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ABSTRACT 
In information science, Multi-Label Learning (MLL) has emerged as a method for identifying samples according 

to certain features related to a number of tags. When an information flow introduces new perspectives, advanced 

training necessitates the classification of characteristics using New Labels (NLs). To address this challenge, a 

classification algorithm called MuEMNL-Ensemble Neural Network (ENN) was developed for MLL with 

Emerging Multiple NLs (MuEMNL). This algorithm effectively handles large amounts of data and resolves 

concept drift issues. However, the memory usage required to preserve previously learned information in the 

ENN was found to be excessive. This article presents a Generative Adversarial Network (GAN) model for 

classifying data streams using the MuEMNL-ENN classifier as a solution. The GAN model eliminates the need 

to store previously learned information, resulting in reduced memory usage. By including the GAN model, the 

GAN-MuEMNL-ENN model solves the problem of not having enough historical data and prevents data streams 

from forgetting everything in the MLL process. This model is capable of performing online MLL using the 

MuEMNL-ENN classifier and adapting to new data classes without losing previously learned information. The 

GAN consists of generator and discriminator networks, with the generator model regenerating historical training 

data that cannot be retained. This model eliminates the need to store and reuse previous observations, making it 

advantageous for applications dealing with large datasets. Extensive experiments have proven that the GAN-

MuEMNL-ENN model outperforms existing models for MLL on a variety of multi-label datasets. 
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I. Introduction 

The most popular idea in artificial 

intelligence today is traditional supervised learning, 

in which each characteristic is symbolized by a 

unique vector related to a particular label. However, 

a distinguishing characteristic may include many 

labels in different situations [1–2]. For instance, a 

photo may capture multiple labels, a transcript may 

encompass multiple topics, and a soundtrack may 

belong to more than one category [3]. MLL has 

gained popularity as a learning theory for handling 

this type of information [4]. In MLL, every item 

associated with a collection of labels is characterized 

by a specific attribute, unlike in standard supervised 

learning. The method ensures the correct label 

collections for unsupplied attributes [5]. Historically, 

MLL has played a significant role in addressing a 

variety of issues, including enhancing the efficiency 

of multimedia information, and has increasingly 

expanded into specific machine learning domains. 

Previous research on MLL focused on multi-label 

text categorization using a pre-specified label set [6]. 

However, in many practical scenarios, a flexible 

instance has many current tags, possibly the best 

tags in the predicted information flow pattern [7]. 

A training technique can rearrange and 

reconfigure a typical system into different 

configurations in a complex world. This method 

must be able to replicate an existing framework in 

the MLL model for new features while also 

providing updated classification techniques for each 

NL. Excluding real-world learning data from the 

advanced MLL eliminates Ground Truth (GT) for 

tags at every stage of the data stream [8]. As such, 

NL discovery and simulation were the main 
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challenges. It was difficult to determine the traits of 

an NL. It was challenging to differentiate 

characteristics with recognized labels from those 

with NLs due to the absence of new labels in 

previous data, which typically co-existed with a few 

helpful labels. Because of an inaccurate 

categorization, the frequency of failure rose as the 

amount of NLs in the information source increased. 

Therefore, creating suitable frameworks to 

enhance the performance of categorization in a data 

stream was a challenging task. To address this issue, 

researchers introduced several MLL algorithms with 

novel approaches to identify correlations between 

labeled and unlabeled features [9]. The MuENL [10] 

was suggested to identify and classify features with 

Emerging NLs (ENLs) in light of these factors. The 

MuENL method has several key phases, including: 

Sorting the features linked to recently discovered 

labels, determining whether an NL exists, and 

creating a new classification scheme for all NLs that 

cooperate with the predictor for the tags that have 

been identified. In addition, MuENLHD was 

adjusted to handle high-dimensional sparse 

information by utilizing a kernel Principal 

Component Analysis (PCA) to reduce size. On the 

other hand, this method could only address a certain 

NL at a particular stage. On the other hand, this 

method might treat the quantity of NLs as a separate 

NL in cases where the test set includes many NLs in 

a particular step. As a result, performance suffers. 

