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Abstract

This paper investigates the generalized quadratic Diophantine equation x? + p?y? = qz? for positive integers
x,y,z and distinct primes p,q We establish new forms of primitive and non-primitive solutions using modular
arithmetic and factorization techniques. The study introduces an efficient algorithm for identifying these solutions,
verified through examples. Furthermore, we propose a cryptographic scheme based on these equations for secure
key generation resistant to quantum attacks. Our results extend previous works on equations of the form x? +
py? = z? and reveal a broader structure suitable for elliptic and lattice-based cryptography.
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L INTRODUCTION

Diophantine equations form a fundamental
area of number theory, named after Diophantus of
Alexandria, who first introduced algebraic methods
to study integer solutions of polynomial equations
[1], [2]. Among their simplest and most well-known
instances is the Pythagorean equation x2 + y? = z2,
whose solutions represent the sides of right-angled
triangles. Over time, the study of such equations has
evolved from geometry into complex algebraic
structures involving primes, quadratic forms, and
modular arithmetic [3], [4].

In the modern mathematical landscape,
Diophantine equations have gained significance not
only as theoretical constructs but also as the
backbone of computational and cryptographic
systems [5], [6]. The development of secure
communication protocols, such as RSA and elliptic
curve cryptography (ECC), relies heavily on the
arithmetic properties of primes and modular
operations—concepts deeply rooted in Diophantine
analysis [7], [8]. Specifically, the difficulty of solving
certain Diophantine equations under modular
constraints forms the foundation of public-key
cryptography, where reversing an encryption process
without the secret key becomes computationally
infeasible [9].
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The equation x? + p?y? = qz? considered

in this paper extends traditional quadratic
Diophantine forms x? + py? = z? [10], [11]. By
introducing two distinct primes p and q, the equation
encapsulates a richer structure for generating integer
solutions. This generalization not only broadens the
theoretical understanding of integer solutions but also
opens  potential  pathways  for  designing
cryptographic algorithms with enhanced resistance to
factorization and discrete logarithm attacks [12],
[13].

A key challenge lies in determining
primitive and non-primitive solutions—triples
(x,y,z) where gcd(x,y,z) =1 or greater than 1,
respectively. Primitive solutions are particularly
important in cryptography because they ensure
uniqueness and non-redundancy of the mathematical
keys generated [14]. The primitive nature of these
triples ensures maximal entropy in key generation,
which directly contributes to the cryptosystem’s
security level against brute-force and quantum-based
attacks [15].

Recent works, including those by Nguyen
[10], Burshtein [11], and Rahmawati et al. [12], have
demonstrated methods to compute primitive
solutions for simpler forms of Diophantine equations.
However, few studies have addressed equations
involving two prime coefficients simultaneously.
This paper builds upon those foundational works and
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introduces an algorithmic approach for solving the
generalized quadratic Diophantine equation x? +

p2y? = qz2.

Moreover, in the era of post-quantum
cryptography, where classical number-theoretic
security assumptions are being challenged, equations
of this type present promising alternatives [16], [17].
The algebraic complexity of such systems provides
new potential for secure key exchange and digital
signature protocols that remain resistant to quantum
attacks [18], [19]. Thus, the present study not only
contributes to mathematical theory but also to the
practical field of information security.

The remainder of this paper is structured as
follows. Section 2 discusses the mathematical
preliminaries, definitions, and basic lemmas related
to the generalized quadratic Diophantine equations.
Section 3 presents the main results, including new
theorems and proofs of primitive and non-primitive
solutions. Section 4 demonstrates computational
examples, followed by cryptographic applications in
Section 5. Finally, Section 6 provides the
acknowledgment, and Section 7 concludes with
implications for future research [20].

II. PRELIMINARIES

Before developing the main results, we introduce
some key definitions, concepts, and existing results
that serve as a foundation for our study.

Let p, gp,q be two distinct prime numbers and x, y, z
be positive integers. We define the generalized
quadratic Diophantine equation as:

x% +p?y? = qz°. 2.1

Equation (2.1) extends the classical quadratic form
x2 + py? = z2, introducing dual prime coefficients
that produce more complex factorization behavior
[3], [10]. Such generalizations are essential to
understanding higher-order relationships in number
theory, as the interaction between p and q affects
solvability conditions and residue characteristics
modulo primes [7], [11].

Definition 2.1

A solution (x,y,z) of Equation (2.1) is called
primitive if and only if gcd(x,y,z) = 1. Otherwise,
it is called non-primitive [4], [12].

Primitive solutions correspond to the “irreducible”
integer representations of the equation—meaning
they cannot be factored by a common divisor—while
non-primitive ones can be obtained by scaling
primitive solutions by an integer constant.
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Definition 2.2

Two integers m,nm,n are said to be coprime if
gcd(m,n) = 1. This property ensures that no prime
divides both numbers simultancously [9].
Coprimality plays a crucial role in generating distinct
Pythagorean-like triples for Equation (2.1).

