
Manickam Muthiah. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 10, October 2025, pp 01-05

A
www.ijera.com DOI: 10.9790/9622-15100105 1 | Page

Failure Context Presenter for a Test Environment

Manickam Muthiah*
*(Principal Engineer, ARM Inc., Chandler, Arizona, USA.)

ABSTRACT
In pre-silicon verification, regression failures are often difficult to analyze due to the scattered nature of

simulation logs. Identifying tests with similar failures or contextual patterns requires significant manual effort,

resulting in inefficiency and delay. This paper presents a novel component, the Failure Context Presenter (FCP),

integrated into the test/verification environment to automatically generate and present the failure context across

regression suites. The FCP collects data from multiple tests/simulations, organizes checks and errors information

into structured status files, and maintains a dedicated Failure Context Presenter Database. This novel approach

introduces a Failure Context Presenter module embedded within the test environment, using a unique CES

packet mechanism and a dedicated Failure Context Database. These features enable real-time correlation of

failures, early termination of redundant simulations, and context-driven debug visibility—capabilities not offered

by current coverage or debug automation frameworks. The solution is independent of verification framework and

can be applied across industry-standard methodologies such as OVM, VMM, and UVM.

Keywords – Failure Context Generation, Checking Context Metadata, Failure Context Presenter, Failure

Context Database, Checks & Errors Status Packets, Partial Simulation Termination Threshold, Verification

Checks Aggregation.
--- ----------

Date of Submission: 28-09-2025 Date of acceptance: 08-10-2025

--- ----------

I. INTRODUCTION

In functional verification, especially in

simulation environments, failures from regression

suites are challenging to debug. Traditionally,

engineers must parse through large volumes of

simulation logs to identify whether a failure is

isolated or repeated across multiple tests. This

process is time-consuming, resource-intensive, and

error-prone. Studies have shown that debug/triage

can consume up to 50% of overall verification cycle

time [10].

Modern verification flows increasingly

demand automation and correlation across

regression runs [2][6][11]. While existing methods

such as assertion-based verification [10], coverage

closure [8], and regression management [11] address

portions of the debug challenge, none provide an

integrated, methodology-independent mechanism to

present a unified failure context across regression

runs. This gap motivates the introduction of the

Failure Context Presenter (FCP), a novel component

in the test environment.

II. PROBLEM STATEMENT

When a regression test fails, engineers often cannot

immediately identify related failing tests, the

specific checks involved, or the test’s

configuration/intent. Without this contextual data,

debugging requires examining logs from multiple

runs, which is highly inefficient. The existing debug

paradigm typically operates in isolation per failing

simulation, with no unified mechanism to cross-

reference failures across runs [10].

III. PROPOSED SOLUTION

The Failure Context Presenter (FCP)

introduces a new module within a test environment

that automatically gathers checks and errors data

from different components, correlates it across tests,

and generates a consolidated failure context.

A. Module Integration in Verification

Environment

• The FCP module resides in the testbench

alongside standard verification components.

• It receives errors/checks information from

verification components such as monitors,

drivers, scoreboards and sequence/test.

• Supports OOP-based methodologies such

as SystemVerilog/OVM/UVM/VMM [1],

[2], [3].

RESEARCH ARTICLE OPEN ACCESS

Manickam Muthiah. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 10, October 2025, pp 01-05

A
www.ijera.com DOI: 10.9790/9622-15100105 2 | Page

Figure 1 shows the block diagram of a test

environment with the Failure Context Presenter

module.

Figure 1: Block Diagram of a Test Environment

with the Failure Context Presenter Module

B. CES Packet Mechanism

Communication between testbench components and

the FCP uses Checks & Errors Status (CES) Packets.

A Check CES Packet is sent at the end of a test or

simulation to report the number of checks

performed, while an Error CES Packet is sent

immediately when an error is detected to report the

ordinal position of the error.

Figure 2 illustrates the CES Packet format and

sample CES packets, while Figure 3 provides

additional CES packet examples.