So, the MuEMNL and MuEMNLHD 

methodologies have been recommended [11] to 

resolve the challenges in a flexible scenario with a 

large number of natural languages. To adapt to this 

dynamic situation, the NL set was divided into 

multiple new CLs. The approach involves four main 

steps:  

i) Identifying the MuEMNLforest and 

MuEMNLHD groups by the OPTICS 

approach;  

ii) Creating a new outlier identification 

using both primary and test data 

streams;  

iii) Constructing a linear classifier to reduce 

the pairwise tag categorization loss on 

the group of tags; and  

iv) Using a categorization updating 

approach to incorporate NLs and build a 

powerful categorizer.  

However, maintaining the current approach is 

crucial for addressing concept drift issues, 

particularly when dealing with large volumes of 

information entering at high rates and limited 

resources. 

Because of this, a flexible group training 

method was introduced [12] that creates a 

MuEMNL-Ensemble Neural Network (ENN) instead 

of a random forest categorizer. This can handle huge 

amounts of data and fix issues with concept drift. It 

details the number of independent NNs using a 

constructive-pruning strategy, the size of the 

ensemble, the hidden nodes, and the learning 

examples. Pairwise and non-pairwise diversity 

metrics were also tested while building the ENN for 

effective training with all of the learning examples to 

address concept drifts. Furthermore, NNs were kept 

both diverse and accurate at the same time. 

Nonetheless, the memory usage for preserving 

previously learned information in the ENN required 

more memory. 

Hence, this article introduces a Generative 

Adversarial Network (GAN) model for classifying 

data streams using the MuEMNL-ENN classifier. 

The model eliminates the need to store previously 

learned information, resulting in reduced memory 

usage. By incorporating the GAN model, the GAN-

MuEMNL-ENN model addresses the lack of 

historical data and prevents catastrophic forgetting in 

the MLL process for data streams. It introduces a 

model capable of performing online MLL using the 

MuEMNL-ENN classifier and adapting to new data 

classes without losing previously learned 

information. The GAN consists of generator and 

discriminator networks, with the generator model 

regenerating historical training data that cannot be 

retained. This model eliminates the need to store and 

reuse previous observations, making it advantageous 

for applications dealing with large datasets. 

The structure of the following manuscript is 

as follows: Section II examines earlier MLL studies 

in diverse fields. Section III describes the GAN-

MuEMNL-ENN, and Section IV demonstrates its 
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efficacy. Section V précises the study and discusses 

forthcoming developments. 

II. Related Works 

This section reviews various MLL 

algorithms developed by earlier researchers for 

different applications. Mishra and Singh [13] 

introduced the Feature Construction and Smote-

based Imbalance (FCSMI) technique for multi-label 

corpora. Initially, the average imbalance ratio was 

used to identify minority labels. Then, it computed 

the distances of every sample from all minority 

samples and utilized SMOTE to equalize the 

proportion of minority and majority samples. 

Eventually, the corpus with a minimal imbalance 

rate was used for classifier training. Using large-

scale datasets incurs a high computational cost, and 

the model's performance on new data was 

ineffective. 

Dahiya et al. [14] created the Deep Extreme 

Multi-Label Learning (DeepXML) model for 

learning frameworks, which assign the most suitable 

subgroup of tags from a massive tag group to a given 

data element. A feature architecture was used to map 

the data onto a dense D-dimensional representation, 

followed by training intermediate feature 

representations using a surrogate objective. Also, 

sub-linear search and negative sampling schemes 

were applied. Transfer learning was also utilized to 

obtain a final feature representation. However, it 

should be noted that the model has a high training 

time and memory usage. 

Rezaei-Ravari et al. [15] introduced two 

regularized MLL methods: Regularized MLL 

through Feature Manifold (RMLFM) and 

Regularized MLL via Dual-Manifold (RMLDM). 

RMLFM incorporates an attribute manifold 

normalization factor to maintain local 

characteristics, while RMLDM uses attribute and 

information manifold normalizations to preserve 

local characteristics of both information and 

attributes. Two iterative schemes with global 

conjugate gradient mechanisms were developed to 

calculate fitness values for these methods, which 

may require higher memory usage for large-scale 

datasets. 

Li et al. [16] investigated the class-reliant 

shift matrix's identifiability in noisy MLL. They 

proposed a new predictor that leverages label 

correlations. They assessed the presence of noisy 

tags to establish noisy tag relationships, and then 

used a sample selection process to identify noiseless 

tag relationships. By integrating the inferred tag 

relationships, a shift matrix was derived through a 

straightforward bilinear decomposition approach. 