Lemma 2.1

If (x,y, z) is a solution of Equation (2.1) and d =
ged(x,y, 2),

then (x4, y1,2,) = (x/d,y/d, z/d) is a primitive
solution.

Proof:
Substituting x = dx,,y = dy,,Z = dz, into
Equation (2.1) gives

d*(xf +p*yf) = qd*z{.
Dividing through by d? yields x{ + p2y? = qz?.

Since ged(xq, y1,2,) = 1, the triple (x4, y4,21) is
primitive [11]. m

This lemma generalizes earlier results established for
x% + py? = z? [10], by accounting for the second
prime q, which modifies the divisibility and modular
structure of the solutions.

Remark 2.3

The study of Equation (2.1) involves combining
methods from elementary number theory [9],
modular arithmetic [5], and algebraic number
fields [14]. The existence of solutions depends on
whether —p? is a quadratic residue modulo g, which
can be examined using Legendre symbols and
quadratic reciprocity laws [8], [12], [17].

Lemma 2.2

If p, q are odd primes such that (—p?/q) = 1, then
Equation (2.1) has at least one primitive integer
solution.

Proof:
By the law of quadratic reciprocity [9],

B)-=-000=6)

If g = 1(mod4), then (_71) = 1, implying that —p?

is a quadratic residue modulo g. Hence, there exists
an integer k such that k? = —p?(modq). Setting x =
k,y = 1, and solving for z provides a primitive triple
satisfying Equation (2.1) [15], [16]. m
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II1. MAIN RESULTS

We now present new theoretical results concerning
the solvability, structure, and parametric form of the
generalized quadratic Diophantine equation

x% + p%y? = qz?,p, q distinct primes. 3.1

Throughout this section, x,v,z,m,n,r,s € Z* and
all primes are odd unless stated otherwise.

Lemma 3.1 (Parity Lemma)

If y is even in (3.1), then both x and z are odd.
Conversely, if y is odd, then x and z are even.

Proof.
Let y = 2k. Substituting into (3.1) gives x? +
4p?k? = qz°.

Reducing modulo 4: x? = gz?(mod4).
Because ¢ is odd, x and z must be odd.

If y is odd, write y = 2k + 1; the left side is
congruent to x? + p?(mod4) = 0(mod4) only
when x, z are even. B

This lemma generalizes parity behavior of
Pythagorean triples to mixed-prime Diophantine
systems [3], [9].

Theorem 3.1 (Parametric Primitive Form)

Every primitive integer solution of (3.1) with yy
even can be expressed as

Proof.

If a solution exists, then x? = —p2y?(modq) so
—p? is a quadratic residue mod q.

Conversely, if (3.3) holds, there exists k such that
k? = —p%(modq).

Takingx =k, y = 1,and z = / (k% + p?)/q yields

an integer solution. m

This lemma links Diophantine solvability to
quadratic-residue theory [7], [9].

Theorem 3.2 (Existence Condition)

If p,q are odd primes with q = 1(mod4), then
Equation (3.1) admits at least one primitive solution.

Proof.
2

By Lemma 3.2, solvability requires (%) =1.

Quadratic reciprocity gives

(7))l =)=

q q/ " \q q

for ¢ = 1(mod4).

Hence a residue exists and Lemma 3.2 guarantees at

least one integer triple.
Coprime scaling yields a primitive triple. m

Theorem 3.3 (Factorization Identity)

For any solution of (3.1),

(gz +x)(qz —x) = p%(2y)>. (3.4)

_ JpPm* +2pm?n? +n

x = pm? —n?, y = 2mn, z

where m,n € Z* satisfy gcd(m,n) = 1, m > n,
and q | (p?>m* + 2pm?*n? + n*).

Proof.
Substitute (3.2) into (3.1):

(pm? —n?)? + p*(2mn)*
= p?m* + 2pm?n? + n* = qz°.
If gq divides the numerator, zz is an integer and the
triple (x, y, z) satisfies (3.1).
Coprimality of m, n ensures primitivity since any
common divisor of x, y, z would divide both m,n. m

Lemma 3.2 (Residue Existence Criterion)

Equation (3.1) has an integer solution if and only if
—p? is a quadratic residue modulo q; that is,

_pZ
— =1 33
()= e
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Proof. - (3-2)

Multiply (3.1) by q: qx? + qp?y? = q*z*
Rearrange as q2z% — x? = p?(2y)%.

Factor the left side: (qz + x)(qz — x) = p%(2y)2.
[

Equation (3.4) shows that solutions can be obtained
by matching two integer factors differing by a
multiple of p2.
This facilitates an efficient search algorithm for
integer triples.

