information about 

potential defects is preserved during feature 

compression. 

 

The input to the model is an EL image of a 

solar panel cell, denoted as 𝑋 ∈   ℝ𝐻×𝑊×𝐶 , where 

𝐻and 𝑊 are the height and width of the image, and 



Tolga Can Ceylan.International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 11, November 2025, pp 63-82 

 

A 
www.ijera.com                                    DOI: 10.9790/9622-15116382                                     67 | Page 

                

 

 

 

𝐶 is the number of color channels (typically 1 for 

grayscale images). The input image is divided into 

non-overlapping patches of size 𝑠 × 𝑠 . Each patch 

is represented as 𝑃𝑖  ∈  ℝ
𝐻

2
×

𝑊

2
×

𝐶

2 , where 𝑖 ranges 

from 1 to 
𝐻×𝑊

𝑠2 . This step enables multi-scale feature 

learning by processing the image at various 

resolutions. The Efficient Net U-Net encoder 

processes each patch through its network layers, 

consisting of a series of inverted residual blocks 

with depth wise separable convolutions and SE 

modules, and extracts hierarchical features from 

each patch using convolutional layers with down-

sampling operations: 

𝑓𝑖 = 𝐸(𝑃𝑖), 𝑓𝑜𝑟 𝑖 ∈ [1,
𝐻×𝑊

𝑠2 ],   (1) 

 

The output 𝑓𝑖 represents local feature maps, 

capturing fine-grained spatial details within each 

patch. The encoder progressively reduces the spatial 

dimensions while increasing the feature depth to 

extract higher-level features.  

To further enhance the model's performance for 

anomaly detection in EL images, a Transformer 

block with a Multi-Head Attention (MHA) 

mechanism is incorporated into the bottleneck. This 

Transformer block enables the model to capture 

long-range dependencies and complex relationships 

in the features extracted by the encoder, which is 

particularly useful for detecting subtle anomalies in 

EL images. The Transformer module 𝑇 is applied to 

the sequence of encoded features to capture long-

range dependencies and contextual information: 

𝑡𝑖 = 𝑇(𝑓𝑖), 𝑓𝑜𝑟 𝑖 ∈ [1,
𝐻×𝑊

𝑠2 ], (2) 

The Transformer with multi-head self-attention 

mechanism to compute the attention weights for 

each pair of patches, allowing the model to 

understand global patterns across the entire image:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 , 

(3) 

Here, 𝑄, 𝐾, 𝑉 represent the query, key, and value 

matrices derived from the encoded features, and 𝑑𝑘 

is the dimensionality of the key vectors.The decoder 

𝐷 reconstructs the segmentation map using both the 

local feature maps 𝑓𝑖 from the encoder and the 

global context-enhanced features 𝑡𝑖 from the 

Transformer:  

0𝑖 = 𝐷(𝑡𝑖 , 𝑓𝑖), (4) 

The decoder mirrors the encoder's structure, 

utilizing up-sampling layers and additional MBConv 

blocks to restore the spatial resolution of the input 

images. Skip connections between the encoder and 

decoder layers help retain high-resolution details, 

which are crucial for accurately identifying the 

location and extent of anomalies. The final output 

layer produces a segmentation mask that highlights 

potential defects in the EL images, enabling precise 

anomaly detection. By integrating Efficient Net’s 

refined MBConv blocks, the U-Net model balances 

high accuracy and low computational cost, making 

it well-suited for real-time monitoring and quality 

control of solar panels. The detailed architecture of 

the proposed approach is summarized in Table 1. 

 

Tabel 1. Efficient U-Net with Transformer Architecture and Parameters. 

Type Output Shape #Param Connected To 

InputLayer (None, 128, 128, 3) 0 - 

MBConv (6× Expansion) (None, 128, 128, 32) 936 Input 

MaxPooling2D (None, 64, 64, 32) 0 MBConv Block 1 

MBConv (6×  Expansion) (None, 64, 64, 64) 16,546 MaxPooling2D_1 

MaxPooling2D (None, 32, 32, 64) 0 MBConv Block 2 

MBConv (6×  Expansion) (None, 32, 32, 128) 65,554 MaxPooling2D_2 

MaxPooling2D (None, 16, 16, 128) 0 MBConv Block 3 

MBConv (6×  Expansion) (None, 16, 16, 256) 262,912 MaxPooling2D_3 

MaxPooling2D (None, 8, 8, 256) 0 MBConv Block 4 

MBConv (6× Expansion) (None, 8, 8, 512) 1,050,624 MaxPooling2D_4 

Reshape (None, 64, 512) 0 Bottleneck MBConv Block 

Transformer Block (MHA) (None, 64, 512) 526,848 Reshape 

Reshape (None, 8, 8, 512) 0 Transformer Block (MHA) 

Conv2DTranspose (None, 16, 16, 256) 524,544 Transformer Block (Bottleneck) 

