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Abstract:  
Gas leaks pose significant risks to both industrial safety and environmental conservation, necessitating the use of 

reliable detection methods. This study details a method for detecting gas leaks by integrating multiple sensors and 

applying advanced machine learning algorithms, focusing on enhancing detection accuracy and reliability through 

data-driven analysis rather than relying on conventional single-point sensor systems. Sensor arrays based on en-

vironmental susceptibility data detect conditions prone to gas leakage. The proposed system employs deep learn-

ing techniques and demonstrates adaptability to detect and respond to gas leaks in real-time. 

By integrating data from multiple sensors measuring gas concentration, temperature, and pressure, the develop-

ment of a comprehensive and context-aware detection system is enabled. The system analyzes temporal patterns 

to issue early warnings and insights into gas dispersion, substantiated by its effectiveness in predicting gas disper-

sion dynamics. This allows for proactive risk management and the creation of efficient mitigation strategies. The 

design is structured for practicality and scalability, demonstrated by compatibility tests with existing infrastructure 

and a framework that supports integration with future advancements in sensor technology and machine learning. 

Previously, the technology was characterized using MATLAB simulation. The effectiveness and reliability of the 

system in detecting gas leaks in various operational settings will now be demonstrated through real-world testing 

and observation. 

Keywords: gas leakage detection; embedded sensors; deep learning; industrial safety; and environmental moni-

toring 
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I. Introduction 
Hydrogen is increasingly utilized as an en-

ergy carrier across various sectors due to its clean and 

stable characteristics. It is a viable choice for decreas-

ing CO2 emissions and minimizing the use of fossil 

fuels [1-2]. The concept of a hydrogen economy has 

garnered global interest, leading to the establishment 

of research and development programs over the years 

[3-4]. These programs aim to enhance reliability and 

develop effective techniques for hydrogen produc-

tion, storage, and utilization in areas such as energy 

generation, transportation, and both industrial and 

residential applications [5]. The shift to a hydrogen 

economy has distinct obstacles, such as the need for 

dependable hydrogen leak detection devices [6]. Hy-

drogen leaks provide substantial safety hazards due to 

hydrogen's extreme flammability, which may result in 

explosions or flames if not promptly identified and 

managed [7-8].  

Traditional single-sensor systems may not 

be adequate for detecting subtle changes or abrupt 

spikes in hydrogen concentration. A novel hybrid 

strategy combining sensor fusion and deep learning 

approaches is suggested to address this problem [9]. 

This technique aims to enhance the sensitivity and re-

liability of hydrogen leak detection by combining 

data from several sensors such as electromagnetic, ul-

trasonic, and optical sensors. The sensor fusion ap-

proach employs deep learning, particularly long 

short-term memory networks, to evaluate and inter-

pret combined sensor data instantaneously [10]. Uti-

lizing deep learning with embedded sensors for gas 

leak detection shows promise in enhancing accuracy 

and efficiency [11]. These advancements in gas leak 

detection will enhance the safety of hydrogen appli-

cations and contribute to the success and widespread 

adoption of hydrogen as a carrier, Sustainable energy 

benefits several industries [12]. 

Deep learning may be used for real-time gas 

monitoring systems. Deep learning systems can ana-

lyze data from several sensors to detect and categorize 

distinct gases instantly [13]. Training deep neural net-

works on a large dataset can do this. This deep learn-

ing algorithm can reliably recognize certain gases and 
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possibly identify unexpected quantities or leaks by 

analyzing sensor values and their matching gas types 

[14]. This is achieved by training Long Short-Term 

Memory (LSTM) networks on extensive datasets 

comprising sensor readings and associated hydrogen 

leak incidents [15-16]. LSTM networks that have 

been trained are capable of reliably detecting and cat-

egorizing hydrogen leaks using sensor data [17]. The 

sensor fusion method for hydrogen leak detection us-

ing LSTM networks offers improved sensitivity and 

reliability in comparison to conventional single-sen-

sor systems [18]. By amalgamating data from several 

sensors, these networks may efficiently identify sub-

tle fluctuations or abrupt spikes in hydrogen concen-

tration that could be unnoticed by an individual sen-

sor [19-20]. 

