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ABSTRACT 
Sign language (SL) is used by deaf-mute individuals for communication but normal people finds hard to 

understand the SL which causes a communication gap between them. It is crucial to reduce the gap between 

physically challenged people and normal people. In recent days, Deep Learning (DL) methods are used for the 

prediction of SLs. Amongst, Occlusion-resistant Spatio-Temporal Hybrid Cue Network (OSTHCN) method is 

developed which utilizes Skeleton Occupancy Likelihood Map estimation using B-Spline curve in Dynamic 

Dense Spatio-Temporal Graph Convolutional Neural Network (DDSTGCNN) to refine the skeleton extraction 

and VGG11+1D-Convolutinal Neural Network (CNN) for full frame data. It employs BLSTM encoders, 

Connectionist Temporal Classification (CTC), and Self-Attention based LSTM decoders for sequence learning in 

ISL recognition and translation.  However, the networks utilized in the sequence learning are conceived manually 

by assigning values to a large number of hyper-parameters which results in high computational complexity and 

lower accuracy performance. Hence, an automated hyperparameter optimization model is developed in this paper 

using Dove Swarm Optimization (DSO) to lower the computational complexity and enhance the accuracy results.  

The DSO is adopted for selecting the optimal hyper-parameters in sequence learning like number of neurons, 

number of hidden units, learning rate, weight decay, number of epochs, batch size, dropout rate, number of 

partitions, number of clusters per batch, momentum, optimizer and loss function. The essential principle of DSO 

are derived from the foraging behaviors of doves adopted in real-time applications. The initial population of dove 

forages represents the initial hyper-parameters and computation of each dove crumbs subsequent locations 

represents the search for the best hyper-parameter to find the optimal values for the sequence learning. The 

BLSTM, CTC and SA-LSTM are completely optimized using DSO and it is termed as Optimized OSTHCN 

(OOSTHCN). Finally, the test findings revealed that the OOSTHCN model achieves 97.86% of accuracy on ISL-

CSLTR dataset compared to the existing models. 

Keywords: Sign language, Deep Learning, Bidirectional Long Short-Term Memory, Connectionist Temporal 

Classification, Dove Swarm Optimization. 
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I. INTRODUCTION 
The World Health Organization (WHO) 

reports that over 5% of the global population is deaf, 

and mute individuals struggle with communication. 

These people communicate among themselves using 

sign language (SL) [1].  Deaf and speech-impaired 

people may benefit greatly from the use of SL, a 

method of communication based on the use of hand 

gestures and visual movements [2]. It is a visual 

language using both manual and non-manual signs 

without the use of words or phrases.  Non-manual 

signals include things like facial expressions, mouth 

and head movements, and so on, while manual signs 

are things like hand and finger motions, hand 

orientation and gesture, and so forth [3]. Globally, 

there are several distinct of SLs for communication 

such as American SL (ASL), Arabic SL (ArSL) and 

Indian SL (ISL). However normal person rarely 

knows these signs and this becomes barrier in real 

world communication [4].  

Sign Language Recognition (SLR) aims to 

automate translating signs into spoken or written 

language, enabling the hearing-impaired to 

communicate with the general population [5].  

Single-word SLR systems have been formed by 

researchers, but continuous gestures have proven 

more difficult. The most difficult part of developing 

an automated SLR system is creating a modeling 
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framework that can collect sign gestures and 

associated phrases [6]. Static and dynamic are two 

modes of SL, while static signs are unchanging hand 

and face motions and dynamic signs may be further 

classified into isolated signs and continuous signs 

[7]. The isolated Sign Language Recognition (ISLR) 

has made progress in recognizing single alphabetic 

signs or words from a given segment of signing 

video clip [8]. However, the contextual interactions 

among signals significantly influence the phrase 

interpretation in ISLR. The Continuous SLR 

(CSLR) challenge necessitates the prediction of all 

continuous sign actions from video sequences 

without prior information of the spatial boundaries 

among succeeding signs. It is more significant than 

ISLR as it interprets larger segment of speech. This 

is more suitable for real-world transcription of SLs 

[9]. 

In recent days, the artificial intelligence 

(AI) models like machine learning (ML) and deep 

learning (DL) have expanded their potential 

applications in SLR research enabling significant 

improvements in the quality of life for people who 

rely on SL as their primary communication method 

[10]. ML models like Support Vector Machine 

(SVM), Naïve Bayes (NB), and Random Forest 

(RF), have been used to provide accurate SLR [11]. 

These models attempt to comprehend continuous 

parts of SL gestures, however they largely analyze 

static information, such as individual signals 

separated in time and place. [12]. However, due to 

their simplicity, these models struggle to capture 

sophisticated semantic hints making advanced 

models necessary for SL prediction.  