Concatenate (None, 16, 16, 512) 0 Up-sample 1, MBConv Block 4 

MBConv (6× Expansion) (None, 16, 16, 256) 1,042,048 Concatenate 1 

Conv2DTranspose (None, 32, 32, 128) 131,200 MBConv Block 5 

Concatenate (None, 32, 32, 256) 0 Up-sample 2, MBConv Block 3 

MBConv (6× Expansion) (None, 32, 32, 128) 262,912 Concatenate 2 

Conv2DTranspose (None, 64, 64, 64) 32,832 MBConv Block 6 

Concatenate (None, 64, 64, 128) 0 Up-sample 3, MBConv Block 2 
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MBConv (6× Expansion) (None, 64, 64, 64) 65,554 Concatenate 3 

Conv2DTranspose (None, 128, 128, 32) 8,224 MBConv Block 7 

Concatenate (None, 128, 128, 64) 0 Up-sample 4, MBConv Block 1 

MBConv (6× Expansion) (None, 128, 128, 32) 16,546 Concatenate 4 

Conv2D (Output) (None, 128, 128, 1) 33 MBConv Block 8 

 

 

 
Fig 1. Efficient-UNet Transformer student model architecture. 

2.1.2. Deep SVDD-Guided Anomaly Scoring 

 

The Deep Support Vector Data Description 

(Deep SVDD) is a powerful technique for 

unsupervised anomaly detection that learns a 

compact representation of normal data by mapping 

it into a hypersphere in the latent space. This 

method is particularly effective for detecting outliers 

without the need for extensive labelled datasets, 

which aligns well with real-world scenarios in PV 

monitoring, where labelled anomalous data can be 

scarce. Deep SVDD aims to minimize the volume of 

a hypersphere that encloses most of the normal data 

points in a feature space, defined by a center ccc and 

a radius 𝑅. The optimization objective of Deep 

SVDD is formulated as: 

𝑀𝑖𝑛𝑅,𝑊𝑅2 +
1

𝜈𝑁
max (0, ||𝑓𝑤(𝑥𝑖) − 𝑐||

2
−

𝑅2),  

(5) 

Where 𝑓𝑤(𝑥𝑖)is the learned feature extraction 

function parameterized by weights 𝑊, 𝑥𝑖represents 

an input image, 𝑐 is the center of the hypersphere in 

the latent space, typically computed as the mean of 

the feature vectors obtained during training, 𝜈 is a 

regularization parameter that controls the balance 

between minimizing the volume of the hypersphere 

and allowing some data points to lie outside of it, 

and 𝑁 is the number of training samples. The 

objective is to find a feature space where normal 

data points lie close to ccc, while anomalies are 

identified by their deviation from this center. The 

anomaly score for a given input is derived from two 

components; firstly, the discrepancy between the 

input 𝑥 and its reconstructed version 𝑥̂ is calculated: 

Reconstruction Error=∥ 𝑥 − 𝑥̂  ∥2, (6) 

Secondly, the distance of the latent features from the 

center 𝑐: 

SVDD Score=∥ 𝑓𝑤(𝑥) −  𝑐 ∥2, (7) 

The combined anomaly score is formulated as: 

Anomaly Score(x)= ∥ 𝑥 − 𝑥̂  ∥2+
∥ 𝑓𝑤(𝑥) −  𝑐 ∥2, 

(8) 

High anomaly scores indicate inputs that deviate 

significantly from normal patterns, suggesting 

defects or faults.  

2.2 Teacher Model 

The convolutional attention autoencoder, built on 

the ResNet-101 backbone, is a sophisticated model 

designed to capture detailed and hierarchical 

representations of EL image data, as presented in 

figure 2. In this framework, the ResNet-101-based 

encoder processes images through multiple residual 

blocks, each layer progressively extracting complex 

features. The deep residual learning structure of 

ResNet-101 allows the model to capture multi-level 

representations—from low-level textures to high-

level semantic patterns—while using skip 

connections to maintain gradient flow, which is 

essential for learning deep, abstract features 

effectively. This architecture is particularly well-

suited to identifying subtle patterns and variations in 

EL images that might indicate anomalies, a critical 

requirement in anomaly detection tasks. 
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Attention mechanisms embedded within 

the encoder guide the model’s focus to the most 

relevant regions of the image, dynamically assigning 

weights to areas of interest. These attention layers 

work by learning to emphasize the parts of the 

image most likely to contain meaningful 

information, such as regions with slight 

irregularities or unique features. This selective focus 

enables the encoder to capture finer details without 

being overwhelmed by irrelevant information, 

improving its ability to detect anomalies. By 

highlighting these key regions, the attention 

modules ensure that the encoder emphasizes the 

features most critical for distinguishing normal from 

anomalous data. 