But they did not address the memory utilization 

problem, which affects the effectiveness of this 

predictor for MLL.  

Fu et al. [17] introduced a kernel factor and 

manifold normalization to capture label correlations 

iteratively. They also used label correlations and 

local label data to predict unobserved samples. 

However, this approach is computationally intensive 

for large-scale datasets.  

Liu et al. [18] examined semantic labels and 

their correlation with texts using an attention 

strategy toselect relevant features. First, a graph 

convolutional network was used to model high-label 

correlation. Then, the Label-Aware Attention and 

Semantic Dependency (LAA-SD) scheme was 

adopted to improve text feature representation and 

address label semantic dependency for text MLL. 

However, this approach did not effectively handle 

new labels and struggled with class imbalance 

problem. 

A multi- and weak-label learning framework 

[19] was applied to enhance label semantic space 

through unified label relationship. They utilized 

label information dependability, feature-label 

reliance, and tag relationships to improve semantic 

views. Additionally, they employed l_2,1-norm to 

address the issue of absent tag space noise. 

An ELSMML, a label relationship and MLL 

[20] was developed to define higher-level tag 

relationships. Also, multi-view learning and 

dimensionality minimization were employed to 

uncover higher-order latent semantic label and latent 

feature information. They utilized an enhanced 

proximal gradient mechanism to optimize the model 

parameters and obtain the predictive classifier. 

Huang et al. [21] introduced the Multi-Graph 

MLL with Novel and Missing Labels (MGMLNM) 

scheme, which utilized specific graph kernels to 

maintain structure information and create an 

effective graph representation. A unified objective 

function with projection-relationship and bag-reliant 

normalizations was employed to regulate new and 

absent tags concurrently and extract complex 

correlations between bag and graph labels in multi-

graph data. However, the approach did not address 

concept drift and memory utilization, impacting its 

efficiency for large-scale datasets. 

2.1 RESEARCH GAP 

Numerous algorithms have been created for 

MLL, but it is essential to address memory-related 

issues for effective training and deployment of 

models. One of the primary challenges in online 

MLL on data streams is the potentially large size of 

the dataset, which presents storage and memory 

management issues during training to retain 

previously learned information. Traditional learning 

approaches are notadept at handling rapidly 
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increasing amounts of data in real time, as well as 

factors such as changing distribution of streaming 

data over time, limited computational time, and 

memory. To tackle this issue, this study proposes the 

use of the GAN model with ensemble classification 

for online MLL on data streams that do not store 

previously learned information. 

 

III. Proposed Methodology 

The GAN-MuEMNL-ENN model is briefly 

explained here. Fig. 1 illustrates the conceptual 

diagram of this work. 

A model is designed to illustrate the 

process of online learning, representing the 

continuous arrival of data with distinct classes 

coming in separately. The proposed framework is 

depicted in Fig. 2. 

Consider𝑆 = {𝑆𝑖|𝑖 = 1, … , 𝑁}is the splitting 

of real data into N different classes. In this proposed 

online MLL model,initially consider the first 

incoming class𝑆1 from 𝑆and utilize it to train a 

generator𝐺1, which is capable of representing this 

data. Once 𝐺1is trained, store it and remove 𝑆1.  

 
Figure. 1 Conceptual Diagram of this Work 

 

After that, train𝐺2 on the data from 𝑆2, 

while simultaneously training a neural network 

classifier 𝐶1
2 in an ensemble. This classifier is fed 

with samples from𝑆1
∗, which is synthetic data 

generated by 𝐺1, as well as newly arriving real data 

from𝑆2. After this process, the data from 𝑆2 

isdiscarded. This process is repeated for all classes 

in 𝑆, generating equal batches of data from each 

previously trained generator. When a new class is 

added, a node is also added to the output layer of the 

classifier and its connections are initialized with the 

previous layer, as shown in Fig. 3. 

 

Figure. 2 Schematic Representation of GAN-MuEMNL-ENN Model f or Online ML
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Figure 3 Adding a Node to the Output Layer of 

Neural Network in Ensemble Model and Initializing 

the Connections with the Previous Layer in Online 

MLL if New Data Class occurs in the stream 

The remaining network weights are copied from the 

previous state. The pseudocode of this model is 

presented in Algorithm 1. 