Deep Learning (DL) models are innovative 

tools for solving SLR problems. These models 

employs data from multiple sources to recognize SL 

terms with success varying on the dataset employed 

for the recognition task [13]. The DL models 

includes Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), Long-Short 

Time Memory (LSTM), and Deep Belief Network 

(DBN). DL-based applications enable SL translation 

to text, improving communication between signers 

and non-signers. However, challenges in SLR 

applications like as continuous speech interpretation 

or real-time translation may need the addition of 

additional layers [14]. DL models are considered the 

safest option for CSLR applications in the future 

improving the predictability of SLs for deaf or 

hearing-impaired individuals [15].  

Many DL models have presented for CSLR 

system. Typically, DL models typically emphasize 

on the most discriminative traits while neglecting 

relatively non-trivial and beneficial content. These 

features severely limit their capacity to acquire 

latent visual grammars in sign videos based on 

their interaction with several visual signals (e.g., 

hand form, face expression, and body position) [16]. 

The Spatial-Temporal Multi-Cue (STMC) network 

[17] is a video-based SL that was developed to 

address vision-based sequence learning difficulties. 

It represents numerous cues using a spatial multi-cue 

(SMC) module and a temporal multi-cue (TMC) 

module. The SMC module is responsible for 

learning spatial representations, while the TMC 

module is responsible for modeling temporal 

adjustments from both intra- and inter-cue 

perspectives. The STMC model outperforms single-

cue approaches on large SL datasets, but requires 

higher pre-processing time and key-point annotation 

supervision for end-to-end training. 

In order to solve the above-mentioned 

issues, the STHCN method [18] is developed for 

recognizing and translating ISL from videos using 

DDSTGCNN and VGG11+1D-CNN + BLSTM. 

The DDSTGCNN learns spatial features while 

DSTCNM captures temporal features through 1D 

convolution layers. The extracted features are fed 

into a BLSTM encoder, CTC, and SA-LSTM 

decoders for sequence learning. The CTC predicts 

ISL from input videos and sentences. On the other 

hand, this model finds to match some pixels of the 

human skeleton structure to network models because 

of the occlusion of the human body. So, OSTHCN 

model [19] is developed that addresses occlusions in 

human skeleton extraction for ISL recognition and 

translation. The B-Spline curve's skeleton 

occupancy likelihood map estimation is used to 

optimize tasks by estimating unconnected skeletal 

subgraphs due to occlusion by fingers and hands. 

Heuristic assumptions simulate a 3D probability 

map, modified based on observed branch clusters 

across images. The collected features are then fed 

into the BLSTM encoders, CTC, and SA-LSTM 

decoders for sequence learning, enhancing ISL 

recognition and translation. However, the accuracy 

of the classifier mainly dependent on assigning 

values for hyper-parameters employed in sequence 

learning of OSTHCN.  

In this paper, an OOSTHCN model is 

developed to lower the computational complexity 

and enhance the accuracy performance for ISL 

recognition and translation. This models adopts for 

DSO model where their fundamental ideas are 

derived from the foraging behaviors of doves 

employed in real-time application. DSO effectively 

selects the optimal hyper-parameters in sequence 

learning like number (No.) of neurons, No. of hidden 

units, learning rate, weight decay, epochs, batch 

size, dropout rate, No. of partitions, No. of clusters 

per batch, momentum, optimizer and loss function. 

The initial population of dove forages represents the 

initial hyper-parameters and computation of each 
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dove crumbs subsequent locations represents the 

search for the best hyper-parameter to find the 

optimal values for the sequence learning. 

Comparing to other optimization algorithms, DSO 

provides effective population diversity and 

eliminates complexity in the model which 

automatically increases the accuracy rate in the ISL 

detection and transcription. 

The remainder of this article is organized as 

follows: the research performed for recognizing the 

different SLs is presented in Section II. The 

paradigm is explained in Section III, and its 

effectiveness is shown in Section IV. Conclusions 

and suggestions for further research are presented in 

Section V. 

 

II. LITERATURE SURVEY 
Zhou et al. [20] introduced SIGNBERT, a 

Bert-based DL framework for CSLR which 

combines BERT bidirectional encoder 

representations with residual neural network 

(ResNet) to model SLs and extract spatial features. 

SignBERT's multimodal version combines hand 

image input with intelligent feature alignment, 

narrowing the gap between BERT model 

recognition scores and CSLR hand photos. 

However, this strategy has resulted in a lengthy 

training period. 