The decoder portion of the autoencoder 

reconstructs the encoded features back into the 

original image space, attempting to regenerate the 

input image from its learned representations. The 

quality of this reconstruction serves as a metric for 

anomaly detection: any significant discrepancies 

between the reconstructed and original images 

indicate potential anomalies. In the context of 

knowledge distillation, the output from this 

attention-driven autoencoder serves as a guide for 

the student model, transferring the valuable 

representations learned from the teacher model’s 

complex, attention-focused encoding. This process 

enables the student model to inherit the attention-

guided insights of the teacher, empowering it to 

perform accurate anomaly detection based on 

learned, nuanced patterns in the data, the 

architecture of presented teacher model presented in 

table 2. 

Tabel 2. Summary of the Teacher Model Architecture. 

Layer Name Type Output Shape 
Number of 

Parameters 

Input Layer Input (224, 224, 3) 0 

Encoder - - - 

- ResNet101 Base Convolutional (7, 7, 2048) 44.5 million (frozen) 

- Attention Block Custom Attention (7, 7, 256) 527,104 

- Conv2D (f, g, h) Conv2D (7, 7, 256) each 1,576,960 

- Add Add Layer (7, 7, 256) 0 

- ReLU Activation Activation (7, 7, 256) 0 

- Conv2D (sigmoid) Conv2D (7, 7, 1) 257 

- Multiply Multiply Layer (7, 7, 256) 0 

Decoder - - - 

- Conv2DTranspose (1) Transposed Conv (14, 14, 256) 590,080 

- ReLU Activation Activation (14, 14, 256) 0 

- Conv2DTranspose (2) Transposed Conv (28, 28, 128) 295,040 

- ReLU Activation Activation (28, 28, 128) 0 

- Conv2DTranspose (3) Transposed Conv (56, 56, 64) 73,792 

- ReLU Activation Activation (56, 56, 64) 0 

- Conv2DTranspose (4) Transposed Conv (112,112, 32) 18,464 

- ReLU Activation Activation (112,112, 32) 0 

- Conv2DTranspose (4) Transposed Conv (224, 224, 3) 867 
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Fig 2. ResNet-101-based convolution encoder teacher model architecture. 

2.3 Proposed Approach 

The proposed framework for anomaly 

detection in electroluminescence (EL) images of 

solar panel cells integrates the strengths of a 

ResNet-101-based convolutional attention 

autoencoder as the teacher model and an Efficient-

UNet Transformer as the student model through a 

knowledge distillation (KD) approach, as presented 

in figure 3. Reconstruction error rates from both 

models are fed into a Deep SVDD-guided anomaly 

scoring mechanism, enabling robust and precise 

anomaly detection. The teacher model captures 

detailed and hierarchical representations of EL 

images using its ResNet-101-based encoder, which 

emphasizes critical regions through residual blocks 

and attention mechanisms. Its decoder reconstructs 

these feature representations, with reconstruction 

errors serving as a key basis for anomaly 

identification. Through the knowledge distillation 

process, the teacher model’s feature-rich outputs 

guide the student model, transferring advanced 

representations to enhance its learning and detection 

capabilities. 

The student model, an Efficient-UNet 

Transformer, combines EfficientNet and U-Net 

architectures to deliver computationally efficient 

and highly accurate anomaly detection. Its 

EfficientNet-based encoder uses MBConv blocks 

with depthwise separable convolutions and squeeze-

and-excitation layers to preserve fine-grained spatial 

details while enabling multi-scale hierarchical 

feature extraction. At the bottleneck, a Transformer 

block with multi-head attention captures long-range 

dependencies and complex relationships, further 

refining feature representations. The decoder, 

equipped with up-sampling layers and skip 

connections, produces high-resolution segmentation 

masks that precisely localize potential defects in EL 

images. This design ensures the student model 

achieves comparable performance to the teacher 

model while maintaining computational efficiency, 

making it suitable for edge computing 

environments.To further enhance detection 

accuracy, the framework incorporates Deep SVDD-

guided anomaly scoring, which maps normal data 

into a hypersphere in latent space, minimizing the 

hypersphere’s volume to encapsulate normal data 

points. Anomalies are scored using both 

reconstruction error and the distance of feature 

representations from the hypersphere’s center. This 

dual scoring system combines the Efficient-UNet’s 

reconstruction capabilities with Deep SVDD’s 

compact latent representation, enabling the detection 

of diverse anomaly types with high precision. By 
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integrating hierarchical representation learning, 

global context capture, and advanced anomaly 

scoring, the proposed framework ensures robust and 

accurate EL image analysis, supporting effective 

quality control in photovoltaic systems. 

 

 
Fig 3. Architecture of proposed framework. 