Algorithm 1: GAN-MuEMNL-ENN Classification 

Model for Online MLL 

Require: a data stream𝑆 = ⋃ 𝑆𝑖
∞
𝑖=1  with class 

number𝑖, 𝑛 number of previously learned classes, a 

generative model 𝐺𝑖 for class 𝑖and neural network 

classifier𝐶1
𝑛

in ensemble for data from ⋃ 𝑆𝑖
∞
𝑖=1  

1. Begin 

2. 𝐺1 ⇐initialize model; 

3. 𝑛 ← 1; 

4. 𝒘𝒉𝒊𝒍𝒆(𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝑆) 

5. 𝑑 ⇐ get batch from 𝑆𝑗, where 𝑗 is the current 

class; 

6. 𝒊𝒇(𝑗 = 𝑛 + 1) 

7. 𝑛 ← 𝑛 + 1; 

8. 𝐺𝑛, 𝐶1
𝑛 ⇐initialize models; 

9. 𝒊𝒇(𝑛 > 2) 

10. 𝐶1
𝑛 ⇐ regenerate parameters from 𝐶1

𝑛−1; 

11. 𝒆𝒏𝒅 𝒊𝒇 

12. 𝒆𝒏𝒅 𝒊𝒇 

13. 𝑑∗ ← ⋃ 𝑑𝑖
∗𝑖≠𝑗

𝑖=1…𝑛  create synthetic data from 

{𝐺𝑖}; 

14. 𝐶1
𝑛 ⇐ train with 𝑑 ∪ 𝑑∗; 

15. 𝐺𝑗 ⇐ train with 𝑑; 

16. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

17. End 

3.1 Design of Deep Convolutional Generative 

Adversarial Network (DCGAN) model 

This study uses the DCGAN model for the 

generative network, which includes DCGAN 

generator and discriminator networks constructed 

with convolutional layers and topological 

constraints to ensure improved convergence. Fig. 4 

shows that the DCGAN model [22] consists of one 

convolutional layer and two fully connected linear 

layers. A Rectified Linear Unit (ReLU) activation 

function is applied to all layers, except the final one. 

Batch regularization and dropout are employed 

during training on each layer, except the output 

layer. Stochastic Gradient Descent (SGD) with 

Adam is used for model parameter tuning. 

Thus, in the GAN-MuEMNL-ENN model, 

real data is applied to the model on a class-by-class 

basis. As new classes of data become available, a 

new generator is trained to model each class. At the 

same time, a classifier is trained on the generated 

data from previously learned classes and the real 

data from the new class as it comes in from the data 

stream. 

 

 
Figure. 4 Architecture of DCGAN Model 

 

IV. Experimental Results 

The GAN-MuEMNL-ENN model is tested in 

MATLAB 2019b using various separate multi-label 
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benchmark datasets (birds, CAL500, emotions, 

Enron, yeast, and 20Newsgroup) [23]. Details about 

these datasets can be found in [11]. The statistical 

assessment included Average Precision (AP), F1 

score, and micro-F1 measures. In the test set(𝑟𝑛 , 𝑌𝑛), 

ℎ(𝑟𝑛)denotes the group of estimated tags for𝑛𝑡ℎ 

instance, 𝑓(𝑟𝑛 , 𝑦)is the certainty that 𝑟𝑛 fits to the 

tag 𝑦. 

AP: It represents the mean fraction of +ve tags that 

are scored greater than a given +ve tag. 

𝐴𝑃 =
1

𝑛
∑

1

|𝑌𝑖|

𝑛
𝑖=1 ∑

|𝑙𝑝|

𝑠𝑜𝑟𝑡𝑓(𝑟𝑛,𝑦)
𝑦∈𝑌   

   (1) 

where 𝑙𝑝 = {𝑦′|𝑠𝑜𝑟𝑡𝑓(𝑟𝑛,𝑦′) ≤ 𝑠𝑜𝑟𝑡𝑓(𝑟𝑛,𝑦), 𝑦′ ∈ 𝑌𝑖}

                       (2) 

In Eqns. (1) and (2), 𝑌𝑖 is the set of +ve tags, 𝑛 is the 

overall test samples, 𝑙𝑝 is the set of predicted +ve 

tags that are ranked lower than 𝑦 for 𝑟𝑛. 