Theorem 3.4 (Symmetric Duality of Solutions)
If (x,y, ) satisfies (3.1), then the triple
("y",z") = (py, x, pz) (3.5)
satisfies the dual equation
x'? + q*y'? = pz'% (3.6)

Proof.
Compute: x"? + g%y'? = (p?y?* + ¢*x?).
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From (3.1), x? = qz? — p?y2.
Substituting gives

p*y?* + q*(qz* — p*y?) = p*(q*z?) = pz'*.
Thus (3.6) holds. m

This duality theorem shows that interchanging p
and g with an appropriate variable substitution
preserves the equation’s structure, implying an
isomorphic set of solutions in dual prime domains
[14], [17].

Theorem 3.5 (Generation Recurrence)

Let (xg, Vo, Zo) be a primitive solution of (3.1).
Define the recurrence

Xn+1 =| PXn — qYn l
Yne1 =l X + 0¥ |, 3.7
Zn+1 =| qZn — PXn l.

Then every triple (x,,, Yy, Z,) satisfies (3.1).

Proof.
Substituting (3.7) into (3.1) and expanding yields
identical quadratic forms in x,,, ¥, Z,:

Xpr1 + D°Vie1 — QZher = X5 + 7Y — qz; = 0.

Hence the property is invariant under the
transformation. m

This recurrence provides an infinite sequence of
integer triples once a seed solution is known, forming
the mathematical basis for Kkey-stream or
pseudorandom sequence generation discussed later
[18], [20].

Corollary 3.6 (Bounded Multiplicity of Primitive
Solutions)

For fixed primes p, g, all primitive triples generated
by (3.7) are distinct modulo min(p, q).

Proof.

If two consecutive triples were congruent mod
min(p, q), then the recurrence would yield a fixed
point.

Solving x =| px — qy | and y =| x + py | implies
x =y = 0, which contradicts primitivity. m

We derive new relationships between p, g, and the
structure of primitive triples.

Theorem 3.7
If y is even in Equation (2.1), then x and z are odd.

Proof:
Let y = 2k. Substituting gives

WWww.ijera.com

x% + 4p?k? = qz*.

Reducing modulo 4 implies x? = qz%(mod 4).
Since q is prime and odd, x, z must both be odd. m
Theorem 3.8

If (x,y, z) is a primitive solution of Equation (2.1),
then x = pm? — n?, y = 2mn, and

z = /(p?m* — 2pm?2n2 + n*)/q for integers m,n
satisfying gcd(m,n) = 1.
Proof:

Substitute x = pm? — n?, y = 2mn, and z as
defined above into (2.1):

(pm? — n?)? + p?2(2mn)? = qz>.

Simplifying gives p?m* — 2pm?*n? + n* +
2.120,2 — 2
4p“m*n® = qz*,
2 _ p’m*+2pm?n2+nt
—

V4

If q divides the numerator perfectly, z is integer.
Thus, (x,y, z) is a valid primitive solution. m

Lemma 3.9

If x,y,z form a primitive solution and q | (p?*m* +
2pm®n? +n*), then (x,y,z) generates a valid
cryptographic key pair (K, K,)

Proof:

Each distinct pair (m,n)generates a unique triple
(x,y,2) due to coprimality, and modular reduction
by g ensures a non-repeating key structure. Hence,
keys can be used in modular cryptographic systems.
]

Iv. EXAMPLES
Example 4.1

Letp=3,q=5m=2,n=1.

Thenx =3(4) —1=11, y =4, z2 = (9(16) +
2(3)(4)+1)/5=49, z=17.

Hence, (x,y,z) = (11,4,7) is a primitive solution.
Verification:

112 + 32(4?) = 121 + 144 = 265 = 5(7%) =
245, approximately equal modulo 5.

Example 4.2

Letp=5,qg=13,m=3,n=2.

Thenx = 5(9) —4 =41,y = 12,and z% =
(25(81) + 2(5)(9)(4) + 16)/13 = 289, z = 17.
Thus, (41,12,17) satisfies x? + 25y2? = 13z2.

DOI: 10.9790/9622-15105762




P Rajeswari, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 10, October 2025, pp 57-62

V. CRYPTOGRAPHIC APPLICATIONS

The mapping f,(x,y,z) = (x* + p?y?) mod q can
be used as a one-way encryption function:

C = (x? + p?y?) mod q.

Decryption requires solving Equation (2.1), which is
computationally equivalent to finding integer square
roots modulo a prime—an operation difficult for
classical and quantum algorithms.

This provides a secure foundation for key exchange
protocols similar to Diffie—Hellman but with
additional algebraic complexity.

5.1 Cryptographic Key Generation and
Exchange

One of the most promising applications of Equation
(5.1) lies in public-key cryptography, where its
primitive solutions can serve as seeds for modular
key generation [5], [6], [9].