 

III. Experimental Results 
The training and testing configuration of 

the proposed anomaly detection model for 

electroluminescence (EL) images is designed for 

efficient, high-accuracy performance. The model, an 

Efficient-UNet Transformer Autoencoder, 

incorporates custom Swish activation and an 

EfficientNet-based encoder combined with a 

Transformer bottleneck to capture local and global 

features for robust anomaly detection. Compiled 

with the Adam optimizer and Mean Squared Error 

(MSE) loss, the model is trained using a normalized 

dataset, rescaled by 1/255. Image data generator 

facilitates data preprocessing, resizing images to 

224×224 pixels with a batch size of 4 to align with 

memory constraints. The model undergoes 500 

training epochs, with a final saved version enabling 

future deployment. This configuration, utilizing only 

normal images for training, effectively captures 

patterns typical of defect-free cells, allowing for 

anomaly scoring based on deviations in 

reconstructed images. 

3.1 Datasets 

 

In this study, we utilized two datasets for 

anomaly detection in electroluminescence (EL) 

images of solar cells, as presented in figure 4. The 

primary dataset, Visual Identification of Defective 

Solar Cells in Electroluminescence Imagery 

(referred to as the ELPV dataset), consists of 2,624 

samples of 300×300-pixel 8-bit grayscale images 

representing both functional and defective solar 

cells with varying degrees of degradation. These 

images, extracted from 44 distinct solar modules, 

contain annotated defects categorized as intrinsic or 

extrinsic, both of which contribute to reduced power 

efficiency in solar modules. The images are 

standardized for size and perspective, and any 

distortion from the camera lens used during image 

acquisition was corrected prior to solar cell 

extraction. For this study, we classified the samples 

into two categories: normal and anomalous. 

Additionally, in a real-world setting, we 

collaborated with the PV factory to collect EL 

images of solar panel cells directly from the 

production line. This dataset includes 4,000 

images—2,000 labeled as normal and 2,000 labeled 

as anomalous, displaying defects with both micro 

and macro cracks. This additional dataset offers a 

practical perspective on defect detection, capturing 

naturally occurring variations in a production 

environment and enhancing the robustness of our 

analysis.  
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Fig 4. Experimental dataset utilized in this study. 

  

3.2 Ablation study of Student Model 

The ablation study of the student model 

systematically examines the influence of key 

components—Efficient-UNet, Transformer block, 

and Deep SVDD-guided anomaly scoring—on 

anomaly detection performance for 

electroluminescence (EL) images. Through a series 

of ablation configurations, we isolate the 

contributions of each element to understand its 

effect on detection accuracy, computational 

efficiency, and robustness. The study includes the 

following configurations: 

a) Efficient Net: This configuration uses only 

the EfficientNet backbone without the U-

Net architecture, Transformer, or Deep 

SVDD components. By isolating 

EfficientNet, we establish a baseline that 

reflects the performance of a simplified, 

efficient feature extractor, allowing 

comparison with more complex 

architectures. 

b) Baseline Efficient-UNet: Here, the 

Efficient-UNet architecture is used alone, 

without the Transformer block or Deep 

SVDD anomaly scoring. This configuration 

provides a direct comparison to the 

standard U-Net structure for anomaly 

detection, serving as a foundational model 

for assessing the benefits of adding more 

advanced components. 

c) Efficient-UNet + Transformer: This setup 

includes the Transformer block in the 

Efficient-UNet architecture but excludes 

Deep SVDD-guided scoring. This 

configuration isolates the effect of the 

Transformer, enabling analysis of its 

contribution to capture long-range 

dependencies in EL images and how this 

influences detection accuracy. 

d) Efficient-UNet + Deep SVDD: In this 

model, Efficient-UNet is combined with 

Deep SVDD-guided anomaly scoring, but 

without the Transformer. By isolating Deep 

SVDD, this setup assesses its ability to 

enhance anomaly detection through 

hypersphere-based scoring, examining its 

effectiveness in distinguishing between 

normal and defective cells. 

e) Full Model (Efficient-UNet + Transformer 

+ Deep SVDD): The complete student 

model combines Efficient-UNet, a 

Transformer with multi-head attention, and 

Deep SVDD-guided anomaly scoring. This 

full configuration leverages all key 

components to maximize accuracy, 

robustness, and efficiency in anomaly 

detection. 

 

Table 3 presents the performance metrics 

from a comprehensive ablation study conducted on 

the Factory  datasets to evaluate the impact of 

different model configurations on anomaly 

detection. Each model is assessed based on 

Precision, Recall, F1 Score, and Accuracy, using a 

fixed Optimal Threshold of 0.168. This evaluation 

aims to balance detection performance with the 

computational efficiency required for deployment 

on resource-constrained edge devices. By isolating 

and analyzing the contribution of each architectural 

component, the study provides insights into the 

effectiveness of various design choices in 

optimizing anomaly detection systems. The Baseline 

Efficient model sets a foundational benchmark with 

a precision of 0.70, recall of 0.84, F1 score of 0.76, 

and accuracy of 0.68. The introduction of the 

Efficient-UNet architecture in the Baseline 
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Efficient-UNet configuration improves recall to 

0.85, F1 score to 0.77, and accuracy to 0.69, 

indicating better detection of anomalies. 