The future of monitoring sustainable energy 

technology depends on combining improved sensors 

with AI-based detection systems [21-22]. These tech-

nologies may enhance the safety and effectiveness of 

hydrogen use by precisely detecting and reacting to 

hydrogen leaks in real-time [23-24]. Partnerships 

across business, academia, and government world-

wide are crucial for promoting the use of AI and ma-

chine learning [25-26]. 

 

II. Hypotheses 
2.1. Background and Rationale: 

Given the inherent dangers and specific re-

quirements associated with testing hydrogen gas, our 

research has adopted the use of helium gas as a surro-

gate in the development and testing phases of AI-

based sensor systems. This strategic choice is under-

pinned by the physical and chemical properties of hy-

drogen (H₂) and helium (He), which share notewor-

thy similarities, making helium a practical and safer 

alternative for our experimental setups. Hydrogen 

(H₂) has a molecular weight of approximately 2.016 

g/mol, comprising two hydrogen atoms, while helium 

(He) has a molecular weight of about 4.0026 g/mol, 

consisting of a single atom. Despite helium being 

heavier, both gases are significantly lighter than air, 

allowing for rapid dispersion in atmospheric condi-

tions. Hydrogen is a diatomic, highly flammable gas 

that is reactive under certain conditions, but its mole-

cules are stable and non-reactive under normal atmos-

pheric conditions. On the other hand, helium, as a no-

ble gas, is inert and non-reactive. Its monatomic na-

ture adds to its chemical stability. Both gases are gas-

eous at standard temperature and pressure, showing 

similar behaviors in terms of diffusion and distribu-

tion in an environment. The boiling point of hydrogen 

is -252.87 °C, and its melting point is -259.16°C, 

compared to helium's lower boiling point of -

268.93°C and melting point of -272.20°C. These low 

boiling and melting points ensure both gases remain 

in a gaseous state under most environmental condi-

tions. This close resemblance in fundamental physical 

characteristics supports the hypothesis that a sensor 

system designed for hydrogen detection can be effec-

tively calibrated and tested using helium. This simi-

larity provides a basis for ensuring that our testing 

methodologies are robust and safe, reducing the risks 

associated with hydrogen's flammable nature while 

maintaining the integrity and relevance of our exper-

imental results. 

 

2.2. Primary Hypothesis: 

Our central hypothesis posits that sensor 

systems, originally configured for hydrogen (H₂) de-

tection, can be efficiently calibrated, and validated us-

ing helium (He) as a surrogate gas. This hypothesis is 

predicated on the fundamental principle that the phys-

ical and chemical behaviors of helium, particularly its 

dispersion characteristics and lack of reactivity under 

standard atmospheric conditions, closely mirror those 

of hydrogen. 

Mathematically, this can be expressed by 

considering the properties of gas dispersion and reac-

tion kinetics. For instance, if (DH₂) and (DHe) repre-

sent the dispersion coefficients of hydrogen and he-

lium, respectively, under identical conditions, our hy-

pothesis assumes that DH₂ ≈ DHe. Additionally, the 

reactivity of hydrogen can be represented by its reac-

tion rate constant KH₂ under certain conditions. Since 

helium is non-reactive, its reaction rate constant KHe 

is effectively zero, which simplifies the testing pro-

cess by eliminating the variable of gas reactivity. Ta-

ble 1 shows a general comparison between helium 

and hydrogen gas. 

We anticipate that these similarities in dis-

persion and non-reactivity will allow for the develop-

ment of a testing environment that is both precise and 

safe, substantially reducing the hazards linked with 

hydrogen’s high flammability. This approach not only 

provides a viable route for sensor calibration and test-

ing but also ensures that the integrity of the sensor's 

functionality in detecting hydrogen is maintained 

without directly exposing the system to hydrogen's 

flammable properties. 