F1 score: It is determined as: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
1

𝑛
∑

2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑛
𝑖=1  

   (3) 

Micro-F1: It is calculated by 

𝑀𝑖𝑐𝑟𝑜 𝐹1 = ∑
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑛
𝑖=1  

   (4) 

Accuracy: It measures the efficacy of MuEMNL-

ENN to appropriately forecast tag of novel 

information. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

  (5) 

In Eq. (5), TP stands for the total number of +ve 

examples considered as +ve, TN stands for the total 

number of -ve examples considered as -ve, FP 

stands for the total number of +ve examples 

considered as -ve, and FN stands for the total 

number of -ve examples considered as +ve. 

Hamming loss: It is the proportion of information 

with incorrectly estimated or omitted labels. 

One-error: It is the proportion of information 

whose top-ranked forecasted tag is not in the GT tag 

set. 

Coverage: This measures the mean amount of steps 

required to navigate through an example’s ordered 

tag set to encompass all associated tags. 

Ranking loss: It is the mean fraction of misordered 

tag groups, i.e. a suitable tag of an information is 

organized above its suitable tag. 

4.1 Performance Analysis of GAN MuEMNL-

ENN on Low-dimensional Datasets 

The effectiveness of GAN-MuEMNL-ENN has 

been assessed by comparing it to the existing 

models MuEMNL-ENN [12], DeepXML [14], 

ELSMML [20], and MGMLNM [21] on 5 different 

low-dimensional datasets. 

In Fig. 5, the AP of various MLL models is 

compared. The GAN-MuEMNL-ENN demonstrates 

a higher AP compared to other models. For 

example, when using the Yeast dataset, the GAN-

MuEMNL-ENN increases the AP by 45.83%, 

32.08%, 18.64%, and 9.72% compared to the 

ELSMML, MGMLNM, DeepXML, and MuEMNL-

ENN, respectively. 

Fig. 6 shows the F1 score values of various MLL 

models. The GAN-MuEMNL-ENN achieves a 

higher F1 score compared to others. For example, 

when using the CAL500 dataset, the GAN-

MuEMNL-ENN increases the F1 score by 28.81%, 

20.63%, 13.43%, and 8.42% compared to the  

 
Figure. 5 AP vs. Datasets 
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Figure. 6 F1 score vs. Datasets 

 

 
Figure. 7 𝚫Micro F1 vs. Datasets 

 

ELSMML, MGMLNM, DeepXML, and MuEMNL-

ENN, respectively. 

Fig. 7 demonstrates the ΔMicro F1 results of the 

various MLL models. It is worth noting that the 

GAN-MuEMNL-ENN shows an increase in ΔMicro 

F1 compared to the others. For example, when using 

the Enron dataset, the GAN-MuEMNL-ENN 

increases the ΔMicro F1 value by 80%, 54.29%, 

35%, and 14.89% compared to the ELSMML, 

MGMLNM, DeepXML, and MuEMNL-ENN, 

respectively. 

 

Fig. 8- 12 illustrates the hamming loss, One-error, 

ranking loss, coverage, and accuracy for the 

different MLL models. For the Birds dataset, the 

hamming loss of GAN-MuEMNL-ENN is 

minimized by 63.64%, 60%, 55.56%, and 42.86%  

 
Figure. 8 Comparison of Hamming Loss 

 

 
Figure. 9Comparison of One-error 

 

 
Figure. 10Comparison of Ranking Loss 

 

 
Figure. 11Comparison of Coverage 

 

compared to ELSMML, MGMLNM, DeepXML, 

and MuEMNL-ENN, respectively. The one-error is 

decreased by 17.39%, 13.64%, 9.52%, and 5.47% 

compared to ELSMML,MGMLNM, DeepXML, and 

MuEMNL-ENN, respectively. The ranking loss is 

reduced by 36.36%, 30%, 22.22%, and 14.63% 

compared to ELSMML, MGMLNM, DeepXML, 

and MuEMNL-ENN, respectively.  