Incorporating Deep SVDD further enhances 

precision to 0.72 and achieves the highest accuracy 

among baseline configurations (0.71), reflecting a 

more balanced detection performance. The 

Efficient-UNet + Transformer variant achieves 

similar results to the baseline Efficient-UNet, with a 

recall of 0.85 and an F1 score of 0.77, showing its 

competitive performance. 

The Proposed Approach (Student Model) 

stands out with the highest performance across all 

metrics. It achieves a precision of 0.73, recall of 

0.86, F1 score of 0.79, and accuracy of 0.72, 

demonstrating its superiority in accurately detecting 

anomalies while maintaining robustness. These 

results underscore the effectiveness of the Student 

Model, which successfully integrates architectural 

improvements to achieve the optimal balance of 

high detection performance and efficiency for edge 

deployment scenarios. This thorough study 

highlights the critical role of systematic evaluation 

in guiding the development of effective and 

resource-efficient anomaly detection models. 

 

Table 3. Performance metrics of Ablation study of Student Model based on Factory . 

Model Precision Recall F1  Accuracy  ART 

Baseline Efficient 0.70 0.84 0.76 0.68 ~3 ms 

Baseline Efficient-UNet 0.70 0.85 0.77 0.69 ~4 ms 

Efficient-UNet + Deep SVDD 0.72 0.85 0.78 0.71 ~4 ms 

Efficient-UNet + Transformer 0.70 0.85 0.77 0.69 ~5 ms 

Proposed Approach (Student 

Model) 0.73 0.86 0.79 0.72 

~6 ms 

 

Figure 5 showcases confusion matrices for 

five different model configurations examined during 

the ablation study of the Student Model. Each 

matrix presents the distribution of true versus 

predicted labels for Normal and Anomalous cases. 

The Baseline Efficient model displays the lowest 

performance, with a significant misclassification 

rate for both normal and anomalous cases. 

Incorporating the Efficient-UNet architecture 

slightly improves classification accuracy, 

particularly for anomalous cases. However, there 

remains considerable room for improvement in both 

precision and recall.  Adding Deep SVDD to the 

Efficient-UNet architecture further enhances the 

model’s capability to correctly classify normal 

cases, showing a more balanced performance. 

Similarly, the Efficient-UNet + Transformer 

configuration delivers marginal improvement in 

identifying anomalous cases while maintaining 

moderate accuracy for normal cases. Among all 

configurations, the Proposed Approach (Student 

Model) demonstrates the best overall performance, 

achieving the highest classification accuracy for 

both normal and anomalous cases, with reduced 

misclassification rates. This highlights the 

effectiveness of the Student Model in addressing the 

challenges of anomaly detection. 

 

  
a) Baseline Efficient b) Baseline Efficient-UNet 
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c) Efficient-UNet + Deep SVDD d) Efficient-UNet + Transformer 

 

 
e) Proposed Approach (Student Model) 

Fig 5. Confusion matrices for various models during the ablation study on Factory  dataset. 

 

The ROC curve presented in figure 6 

compares the performance of different model 

configurations in terms of their ability to balance the 

True Positive Rate (Sensitivity) and the False 

Positive Rate for anomaly detection. Each curve 

corresponds to a specific model configuration, with 

the Area Under the Curve (AUC) serving as a 

performance metric. Higher AUC values reflect 

better overall classification performance. The 

Baseline Efficient model achieves an AUC of 0.72, 

while the Baseline Efficient-UNet configuration 

slightly improves upon this with an AUC of 0.73, 

showcasing the positive impact of integrating the 

Efficient-UNet architecture. Further enhancements 

are observed in the Efficient-UNet + Deep SVDD 

model, which achieves an AUC of 0.75, indicating 

superior detection capabilities. Similarly, the 

Efficient-UNet + Transformer achieves an AUC of 

0.74, demonstrating comparable but slightly lower 

performance. Among all configurations, the 

Proposed Approach (Student Model) delivers the 

highest performance, achieving an AUC of 0.78. 

This highlights its ability to effectively balance true 

positive and false positive rates, making it the most 

reliable model for anomaly detection. The dashed 

diagonal line represents a random guess (AUC = 

0.5), providing a baseline for comparison. All tested 

models significantly outperform this baseline, with 

the Proposed Approach standing out as the most 

effective solution, demonstrating its robust and 

superior classification capabilities. 
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Fig 6. ROC curve comparison of different model configurations from the ablation study on Factory  dataset. 