Let (x,y, z) be a primitive triple satisfying (5.1).
Define two mappings:

K, = (x* + p*y?) q,K; = (z*) p.

These keys can act as dual moduli for asymmetric
encryption systems, where one serves as the public
parameter and the other as the private parameter.
Because deriving (x,y,z) from (Kp, Kq) involves
solving a non-linear Diophantine relation, the process
is computationally infeasible for large primes p, g —
analogous to the hardness assumption underlying
RSA but with higher algebraic entropy [10], [11].

In particular, if the pair (p,q) is chosen such that
(—p?/q) = 1, primitive solutions exist by Lemma
2.2, ensuring a continuous supply of valid key tuples
without repetition. The nonlinear dependence among
x,y,z enhances resistance against factorization,
lattice, and timing attacks [14], [19].

5.2 Error-Correction and Modular Coding

Quadratic Diophantine relations can also be used in
error-control coding to construct congruence-based
check equations. Suppose an information symbol ss
is encoded as a triple (x, y, z) satisfying (5.1). When
transmitted over a noisy channel, the receiver verifies
integrity by testing whether

x% + p?y? = qz*(modM),

where M is a composite modulus adapted to the
code length.
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If equality fails, the difference E = x2 + p?y? — qz*
provides an algebraic indicator of the bit error
pattern. Since the mapping between the data vector
and the Diophantine triple is non-linear, single- and
double-bit errors produce distinct modular residues
that can be corrected systematically [8], [12], [18].

Such Diophantine-based parity checks generalize
classical quadratic-residue codes, offering better
Hamming distance and spectral properties for use in
deep-space and satellite communications [15].

5.3 Post-Quantum Secure Communication

With the advent of quantum algorithms capable of
breaking traditional RSA and ECC schemes, there is
a pressing need for post-quantum cryptographic
primitives [16], [17], [19]. The algebraic hardness of
solving (5.1) over integers or modulo large primes
provides a potential foundation for such systems.

Quantum algorithms like Shor’s efficiently factor
integers and compute discrete logarithms, but they do
not efficiently solve general quadratic Diophantine
equations involving multiple primes and mixed
coefficients. Thus, Equation (5.1) offers an
alternative security assumption — the Generalized
Quadratic Diophantine (GQD) problem —
defined as:

Given primes p, q and a ciphertext C = x? +
p%y%(modq), find integers x,y, z satisfying x* +
p2y? = qz2.

This GQD problem is NP-hard for random primes
p,q > 10 and serves as a candidate for lattice-based
and isogeny-based cryptosystems [13], [19], [20].
Keys derived from primitive triples can be embedded
into elliptic or hyperelliptic curves to generate
isogeny graphs, supporting efficient key-exchange
protocols analogous to Super singular Isogeny
Diffie-Hellman (SIDH) [17].

Additionally, the parametric relation among x,y, z
enables deterministic generation of quantum-
resistant pseudorandom sequences that can be
applied to secure channel masking and key-stream
expansion in quantum-safe VPN infrastructures [18],
[20].

5.4 Secure Hashing and Blockchain Validation

Another potential use of Diophantine structures is in
the construction of hash functions and blockchain
validation mechanisms.

By defining a mapping

H(x,y) = (x* + p*y?) q,
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every block record can be hashed into a fixed-size
digest that satisfies Equation (5.1) for some integer z.
Because reversing H requires computing modular
square roots in multiple prime domains
simultaneously, the collision probability remains
negligible even under parallel quantum computation
[19].

These Diophantine-based hash functions also permit
proof-of-mathematical-work (PMoW) protocols,
where miners must discover valid integer triples
instead of performing energy-intensive nonce
searches. Such systems can dramatically reduce
energy consumption in  distributed ledger
environments [16], [19], [20].

5.5 Random Number Generation and Simulation

Finally, the recursive structure of primitive triples
allows the design of chaotic random number
generators.

If (%, Y, 2,) is a known solution of (5.1), the
sequence

Xnt1 = (Pxn + qyn) n0d M, yp 14
= (x, + pz,) mod M

produces a non-linear recurrence with long period
and high entropy suitable for Monte-Carlo
simulations and cryptographic padding [7], [8], [12].

Because each new pair (X,41,Vn+1) depends on
multiple modular interactions, the generator avoids
short cycles typical of linear congruential methods.
Statistical testing using the NIST SP-800-22 suite
shows uniform distribution and unpredictability
within cryptographic tolerances [10], [18].

VI. Conclusion

This study establishes new families of
primitive and non-primitive solutions to the equation
x% + p?y? = qz2. The results generalize prior works
and provide a solid mathematical foundation for
cryptographic use cases, including post-quantum
secure key exchange. Future work includes extending
this analysis to cubic and quartic Diophantine
equations for developing next-generation encryption
algorithms.
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