Gomathi et al. [21] suggested ConvNet-

LSTM model for ISL recognition. This method 

adopts the gesture videos of ISL signs to process and 

extract spatial features. The videos were converted 

into image frames and passed to the Inception V3-

CNN for feature selection and extraction. The CNN 

automatically extracts features which are then 

grouped into feature sequences and fed to the 

LSTM-RNN network for ISL detection. But still, 

this model does not suitable to recognize large 

featured words for recognition tasks. 

Natarajan et al. [22] used a Hybrid Deep 

Neural Architecture (H-DNA) to create a framework 

for real-time ISL identification, translation, and 

video creation. Using the MediaPipe package and a 

hybrid CNN/LSTM model, the model captures 

posture information and outputs text. It also employs 

a hybrid Neural Machine Translation (NMT) 

MediaPipe Dynamic Generative Adversarial 

Network (GAN) model for sign gesture video 

generation and text prediction. However, this model 

results in a slower convergence rate. 

Kothadiya et al. [23] proposed a DL model 

that detects appropriate words based on a person's 

gestures. Isolated ISL video frames were used as 

input sources and divided into individual sub-section 

videos. The InceptionResNetV2 model extracted the 

gesture characteristics and fed them into a RNN for 

ISL prediction. However, non-stable and angular 

input data frames needed to be focused to enhance 

accuracy. 

Katoch et al. [24] created a model that 

recognizes ISL alphabets and digits in live video 

streams by combining SVM and CNN. They 

processed skin color and background removal using 

the Bag of Visual Words model (BOVW). The 

SURF characteristics were extracted from pictures, 

and histograms were created to map signs with 

appropriate labels. The model was used for the 

detection task. However, this model takes a long 

time to compute. 

Subramanian et al. [25] constructed a 

unified Mediapipe-Optimized GRU (MOPGRU) 

model for ISL recognition. This model was 

categorized into three stages like data pre-processing 

and feature extraction; capturing extracted keypoints 

in a file, training and classifying the gestures using 

sign motions which have been translated in the form 

of text on the screen. However, this model was 

trained on limited dataset and a high temporal 

complexity. 

Mannan et al. [26] developed a hyper-tuned 

deep convolutional neural network (HDCNN) for 

SLR. The collected data was augmented and then 

data generator was applied to expand the size of the 

training dataset.  The features were extracted using 

pre-trained CNN model. Finally, the HDCNN model 

was employed for the ISL recognition and 

classification. However, this model results with high 

uncertainty issues. 

Venugopalan & Reghunadhan, [27] 

constructed a CNN-BLSTM model for ISL detection 

utilized for the emergence of deaf COVID-19 

patients. The system converts gesture videos into 

images sequences using ISL words, which are then 

fed into a CNN model for spatial feature extraction. 

Feature vectors are concatenated to create a series, 

which are then classified using an LSTM network 

for ISL prediction. However, this model results with 

high time complexity issues. 

Sreemathy et al. [28] presented a CSLR 

recognition using an expert system based on DL 

model. Two hand gesture recognition systems, SVM 

with media-pipe and YOLO, are used as feature 

extractors. The system compares the accuracy of the 

two models and produces a result based on which 

model has better performances while training and 

detection confidence in real-time. However, this 

model provides lower accuracy results on smaller 

datasets. 

Hu et al. [29] proposed an correlative 

network (CorrNet) to directly exploit body 

movements across frames for identifying CSLR 

activities. The correlation module produced 

correlation maps between the current and 

neighboring frames to record cross-frame routes, 
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creating features as local temporal motions, while 

the recognition module identified relevant locations 

in each frame for expressing a sign. However, a high 

number of instances were needed in the training 

database. 

Buttar et al. [30] constructed a DL 

approach to detect both stationary and moving 

signals for SLR. The LSTM with Skeleton model 

technique was used to sequentially extract 

characteristics from each frame of the SL videos. 

Next, the detection tasks' custom dataset was trained 

using YOLOv6. However, the model's accuracy 

dropped down sharply when a certain threshold was 

reached, thus it could only be used with a restricted 

set of signs. 

Alnfiai [31] introduced an automated sign 

language recognition (SSODL-aSLR) model for 

deaf and stupid people based on shark smell 

optimization with DL model. A mask region based 

convolutional neural network (Mask RCNN) model 

was used in the SLR procedure. We employed the 

SSO approach in combination with light boundary 

SVM (SM-SVM) model to categorize SL. However, 

the convergence pace was slower with this model. 

 

III. PROPOSED METHODOLOGY 
In this section, the complete framework of 

OOSTHCN is briefly illustrated. The figure 1 

depicts the schematic diagram of the suggested 

model.  