3.3 Ablation study of Teacher model 

 

After discussing the Student Model in the 

previous section, this subsection evaluates the 

performance of the Teacher Model as part of the 

knowledge distillation architecture. The presented 

approach, namely the ResNet-101-based 

convolutional attention autoencoder, is compared 

with other widely recognized architectures, 

including ResNet-101, ResNet-50, Inception V3, 

and VGG-19 Based on Factory  dataset. This 

comparative analysis aims to highlight the 

advantages of integrating attention layers within the 

teacher model. The results presented in table 4 

emphasize the positive impact of the attention 

mechanism in extracting robust features from EL 

images. These mechanisms help the model focus on 

the most relevant regions, enhancing the quality of 

the learned representations. Consequently, this leads 

to improved classification accuracy and more 

effective anomaly detection compared to the 

baseline architectures. By incorporating attention 

layers, the Teacher Model demonstrates its 

superiority in feature extraction and classification, 

which significantly benefits the overall knowledge 

distillation process and supports the Student Model's 

performance. 

 

Table 4. Performance Evaluation of Conventional Models for Anomaly Detection on the Factory  Dataset. 

Model Accuracy Precision Recall F1  AUC ART  

InceptionV3 0.80 0.73 0.95 0.83 0.79 ~8 ms 

ResNet50 0.74 0.71 0.84 0.77 0.73 ~7 ms 

ResNet101 0.85 0.79 0.98 0.87 0.85 

~12 

ms 

VGG19 0.78 0.71 0.96 0.81 0.77 

~22 

ms 

Proposed Approach (Teacher 

model) 0.88 0.82 0.98 0.89 0.88 

~15 

ms 

 

Furthermore, the confusion matrices 

illustrate the performance of different deep learning 

models—InceptionV3, ResNet50, ResNet101, 

VGG19, and the Proposed Approach (Teacher 

model)—on the Factory  dataset for anomaly 

detection in electroluminescence images of solar 

panels in figure 7. Each matrix visualizes the 

proportion of true positives, true negatives, false 

positives, and false negatives as percentages. Across 

all models, the "Proposed Approach (Teacher 

model)" achieved the best performance, with 

98.92% accuracy in detecting anomalous images 

and a notably lower false positive rate (22.77% 

misclassification of normal images) compared to 

other models. ResNet101 also performed well with a 

similar anomalous detection rate (98.92%), but it 

had a slightly higher false positive rate (27.70%). 

These results demonstrate the effectiveness of the 

attention-enhanced ResNet101-based Proposed 

Approach in minimizing misclassifications while 
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maintaining high recall. 

Other models, such as VGG19 and 

InceptionV3, showed relatively high anomaly 

detection rates (96.59% and 95.52%, respectively) 

but struggled with higher false positive rates 

(41.37% for VGG19 and 36.43% for InceptionV3), 

indicating a tendency to over-predict anomalies. 

ResNet50, despite being computationally efficient, 

achieved the lowest anomalous detection accuracy 

(84.41%) and the highest misclassification of 

normal images (36.43%), making it less suitable for 

this task. These results highlight the trade-off 

between computational efficiency and anomaly 

detection accuracy, with the Proposed Approach 

providing a balanced solution by leveraging an 

attention mechanism to enhance feature 

representation and classification performance. 

 

  
a) InceptionV3 b) ResNet50 

  
c) ResNet101 d) VGG19 

 
e) Proposed Approach (Teacher model) 

Fig 7. Confusion matrices of various models based on Factory  dataset. 
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Based on the results presented in figure 8, 

the Knowledge Distillation model (proposed 

approach) emerges as the most effective for 

anomaly detection. This is evidenced by its 

improved separation of normal and abnormal score 

distributions. The plot illustrates that the normal 

scores (blue) are sharply concentrated within the 

lower reconstruction error range (~0.0–0.2), while 

the abnormal scores (red) span a broader range 

(~0.2–1.0) with minimal overlap. This distinct 

separation significantly reduces potential 

misclassifications, making the model highly reliable. 

In comparison, the Student Model exhibits greater 

overlap between the normal and abnormal scores, 

particularly in the range of ~0.1–0.3. This overlap 

increases the probabilities of false positives and 

false negatives, diminishing its effectiveness. 

Similarly, the Teacher Model shows high overlap in 

the range of ~0.0–0.3, where many abnormal scores 

are indistinguishable from normal ones. This 

overlap undermines its classification accuracy, 

despite the Teacher Model’s robustness. 

Quantitatively, the Knowledge Distillation approach 

achieves a more refined distribution by leveraging 

the Teacher Model’s robustness while enhancing the 

Student Model’s generalization. For instance, the 

abnormal score peak in the Teacher Model is around 

~0.2–0.3, overlapping with the normal score tail. In 

contrast, the Knowledge Distillation model shifts 

this peak slightly higher, reducing the overlap and 

the false positive region. Additionally, the normal 

score concentration in the Knowledge Distillation 

model remains tightly within ~0.0–0.1, compared to 

the broader spread observed in the Student Model. 