Figure 2: CES Packet Format and Sample CES

Packets

Figure 3: Additional Sample CES Packets

C. Failure Context Presenter Database

Each type of check corresponds to a Status

Collection File in the FCP Database. These files

store error counts, check counts, and contextual

information across multiple test runs. Examples of

Status Collection Files are shown in Figures 4–6.

Manickam Muthiah. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 10, October 2025, pp 01-05

A
www.ijera.com DOI: 10.9790/9622-15100105 3 | Page

Figure 4: Sample Status Collection File for

env.agt1.mon___protocol_check1

Figure 5: Sample Status Collection File for

env.scoreboard1___intf1_outdata_chk

Figure 6: Sample Status Collection File for

env.scoreboard3___intf3_outdata_chk

D. Checks & Errors Status Table

During a simulation, the FCP maintains a local

Checks & Errors Status Table summarizing the

number of checks, errors, and their positions. At the

end of simulation, this data is written to the Failure

Context Presenter database. A sample table is shown

in Figure 7.

Figure 7: Sample Checks & Errors Status Table

E. Threshold-Based Termination

When repeated failures are observed for the same

check beyond a configurable Partial Termination

Threshold, the FCP can terminate redundant

simulations early, conserving time and

computational resources.

IV. RESULTS AND DISCUSSION

1. Failure Context Generation

By analyzing CES Packets across simulations, the

FCP produces failure contexts that group tests with

similar failures. Checking Context metadata

provides deeper understanding of failures relative to

test intent.

2. Verification Checks Report

Aggregated statistics across regression runs are

compiled into a Verification Checks Report. An

example report is provided in Figure 8.

Figure 8: Verification Checks Report

Manickam Muthiah. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 10, October 2025, pp 01-05

A
www.ijera.com DOI: 10.9790/9622-15100105 4 | Page

3. Debug and Productivity Gains

• Reduces manual log inspection time

significantly.

• Enhances debug quality with contextual

metadata.

• Saves computational resources by aborting

redundant failing simulations.

• Supports historical comparison across DUT

(Device Under Test) / TB (Testbench)

versions.

4. Industry Alignment

While prior works in coverage closure [8], assertion-

based verification [10], and debug automation

[11][12] have improved productivity, they do not

embed failure correlation within the testbench. The

FCP differs fundamentally by integrating into the

verification environment itself, generating structured

failure context during simulation rather than after the

fact. This represents a novel paradigm shift from

post-run triage to in-situ debug intelligence. Unlike

existing approaches, it introduces the CES packet

mechanism, failure context database with Checking

Context, and threshold-based termination of

redundant simulations, thereby offering a unique,

methodology-independent solution.

V. DIFFERENCE FROM EXISTING

TECHNOLOGY

Distinct contributions of the FCP include:

• Real-time generation of failure contexts.

• A Failure Context Presenter module

operating within the verification

environment itself

• A standardized CES Packet protocol for

structured reporting across testbench

components.

• A Partial Termination Threshold

mechanism enabling real-time termination

of redundant failing simulations.

• Association of Checking Context metadata

with results.

Unlike assertion-based verification [10] or manual

coverage-driven approaches [8], the FCP delivers

contextualized, cross-run analysis in real-time.

VI. USES, BENEFITS AND

LIMITATIONS

 Uses and Benefits:

1. Methodology Independence: The FCP is

compatible with all OOP-based verification

methodologies, including OVM, VMM,

and UVM [2][3].

2. Standardized Reporting: The CES packet

protocol provides a uniform way for all

components (monitors, drivers,

scoreboards, test/sequence) to report checks

and errors, improving data consistency.

3. Accelerated Debug: By presenting

consolidated failure contexts, the FCP

eliminates the need for manual log

inspection across multiple regression runs,

reducing debug turnaround time.

4. Resource Optimization: The Partial

Termination Threshold avoids redundant

simulations, saving both time and compute

resources.