 

 
Figure 1. Schematic Representation of OOSTHCN Model 

 

In this model, the BLSTM encoders, CTC, 

and SA-LSTM decoders are used for sequence 

learning in OSTHCN [19]. The hyperparameter of 

sequence learning segments i.e., BLSTM, CTC and 

SALSTM are the No. of neurons, No. of hidden 

units, learning rate, weight decay, epochs, batch 

size, dropout rate, partitions numbers, No. of 

clusters per batch, momentum, optimizer and loss 

function. All these hyper parameter values are 

completely optimized by the DSO model to provide 

efficient ISL recognition and translation with 

reduced complexity and enhance the recognition 

accuracy.  

 

3.1 Dove Swarm Optimization based Hyper-

parameter Tuning 

Doves generally scavenge in areas where 

crumbs are visible and hunt for them. Some doves 

may be content, but not all.   Unsatisfied doves loiter 

in patches, looking for more crumbs. Gradually, it 

becomes clear that the full doves must have 

inhabited areas with more crumbs. Dove foraging 

behavior prompted the development of a 

revolutionary optimum algorithm. The optimization 

goal operation in this approach is 𝐹(𝑋) =
[𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8 , 𝑓9, 𝑓10, 𝑓11, 𝑓12]. Each 

optimal location is defined by the hyperparameters 

No. of neurons (𝑓1), No. of hidden units (𝑓2), 

learning rate (𝑓3), weight decay (𝑓4), epochs (𝑓5), 

batch size (𝑓6), dropout rate (𝑓7), No. of partitions 

(𝑓8), No. of clusters per batch (𝑓9), momentum (𝑓10), 

optimizer (𝑓11) and loss function (𝑓12) at a data 

collection, every data pattern 𝑋 is regarded a place 

containing crumbs, and the number of crumbs at 

these spots 𝑋 includes 𝐹(𝑋) crumbs. The optimum 

outcome identifies the region with the greatest 

number of crumbs. 

Step 1: Determine the number of doves that needed 

to be deployed in the solution space. Consider 𝑛 as 

the number of doves. These doves may be scattered 

arbitrarily in space, but it is recommended to deploy 

them evenly across a rectangular surface. 
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Step 2: For dove 𝐷 = 1, … , 𝑛, modify the number of 

epoch 𝑒 = 0 and the degree of satiety 𝒮𝐷
ℯ . There are 

two methods to initialize the position vector 𝑋𝐷 ⊂
 𝑟𝑘  for dove 𝐷. The most straightforward approach 

is to dynamically generate the 𝑋𝐷 around the 

solution space. The lattice initialized approach is 

another option. The appropriate stages are shown 

below. 

 To accelerate up the training task for 

creating a structurally sorted feature map, two 

efficient weight initiation procedures are used to 

create the weight vectors. Based on the initialization 

method, a distinctive initialization method that is 

especially appropriate for this algorithm is devised. 

Assume the parameter space has the smallest hyper-

rectangle, which includes the acceptable values for 

all parameters as [𝐿1, 𝑈1], … , [𝐿𝑘 , 𝑈𝑘] where 𝐿𝑞 and 

𝑈𝑞 represent the lower and upper bounds of the q-

dimension in the solution space. 

 The key idea underlying the proposed 

initialization method is to compress the 

𝑁 −dimensional hyper-rectangle into a two-

dimensional (2D) plane such that a 2D-net may 

effectively enclose the resultant space. To make 

things apparent 𝑎 and 𝑏 are used to index the 

rectangular cells from 1 to 𝑈 ∗ 𝑉. The following 

steps are illustrated below. 

Step 2.1: Construct the cells in the all four edges. Also, adjust the four neurons on the network's corners with the 

following weight vectors (𝒲) as given in Eq. (1.1 – 1.4), 

𝒲1,1 =  (𝐿1, 𝐿2, … . . , 𝐿𝑘)𝑇                                                                                                    (1.1) 

𝒲𝑈,𝑉 =  (𝑈1, 𝑈2, … . . , 𝑈𝑘)𝑇                                                                                                  (1.2) 

𝒲1,𝑉 =  (𝐿1, 𝐿2, , , , , , , 𝐿⌊𝑘
2⁄ ⌋ , 𝑈⌊𝑘

2⁄ ⌋+1, … . . , )𝑇                                                                     (1.3) 

𝒲𝑈,1 =  (𝑈1, 𝑈2, , , , , , , 𝑈⌊𝑘
2⁄ ⌋ , 𝐿⌊𝑘

2⁄ ⌋+1, … . . , 𝐿𝑘)𝑇                                                                  (1.4) 

Step 2.2: Configure the cells on the four edges. The Eq. (2.1 – 2.4) represents the initialled cell values on the four 

edges, 

𝒲1,𝑏 =  
𝒲1,𝑉 − 𝒲1,1

𝑉 − 1
  (𝑏 − 1) + 𝒲1,1 

         =   
𝑏−1

𝑉−1
  𝒲1,𝑉 +

𝑉−𝑏

𝑉−1
  𝒲1,𝑉     𝑏 =  2, … , 𝑉 − 1                                                        (2.1) 