These observations underscore that the 

Knowledge Distillation approach offers the best 

trade-off between detecting anomalies and 

maintaining low misclassification rates. 

Consequently, it is the most effective method among 

the three models. 

 

  
a) Student Model b) Teacher Model 

 
c) Knowledge Distillation 

Fig 8. Anomaly score distribution of the proposed approach on Factory  Dataset. 
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3.4 Comparison With State of art Method 

To ensure a fair and comprehensive 

comparison of our proposed model with state-of-

the-art approaches, we utilized the ELPV dataset, 

which is widely recognized for benchmarking 

performance in this domain. The dataset was pre-

processed and partitioned using a consistent train-

test split, adhering to established protocols to 

maintain reproducibility and eliminate biases. By 

employing the ELPV dataset, we ensure our analysis 

aligns with the practices of prior studies, facilitating 

meaningful comparisons with state-of-the-art 

methodologies while validating the efficacy of the 

proposed approach. 

 

Table 5 provides a detailed comparison of 

various models based on accuracy and the number 

of trainable parameters, illustrating the trade-offs 

between performance and computational efficiency. 

SeMaCNN achieves an accuracy of 0.95, 

showcasing high performance but at the cost of a 

large parameter count (~23.4M), making it 

computationally expensive. The Pyramid Dynamic 

Graph models provide more lightweight 

alternatives, with the AlexNet variant achieving an 

accuracy of 0.88 using ~3.7M parameters, and the 

VGG16 variant improving accuracy to 0.90 with a 

reduced parameter count (~2.03M), suitable for 

resource-constrained scenarios but with a slight 

trade-off in accuracy. MLA-SDAL and GCGB 

demonstrate strong accuracies of 0.97 and 0.96 with 

parameter counts of ~5M and ~15M, respectively, 

achieving a balance between computational demand 

and performance. The Efficient-UNet + Transformer 

+ Deep SVDD (Student Model) offers an accuracy 

of 0.88 with ~4M parameters, reflecting its 

lightweight design. The ResNet101 Convolutional 

Attention Autoencoder (Teacher Model) achieves a 

higher accuracy of 0.97 with just ~3M parameters, 

highlighting its efficiency as a teacher. Finally, the 

Proposed Approach (Knowledge Distillation) 

achieves the same accuracy as the teacher model 

(0.97) with ~7M parameters, demonstrating the 

effective transfer of knowledge and performance 

through distillation while maintaining a reasonable 

computational cost. 

 

Table 5. Comparison with State-of-the-Art Models Based on ELPV dataset. 

Model  Accuracy  Trainable 

Params 

SeMaCNN[17] 0.95 ~ 23.4M 

Pyramid Dynamic Graph-AlexNet[27] 0.88 ~ 3.7 M 

Pyramid Dynamic Graph-VGG16 [27] 0.90 ~ 2.03 M 

MLA-SDAL[11] 0.97 ~ 5 M 

GCGB [28] 0.96 ~ 15 M 

GAN-AE [29] 0.90 ~ 20 M 

Efficient-UNet + Transformer + Deep SVDD (Student Model) 0.88 ~ 4 M 

Resnet101 Convolutional Attention Autoencoder (Teacher Model) 0.97 ~ 3 M 

Proposed approach (Knowledge Distillation) 0.97 ~ 7 M 

IV. Results and Discussion 

The experimental results demonstrate the 

effectiveness of the proposed Knowledge 

Distillation (KD) framework for anomaly detection 

in electroluminescence (EL) images of solar panel 

cells. The KD approach was chosen for its unique 

ability to balance high detection accuracy with 

computational efficiency, making it ideal for 

deployment in resource-constrained environments 

like the Factory  Solar Production Line. By distilling 

knowledge from the ResNet-101 convolutional 

attention autoencoder (teacher) into the Efficient-

UNet Transformer (student), the framework 

achieves superior performance while significantly 

reducing computational overhead. The student 

model, guided by the teacher, excels in detecting 

subtle and complex defect patterns, as shown in 

figure 8, where key anomaly regions in EL images 

are correctly identified with high confidence. The 

lightweight Efficient-UNet Transformer integrates 

local and global feature learning through its encoder 

and transformer layers, enabling robust anomaly 

detection even under challenging conditions in real-

world production scenarios. 
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a)  

   
b)  

   
c)  

Fig 8. Visual representation of solar panel reconstruction error heatmaps and anomaly scores across ELPV 

dataset classes (I: 0.1, II: 0.3, III: 0.6). 