5. Improved Checking Coverage Closure:

Aggregated statistics in the Verification

Checks Report help verification teams track

checking completeness and error density,

aiding closure strategies [8].

6. Historical Comparisons: Lightweight

databases allow easy comparison of

regressions across DUT/TB versions,

enabling regression-to-regression

benchmarking.

7. Contextual Understanding: Checking

Context metadata links failures to test

intent/configuration, making failure

analysis semantically meaningful.

8. Scalability: The architecture supports large

regression suites where multiple

simulations access the database

concurrently without conflicts.

9. Debug Knowledge Retention: Databases

can be archived, providing a historical

debug knowledge base for future analysis

or audits.

 Limitations

1. Dependency on OOP Environments:

Implementation is currently limited to

SystemVerilog-based flows[1].

2. Threshold Sensitivity: Incorrect

configuration of the Partial Termination

Threshold could lead to premature abortion

of useful simulations.

3. Initial Integration Overhead: Testbench

components must be modified to emit CES

packets, requiring some upfront

engineering effort.

4. Database Growth: While individual files

are lightweight, extremely long regressions

may lead to large aggregated failure context

databases, requiring maintenance.

Manickam Muthiah. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 10, October 2025, pp 01-05

A
www.ijera.com DOI: 10.9790/9622-15100105 5 | Page

VII. CONCLUSION

This paper has introduced the Failure

Context Presenter (FCP) as a novel contribution to

verification methodology. The FCP provides a

structured, automated approach to correlate, analyze,

and act upon simulation failures across regression

runs. By combining CES-based metrics, Checking

Context, and configurable threshold-based

termination, it streamlines debugging and optimizes

simulation resources. These innovations enable

faster debug, more efficient use of resources, and

deeper contextual understanding of regression

failures, marking a significant step forward in pre-

silicon verification automation. Future extensions

may include machine learning to predict root causes

[14][15].

REFERENCES

Standards & Manuals:

[1] IEEE Std 1800-2017, IEEE Standard for

SystemVerilog—Unified Hardware Design,

Specification, and Verification Language, 2017.

[2] Accellera Systems Initiative, UVM Class

Reference Manual, Version 1.2, 2017.

[3] Accellera Systems Initiative, OVM Reference

Manual, Version 2.1, 2013.

Books:

[4] J. Bergeron, Writing Testbenches: Functional

Verification of HDL Models, Springer, 2003.

[5] G. Tumbush and C. Spear, UVM Cookbook,

Doulos, 2010.

[6] J. Fitzpatrick, Advanced Verification Topics,

Mentor Graphics, 2010.

[7] M. Keating and P. Bricaud, Reuse Methodology

Manual for System-on-a-Chip Designs, Springer,

2002.

Journal Papers:

[8] S. Ramesh and V. Srinivasan, “Efficient

Functional Coverage Closure Strategies,”

Microelectronics Journal, vol. 65, 2017, pp. 38–47.

[9] M. Enamul Amyeen, S. Venkataraman, M. W.

Mak, “Microprocessor System Failures Debug and

Fault Isolation Methodology,” Proc. Int. Test Conf.,

2009.

[10] H. D. Foster, “Assertion-Based Verification:

Motivation and Methodology,” DAC, 2002, pp.

580–585.

Conference Proceedings:

[11] C. Faanes and A. Bhattacharya, “Queue-based

Latency Analysis for Simulation Acceleration,”

IEEE/ACM ICCAD, San Diego, 2020, pp. 25–32.

[12] C-Y. Huang, W. Huang, C. Yang, “Integrated

Verification Ecosystem for Regression Management,

Coverage Convergence, and Debug Automation,”

DVCon Taiwan, 2024.

[13] Revolutionary Debug Techniques to Improve

Verification Productivity, Cadence/DVCon Tutorial,

2014.

[14] M. Smytzek, M. Eberlein, L. Grunske, A.

Zeller, “How Execution Features Relate to Failures:

An Empirical Study and Diagnosis Approach,”

arXiv preprint, 2025.