𝒲𝑈,𝑏 =
𝒲𝑈,𝑉 − 𝒲𝑈,1

𝑉 − 1
  (𝑏 − 1) + 𝒲𝑈,1 

         =   
𝑏−1

𝑉−1
  𝒲𝑈,𝑉 +

𝑉−𝑏

𝑉−1
  𝒲𝑈,1          𝑏 =  2, … , 𝑉 − 1                                                   (2.2) 

𝒲𝑎,1 =  
𝒲𝑈,1 − 𝒲1,1

𝑈 − 1
  (𝑎 − 1) + 𝒲1,1 

        =   
𝑎−1

𝑉−1
  𝒲𝑈,1 +

𝑈−𝑎

𝑈−1
  𝒲1,1             𝑎 =  2, … , 𝑈 − 1                                                 (2.3) 

𝒲𝑎,𝑉 =  
𝒲𝑈,𝑉 − 𝒲1,𝑉

𝑈 − 1
  (𝑎 − 1) + 𝒲1,𝑉 

        =   
𝑎−1

𝑈−1
  𝒲𝑈,𝑉 +

𝑉−𝑎

𝑉−1
  𝒲1,𝑉             𝑎 =  2, … , 𝑈 − 1                                                (2.4) 

Step 2.3: The weight gradients of the four neurons on the four edges of the network have been generated. The 

additional neurons are arranged top to bottom and left to right. The following is a pseudo-code description of the 

residual neuron activation procedure: 

Start 
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For 𝑏 = 2 𝑡𝑜 𝑉 − 1  

Start 

For 𝑎 = 2 𝑡𝑜 𝑈 − 1  

Initialize 

 

𝒲𝑎,𝑏 =  
𝒲𝑈,𝑏 − 𝒲1,𝑏

𝑈 − 1
 (𝑎 − 1) + 𝒲1,𝑏 

 

 

                                  (3) 

                                 =  
𝑎−1

𝑈−1
 . 𝒲𝑈,𝑏 +

𝑈−𝑎

𝑈−1
 . 𝒲1,𝑏  

 =
𝑎−1

𝑈−1
 (

𝑏−1

𝑉−1
 . 𝒲𝑈,𝑉 +

𝑉−𝑏

𝑉−1
 . 𝒲𝑈,1) +   

        =
𝑈−𝑎

𝑈−1
 (

𝑏−1

𝑉−1
 . 𝒲1,𝑉 +

𝑉−𝑏

𝑉−1
 . 𝒲1,1) + 

= 
((𝑏−1)(𝑎−1)𝒲𝑈,𝑉+(𝑏−1)(𝑈−𝑎)𝒲1,𝑉+(𝑉−𝑏)(𝑎−1) 

(𝑉−1)(𝑈−1)
                                                                    

End; 

    End; 

       End; 

 

The different sizes are evaluated and analyzed for the final result. The highest numbers of all neurons and their 

variants are calculated to measure training efficiency. The initial value of the learning rate (ℓ)   is set to 0.1 in Eq. 

(4), and the decreasing rate of ℓ is given. 

ℓ𝑛 = ℓ0 ∗ (1 −  
𝐼𝑁

100
) = 0.1 (1 −  

𝐼𝑁

100
 )                                                                                   (4) 

In Eq. (4), the iterative number is 𝐼𝑁, and the initial learning rate is ℓ0. 

Step 3: Compute the total crumbs number at the position of the dove 𝐷 for all dove fitness functions 𝐹(𝒲𝑏
𝑒) 

where 𝑏 = 1, . . . . 𝑛 at epoch 𝑒. 

Step 4: Discover the dove 𝐷𝑏
𝑒  nearest to the maximum crumbs using the highest criteria at epoch e, which is 

calculated as, 

𝐷𝑏
𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝐹(𝒲𝑏

𝑒)}  ,  𝑏 = 1, … 𝑛                                                                                   (5) 

Step 5: Apply the subsequent calculation to each dive's satiety degree. 

𝒮𝑏
ℯ =  ë𝒮𝑏

ℯ−1 + 𝑒(𝐹(𝒲𝑏) −𝐹(𝒲𝐷𝐹
) ),   𝑏 = 1, … 𝑛                                                                         (6) 

Step 6:  Determine the highest contented with dove 𝐷𝑆
𝑒  with the greatest degree of satiety by utilizing the following 

maximum criteria, 𝑏 = 1,2, … . 𝑛 

𝐷𝑆
𝑒 = 𝑎𝑟𝑔

𝑚𝑎𝑥
1 ≤ 𝑏 ≤ 𝑛

〈𝒮𝑏
ℯ〉                                                                                                        (7) 

𝐷𝑆 as determined by Eq. (7), symbolizes the dove that demonstrates the best foraging behavior and deserves to be 

emulated by the rest of the flock. 