 

Table 1. An overall comparison between helium and hydrogen gas. 

Property Helium Hydrogen 

Molecular Weight 4.0026 g/mol 2.016 g/mol 

Reactivity Non-reactive (Inert) Reactive 

State at Room Gaseous Gaseous 
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Property Helium Hydrogen 

Boiling Point -268.93°C -252.87°C 

Melting Point -272.20°C -259.16°C 

Dispersion in Air Rapid (low density) Rapid (low density) 

Atomic Number 2 1 

Electron Configuration 1s² 1s¹ 

Color and Odor Colorless, Odorless Colorless, Odorless 

Environmental Impact Non-toxic, Non-polluting Non-toxic, but flammable 

Ionization Energy 24.5874 eV 13.5984 eV 

Thermal Conductivity 0.15 W/mK 0.18 W/mK 

 

2.3. Secondary Hypothesis and Safety: 

A secondary hypothesis is that once the sys-

tem reliably detects and categorizes helium, only mi-

nor adjustments in data processing will be needed to 

adapt the system for hydrogen detection. This hypoth-

esis stems from the assumption that the primary dis-

tinction in detecting these gases lies in their respective 

molecular characteristics, which can be accounted for 

in the final stage of system tuning. 

By using helium, we aim to ensure maximum 

safety during the development phase. Furthermore, 

this approach allows for thorough system testing and 

optimization before deployment in hydrogen gas sce-

narios. This method offers a pragmatic and secure 

pathway to refining hydrogen leak detection technol-

ogies. We believe that validating these hypotheses will 

play a significant role in the broader adoption and safe 

utilization of hydrogen in various sectors, enhancing 

the overall reliability and safety of hydrogen-based 

systems. 

 

III. Research Problem 
In the realm of gas leak detection, significant 

advancements have been made over the years, yet 

each new development has brought with it a set of 

challenges and limitations that need addressing. Initial 

forays into this field largely relied on single-sensor 

technologies, which, while groundbreaking at the 

time, quickly revealed limitations in their scope and 

reliability, especially in diverse environmental condi-

tions. This realization spurred researchers to explore 

more comprehensive methods, leading to the integra-

tion of multiple sensor types in more recent studies. 

However, even these multi-sensor systems often fell 

short in aspects like real-time data analysis, adaptabil-

ity to various gas types, and maintaining precision in 

different environmental conditions. These ongoing 

challenges have highlighted the need for a system that 

not only combines the strengths of various sensor 

types but also incorporates advanced analytical capa-

bilities to provide reliable, real-time detection in a 

wide range of scenarios. 

One notable study in this field is Electro-

chemical Sensor-Based Detection of Hydrogen Gas, 

which made significant strides in using electrochemi-

cal sensors for hydrogen gas detection. This study was 

pivotal in enhancing the sensitivity of sensors to low 

gas concentrations. However, its reliance on a single-

sensor approach limited its environmental adaptability 

and led to challenges like sensor drift and the inability 

to differentiate between gas types. These issues often 

resulted in false positives, undermining the reliability 

of the system. In contrast, another key study, the 

Multi-Sensor Approach for Enhanced Gas Leak De-

tection, marked the early adoption of sensor fusion by 

integrating optical and ultrasonic sensors. The study's 

simplistic data analysis techniques limited the detec-

tion spectrum, but this approach broadened it. Without 

advanced analytical tools, the system struggled to in-

terpret complex sensor data accurately, particularly 

under fluctuating environmental conditions, and had 

slower response times to gas leaks. 