In the emotions dataset, the coverage of GAN-

MuEMNL-ENN is minimized by 62.5%, 52.63%, 

40%, and 29.13% compared to ELSMML, 

MGMLNM, DeepXML, and MuEMNL-ENN, 

correspondingly. The accuracy of GAN-MuEMNL-
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ENN is boosted by 18.42%, 12.5%, 7.14%, and 

3.69% compared to ELSMML, MGMLNM, 

DeepXML, and MuEMNL-ENN, correspondingly. 

Hence, it is evident that GAN- 

 
Figure. 12 Comparison of Accuracy 

 

MuEMNL-ENN outperforms the others on low-

dimensional corpora across several measures. 

4.2 Performance Analysis of GAN-MuEMNL-

ENN on High-Dimensional Datasets 

The effectiveness of GAN-MuEMNLHD (High-

Dimensional)-ENN is evaluated by comparing it to 

the existing models MuEMNLHDForest [11], 

MuEMNLHD-ENN [12], and RMLDM [15] on the 

20Newsgroup dataset. 

Fig. 13 shows the average precision, F1-score, 

𝚫Micro F1, and accuracy of different MLL models. 

GAN-MuEMNLHD-ENN has a 24.59% higher 

mean precision compared to RMLDM, a 17.65% 

higher mean precision compared to 

MuEMNLHDForest, and a 6.89% higher mean 

precision compared to MuEMNLHD-ENN. The F1-

score of GAN-MuEMNLHD-ENN is 28.07% higher 

than RMLDM, 15.69% higher than 

MuEMNLHDForest, and 5.04% higher than 

MuEMNLHD-ENN. The 𝚫Micro F1 of GAN-

MuEMNLHD-ENN is 65.22% higher than 

RMLDM, 42.32% higher than MuEMNLHDForest 

 
Figure. 13 Comparison of Precision, F1-score, and 

Accuracy for Different MLL Models on 

20Newsgroup Dataset 

 

 

Figure. 14 Comparison of Hamming Loss, One-

Error, Ranking Loss, and Coverage for Different 

MLL Models on 20Newsgroup Dataset and 8.88% 

higher than MuEMNLHD-ENN. The accuracy of 

GAN-MuEMNLHD-ENN is 28.36% higher than 

RMLDM, 17.97% higher thanMuEMNLHDForest, 

and 7.1% higher than MuEMNLHD-ENN. 

Fig. 14 compares the hamming loss, one-error, 

ranking loss, and coverage of various MLL models. 

The hamming loss of GAN-MuEMNLHD-ENN 

is40.68%, 29.58%, and 22.31% lower than 

RMLDM, MuEMNLHDForest, and MuEMNLHD-

ENN, correspondingly. The one error of GAN-

MuEMNLHD-ENN is minimized by21.31%, 

17.95%, and 14.29% compared to the RMLDM, 

MuEMNLHDForest, and MuEMNLHD-ENN, 

respectively. 

The ranking loss of GAN-MuEMNLHD-ENN 

lessened by 36.51%, 21.57%,and 17.27% compared 

to the RMLDM,MuEMNLHDForestand 

MuEMNLHD-ENN, correspondingly. The coverage 

of GAN-MuEMNLHD-ENN diminished by 

28.57%, 22.48%, and 13.04% compared to the 

RMLDM, MuEMNLHDForest, and MuEMNLHD-

ENN, respectively. Hence, GAN-MuEMNLHD-
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ENN outperforms conventional MLL models on a 

high-dimensional corpus. 

V. Conclusion 

In this work, the GAN-MuEMNL-ENN 

model has been presented that represents a 

significant advancement in the field of online MLL 

for data streams. By eliminating the need to store 

previously learned information, the GAN-

MuEMNL-ENN model effectively addresses the 

memory usage issue. This innovation not only 

tackles the challenge of insufficient historical data 

but also prevents catastrophic forgetting in the MLL 

process. The model's capacity for online learning 

and adaptation to new data classes without 

compromising retained knowledge positions it as a 

powerful solution for dynamic datasets. The 

DCGAN, consisting of generator and discriminator 

networks, enables the regeneration of historical 

training data that cannot be stored, offering a new 

approach to handling large datasets without 

sacrificing efficiency. Through extensive 

experimentation, the GAN-MuEMNL-ENN model 

has demonstrated superior performance compared to 

existing models across diverse multi-label datasets, 

confirming its effectiveness and potential for 

advancing real-world applications in the field of 

machine learning. 
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