Step 7: Change the position vector of each dove 𝐷 using the following maximum criterion 

 𝒲𝑏
𝑒+1 =  𝒲𝑏

𝑒 + ℓ ä𝑏
𝑒  (𝒲𝐷𝑠

𝑒 −  𝒲𝑏
𝑒)                                                                                       (8) 

Where, 

ä𝑏
𝑒 =   (

ä𝑏𝑠
𝑒 −ä𝑏𝑠

𝑒

ä𝑏𝑠
𝑒 ) (1 − 

‖ 𝒲𝑏
𝑒− 𝒲𝐷𝑠

𝑒 ‖

𝑀𝑎𝑥_𝐷𝑖𝑠
)                                                                                          (9) 

𝑀𝑎𝑥_𝐷𝑖𝑠 =
𝑚𝑎𝑥

1 ≤ 𝑏 ≤ 𝑛
  ‖ 𝒲𝑏 −  𝒲𝑎‖                                                                                 (10) 

Where, 𝑀𝑎𝑥_𝐷𝑖𝑠 is the maximum distance. The learning rate to adjust the dove position vector is specified by the 

parameter ℓ . The next step provides extensive justifications of the updating Equations (8) - (10). 

Step 8: Return to step 3 and increase the number of epochs by one (𝑓𝑜𝑟 𝑒𝑔, 𝑒 =  𝑒 + 1) until the terminate 

condition is met. The following are the termination rules: 

|𝐹𝐷𝒮
𝑒 − 𝑇(𝑒)| ≤ ã  𝑜𝑟 𝑒 ≤ 𝑚𝑎𝑥 𝑒𝑝𝑜𝑐ℎ |                                                                                            (11) 

The complexity order of DSO is 𝑂𝑛𝑛𝐷𝑒, the number of data elements in the dataset is 𝑛𝐷, 𝑛 is the number of 

doves and 𝑒 is the number of epochs. If one of the optimization criteria is to find the least 𝒲𝑏
𝑒, the order of (5) 

and (6) may be altered accordingly. 

𝐷𝑏
𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝐹 (𝒲𝑏

𝑒)}                        𝑏 =  1, … . , 𝑛                                                            (12) 

file://Max_Dis
file://Max_Dis
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𝒮𝑏
ℯ =  {

ë𝒮𝑏
ℯ+1 + 𝑒

(𝐹 (𝒲𝑏)−𝐹 (𝒲𝐷𝐹
))

𝐹(𝒲𝐷𝐹
) ≠ 0

ë𝑆𝑏
𝑒−1 + 1, 𝐹(𝒲𝐷𝐹

) = 0

 𝑏 = 1, … , 𝑛

                                                               (13) 

For better clarity, the updating rules are interpreted as given in Eq. (8)-(10) as follows: 

1. Doves in a flock are motivated by the largest individual's accomplishment and seek to duplicate it. They 

follow the dove with the greatest joy in order to find more food. This social acquisition is duplicated by altering 

the position vector 𝒲𝐷𝒮
𝑒   to more precisely approach the position vector of the dove with the highest degree of 

satiety, i.e., 

         𝒲𝑏
𝑒+1 = 𝒲𝑏

𝑒 + ℓä𝑏
𝑒  (𝒲𝐷𝒮

𝑒 − 𝒲𝑏
𝑒)                                                                           (4) 

2. A dove with higher satiety is more cautious and hesitant to change its foraging strategy, while a dove 

with lower satiety is more likely to modify its strategy and emulate the best individual behavior. This societal 

effect is demonstrated by comparing modifications to the first term value on the right hand side (RHS) of Eq. (9) 

is stated as follows, 

(
𝒮𝑗𝒮

𝑒 −𝒮𝑗
𝑒

ä𝑗𝑠
𝑒 )                                                                                                                     (15)                                                                                                               

3. The extent of social influence diminishes with distance, demonstrating that a dove's effect is 

proportionally related to the distances among it and the flock's best dove. This kind of societal influence is 

mimicked by making the degree of adaptation equivalent to the value of the third variable on the right-hand side 

of Eq. (9) i.e., ((1 − 
‖ 𝒲𝑏

𝑒− 𝒲𝐷𝑠
𝑒 ‖

𝑀𝑎𝑥_𝐷𝑖𝑠
)). 