 

Table 6 summary of the Performance of the 

Proposed Approach on the Public ELPV Dataset and 

the Real-World Industrial Factory  Dataset. The 

results highlight that while the Efficient-UNet + 

Deep SVDD (Student Model) demonstrates 

competitive performance, the Knowledge 

Distillation (KD) approach effectively matches the 

accuracy of the ResNet-101 Convolutional Attention 

Autoencoder (Teacher Model), achieving higher 

accuracy on both datasets with a more efficient 

design. Furthermore, the results demonstrate the 

effectiveness of the edge-based deep learning 

model, showcasing its ability to achieve high 

accuracy across both public and industrial datasets, 

highlighting its potential for real-world applications. 

 

Table 6. Overall Performance of the Proposed Framework on the Factory  and ELPV Datasets. 

Dataset  Model  Accuracy  

 

Factory  

Efficient-UNet + Deep SVDD (Student Model) 0.73 

ResNet-101 – Convolutional Attention Auto encoder (Teacher Model) 0.88 

Knowledge Distillation (KD) 0.88 

 

ELPV 

Efficient-UNet + Deep SVDD (Student Model) 0.88 

ResNet-101 – Convolutional Attention Auto encoder (Teacher Model) 0.97 

Knowledge Distillation (KD) 0.97 

 

The deployment of the model in the wild has been 

illustrated in figure 9, showcasing its application on 

the Factory  Solar Production Line. Key areas 

include: 

 

• The student model processes EL images in 

real-time on edge devices installed at 

inspection stations along the production 

line. 

• The system flags panels with potential 

anomalies for further inspection, ensuring 

high-quality standards. 

• Anomaly scores are integrated into 

predictive maintenance pipelines, reducing 

downtime by identifying early signs of 

equipment degradation. The adoption of 

the KD-based framework ensures scalable 

and efficient deployment across multiple 

stations without the need for high-

performance hardware, making it both cost-

effective and reliable for large-scale 

industrial use. These results underscore the 

suitability of Knowledge Distillation for 

advancing the automation and accuracy of 

PV cell inspection systems in dynamic 

industrial settings. 
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Fig 9. Knowledge Distillation deployment scenario in production lines of Factory . 

 

While the proposed Knowledge Distillation 

framework demonstrates high accuracy and 

computational efficiency, there are several areas for 

potential improvement. One limitation lies in the 

reliance on teacher-student architecture, which can 

be sensitive to the quality of knowledge transfer. 

Future work could explore advanced distillation 

techniques, such as mutual learning or self-

supervised pre-training, to enhance the robustness of 

the student model. Additionally, the current 

framework is primarily validated on EL images; 

expanding its application to other defect detection 

modalities (e.g., thermographic or visual inspection) 

could improve versatility. Another drawback is the 

model's computational demand during training, 

which, though optimized for inference, may pose 

challenges for resource-constrained environments. 

Incorporating model compression techniques, such 

as pruning or quantization, could further reduce 

resource requirements without sacrificing accuracy. 

Lastly, the dependence on a labeled dataset for 

teacher training highlights a need for exploring 

semi-supervised or unsupervised approaches to 

make the framework more applicable to scenarios 

with limited annotated data. By addressing these 

limitations, the method can become more scalable 

and robust for broader industrial applications. 

V. Conclusion 
In conclusion, the proposed Knowledge 

Distillation framework successfully combines the 

strengths of deep learning techniques to deliver an 

effective solution for anomaly detection in 

electroluminescence (EL) images of solar panels. By 

leveraging a ResNet-101-based Convolutional 

Attention Autoencoder as the teacher model and an 

Efficient-UNet Transformer with Deep SVDD-

guided anomaly scoring as the student model, the 

framework achieves high detection accuracy while 

maintaining computational efficiency. This design 

makes it well-suited for deployment in resource-

constrained environments, such as industrial 

production lines, where real-time monitoring is 

essential. The framework’s dual anomaly scoring 

mechanism, combining reconstruction errors and 

Deep SVDD-based scoring, enhances its ability to 

detect diverse types of anomalies, even under noisy 

conditions. The integration of knowledge distillation 

ensures that the student model inherits the robust 

feature extraction capabilities of the teacher model, 

resulting in high performance with significantly 

reduced resource requirements. Experimental 

evaluations on both public (ELPV) and real-world 

industrial (Factory ) datasets demonstrate the 

framework’s superiority in balancing accuracy and 

efficiency, with results matching or exceeding state-

of-the-art models. Despite its strengths, the method 

has limitations, including sensitivity to the quality of 

knowledge transfer and reliance on labelled data for 

training the teacher model. Future work could 

explore self-supervised or semi-supervised learning 

techniques, as well as model compression methods 

to further enhance scalability and applicability 

across diverse defect detection modalities.  Overall, 

the proposed approach represents a significant 

advancement in automated PV cell monitoring, 

contributing to improved quality control and 

operational efficiency in solar energy systems. By 

addressing the outlined limitations in future 

research, the framework can be further refined to 

meet the evolving demands of industrial and real-

world applications. 
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