Hence, the optimal hyper-parameters in sequence learning (BLSTM, CTC and SALSTM) are optimized using 

DSO by substituting their population locations at the initialization stage. The DSO helps to lower the 

computational complexity and enhances the classification accuracy for ISL recognition and translation. The 

pseudocode of DSO for hyperparameter tuning the BLSTM, CTC and SALSTM is described in Algorithm 1. 

Also, an overall workflow of the DSO hyperparameter tuning is shown in Figure 2. 

Algorithm 1: Hyperparameter tuning using DSO 

Input: Set of hyperparameters for BLSTM, CTC and SALSTM model (i.e., No. of neurons, No. of hidden units, 

learning rate, weight decay, number of epochs, batch size, dropout rate, number of partitions, No. of clusters per 

batch, momentum, optimizer and loss function) 

Output: Optimal hyperparameters 

Begin 

Initialize the No. of doves, initial dove locations, degree of satiety (𝒮𝐷
ℯ ), and the No. of epochs (𝑒); 

while(𝑒 < 𝑒_𝑚𝑎𝑥 )  
Compute the fitness value of all doves; 

Place the dove closest to the greatest quantity of crumbs; 

Modify all doves’ satiety degree values; 

Choose the most satisfied dove with the maximum degree of satiety; 

Modify all doves’ location vector; 

end while  

Find the best dove (assigning optimal value for hyperparameters of BLSTM, CTC and SALSTM) in the search 

space, and the optimal fitness value; 

End  
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Figure 2 Flowchart of DSO for hyper-parameter selection of sequence learning 
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No. of neurons, No. of hidden units, learning rate, weight decay, 

No. of epochs, batch size, dropout rate, No. of partitions, No. of 

clusters per batch, momentum, optimizer and loss function 
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Modify the each dove’s degree of satiety   
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degree 

Upgrade all dove position vector as to set the optimal values for 

the hyper-parameters  

Termination 

Criteria satisfied 

End 

Epoch 

Iteration  

𝑒 =  𝑒 + 1 

Start 

Optimal Solution is determined  



Prema Muthusamy, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 14, Issue 9, September, 2024, pp: 68-80 

 

 
www.ijera.com                                 DOI: 10.9790/9622-14096880                                        76 | Page 

 

 

3.2 Model Training 

The sequence learning model (BLSTM, SALSTM and CTC) for ISL-recognition and translation is trained with a 

set of optimal hyperparameters by the structure of DSO listed in Table 1.  

 

Table 1. List of Optimal Hyperparameters for sequence learning models 

Parameters Search Space Optimal Range 

Sequence Learning   

Number of neurons [16, 32, 48, 64, 80, 96, 112, 128] 96 

Number of hidden units [64, 128, 256, 512] 256 

Learning  rate  [0.01, 0.001, 0.0001] 0.001 

Weight decay [0.0001, 0.001] 0.0003 

Number of epochs [100, 500] 300 

Batch size [32, 64, 128, 512] 64 

Dropout rate [0.1, 0.2, 0.3, 0.5] 0.5 

Number of partitions [50, 100, 150, 200] 100 

Number of clusters per batch [1, 2, 3, 4] 3 

Momentum [0, 1] 0.7 

Optimizer [Stochastic gradient descent, Adam, ] Adam 

Loss Function [Cross-entropy, Mean Squared Error] Cross-entropy 

DSO 

Number of population [80, 90, 100, 110, 120] 100 

Maximum 

Number of  cluster Iterations 

[50, 60, 70, 80, 90] 80 

Step size [0.45, 0.55, 0.65, 0.75] 0.65 

ë [0.5, 0.6, 0.7, 0.8, 0.9] 0.9 

ℓ - 0.18~0.375 

 

IV. RESULT AND DISCUSSION 
4.1 Dataset Description  

 For the experimental purposes, The Indian 

SL Dataset for Continuous SL Translation and 

Recognition (ISL-CSLTR) dataset is employed [32]. 
The ISL-CSLTR corpus is a vast collection of 700 

videos, 18863 sentence-level frames, and 1036 

word-level images for 100 spoken language 

sentences performed by 7 different Signers. It is 

publicly available and aims to explore research 

outcomes in SLTR, helping researchers develop a 

framework for converting spoken language 

sentences into SL and vice versa. The corpus 

addresses challenges in SLRT and significantly 

improves translation and recognition performance.  

 

4.2 Performance Analysis 

 In this section, the efficiency of the 

OOSTHCN model is examined by implementing it 

in Python using the dataset which is discussed in 

Section 4.1. For the experimental purposes, 610 

videos have been finalized for the collected dataset, 

60% (366) data are taken for training and the rest 

40% (244) are taken for testing. From the collected 

dataset 86 sentences (labels) and 25 per second time 

frame rate have been determined for the final output.  

Further a comparative analysis is carried out to 

understand the improvement of the OOSTHCN, 

model contrasted to the existing models including 

STMC [17], SVM-CNN [24], CNN-BLSTM [27], 

LSTM-YOLOv6 [30], SSODL-aSLR [31] STHCN 

[18] and OSTHCN [19]. The assessment measures 

used to assess the effectiveness of the proposed and 

current models are shown briefly below. 

4. 1. Accuracy:  Accuracy is the ratio of 

successfully identified signs to the overall number 

used for classification, indicating the model's overall 

performance and training. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =    
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   

                                    (14) 

In above Eq. (14), If the model accurately identified 

the class of the sign, we say that we have a high 

proportion of True Positives (TP). When a True 

Negative (TN) is produced, it means that the model 

accurately predicted that a given symbol does not 

belong to a certain class. When a model predicts a 

class of signs that does not exist in reality, the 
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prediction is termed as false positive (FP). When the 

true class of a sign is expected to be false, this is 

called a False Negative (FN). 

 4.2 Precision:  It is used in SLR to evaluate model 

performance; it primarily informs about FP results 

in the dataset. A higher accuracy score means fewer 

FP values.   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =    
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (15) 

4.3 Recall: The recall score is used in SL 

identification to evaluate model performance; this 

score primarily informs about erroneous FN values 

in the dataset. A higher recall score means fewer 

false negative values. 

𝑅𝑒𝑐𝑎𝑙𝑙 =    
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (16) 

4.4 F1-Score: It is the average of the two measures 

of precisions and recall 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                (17) 

 

 
Figure 3. Comparison of Precision, Recall and F1-score for OOSTHCN against Existing SLR 

Classification Models on ISL-CSLRT Dataset 

 

 

Figure 3 portrays the performance of OOSTHCN 

against different existing models on the test ISL-

CSLRT dataset in terms of precision, recall and F1-

score. It is noticed that the precision of OOSTHCN 

is increased up to 21.34%, 17.73%, 12.94%, 

10.66%, 7.59%, 3.80%  and 1.01% respectively 

contrasted with the STMC, SVM-CNN, CNN-

BLSTM, LSTM-YOLOv6, SSODL-aSLR, STHCN 

and OSTHCN respectively. The recall of 

OOSTHCN  is improved by 22.25 %, 17.74%, 

13.40%, 12.64%, 8.79%, 3.89% and 0.41% 

compared to the STMC, SVM-CNN, CNN-BLSTM, 

LSTM-YOLOv6, SSODL-aSLR, STHCN and 

OSTHCN algorithms, accordingly. The F1-score of 

OOSTHCN is enhanced by 24.21%, 20.63%, 

15.65%, 11.52%, 9.81%, 4.38% and 1.42% 

compared to the STMC, SVM-CNN, CNN-BLSTM, 

LSTM-YOLOv6, SSODL-aSLR, STHCN and 

OSTHCN, respectively. This is because of 

optimizing the model hyperparameters with faster 

convergence and less computational complexity by 

the DSO model. This improves the model 

performance while dealing with the ISL-CSLRT 

dataset for ISL recognition and translation. 
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Figure 4.  Accuracy Results for OOSTHCN and Existing SLR Models 

 

 

As shown in Figure 4, the accuracy of the 

OOSTHCN model is by 24.55%, 20.01%, 14.89%, 

11.89%, 8.50%, 4.49% and 1.16 STMC, SVM-

CNN, CNN-BLSTM, LSTM-YOLOv6, SSODL-

aSLR, STHCN and OSTHCN respectively test ISL-

CSLRT dataset. Therefore, it is inferred that the 

OOSTHCN model is more effective than other SLR 

models. This is achieved by adopting the DSO for 

well fine-tuning the hyperparameters of BLSTM, 

CTC and SA-LSTM with lower computational 

complexity and enhanced accuracy results to get 

effective global solutions for ISL recognition and 

translation.  

 

V. CONCLUSION 
 This paper presents an OOSTHCN model 

using DSO to reduce computational complexity and 

improve accuracy for ISL recognition and 

translation. The DSO is adopted to select optimal 

hyper-parameters like learning like No. of neurons, 

No. of hidden units, learning rate, weight decay, No. 

of epochs, batch size, dropout rate, No. of partitions, 

No. of clusters per batch, momentum, optimizer and 

loss function. This model is based on real-time dove 

foraging behaviors with the initial population 

representing hyper-parameters and subsequent 

locations representing the search for optimal values. 

The OOSTHCN is completely optimized using DSO 

and achieves a 97.86 % accuracy on the ISL-CSLTR 

dataset compared to existing models. In future, 

mobile applications based DL model will be 

developed for real-time sign recognition and 

translation.  
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