By integrating a comprehensive multi-sensor 

system with advanced deep learning techniques, our 

research aims to rectify the limitations of these foun-

dational studies. By employing a diverse array of sen-

sors, including ultrasonic, optical, electromagnetic, 

and thermal conductivity sensors, the proposed system 

captures a wider range of data, allowing for a more 

holistic analysis and improved accuracy in detecting 

gas leaks. The incorporation of Long Short-Term 

Memory (LSTM) networks in our data analysis repre-

sents a significant advancement over previous meth-

ods. These networks enable dynamic, real-time analy-

sis of sensor data, learning from patterns to enhance 

predictive accuracy. Addressing the issue of environ-

mental interference in the first study, this system 

maintains high accuracy across various atmospheric 

conditions.  

Furthermore, by integrating self-calibrating 

mechanisms, we've effectively countered the sensor 

drift challenge, ensuring long-term reliability and con-

sistency in detection. This system also exceeds the 

limitations of the second study by demonstrating a fast 

response time and the ability to adapt to new gas leak 

scenarios, making it a significant leap forward in the 

field of gas leak detection technology. 
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IV. Materials and Methods In our study, we utilized a multi-sensor array, each se-

lected for specific strengths in gas leak detection. Ta-

ble 2 summarizes the sensors and their basic functions. 

 

Table 2. Overview of Sensor Models and Their Detection Functions. 

Sensor Model Type Primary Function 

 

PCS HC-SR04 

 

  

Ultrasonic 

 

  

It detects the presence of gas by changes in the 

speed of sound in the air.  

SAS-560 

  

Electromagnetic 

  

Detects gas leakage with changes in electro-

magnetic fields. 

SparkFun's SEN-15776 Series  

Optical 

 

  

It detects the presence of gas in the air by 

changes in the speed of light. 

Amphenol SGX Sensortech 

VQ546M 

Thermal Conduc-

tivity 

  

Detects temperature fluctuations due to gas 

leaks. 

 

Integrating these sensors allows for a robust, 

multi-faceted approach. The ultrasonic sensors' spa-

tial accuracy, combined with the electromagnetic sen-

sors' field sensitivity, the optical sensors' rapid re-

sponse, and the thermal sensors' temperature detec-

tion, creates a comprehensive system. This array en-

sures accurate and reliable detection across various 

scenarios and environmental conditions. Figure 1 

shows the general view of (ultrasonic-electromag-

netic-optical-thermal Conductivity) sensors.  

 

4.1. Ultrasonic Sensors: 

The ultrasonic sensor is recognized for its 

environmental sensitivity, which enhances its effec-

tiveness in gas leak detection. It functions by emitting 

ultrasonic waves and measuring their return time, 

which varies when these waves encounter different 

obstacles or gas densities. This capability is espe-

cially valuable in identifying gas presence, as it 

causes notable changes in the speed of sound in the 

air. Table 3 shows the specifications of the sensor. 

 

 
Figure 1. The general view of (ultrasonic-electromagnetic-optical-thermal Conductivity) sensors. 
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Table 3. The specifications of the HC-SR04 sensor. 

Specification Value 

Operating Voltage DC 5V 

Operating Current 15mA 

Operating Frequency 40KHz 

Max Range 4m 

Min Range 2cm 

Ranging Accuracy 3mm 

Measuring Angle 15 degrees 

Trigger Input Signal 10µS TTL pulse 

Dimension 45 x 20 x 15mm 

 

Key strengths of the ultrasonic sensor in our 

gas leak detection project include: 

• The sensor demonstrates high sensitivity to al-

terations in ultrasonic wave propagation, enabling ef-

fective detection of gas presence. 

• As an ultrasonic sensor, it can detect gas leaks 

without physical contact with the gas, ensuring safety 

and versatility across various environments. 

• The sensor provides real-time feedback, which 

is crucial for immediate detection and response to po-

tential gas leaks. 

• The sensor is cost-effective and easily inte-

grated into larger systems, which is advantageous for 

comprehensive gas leak detection applications. 

• The sensor functions effectively in diverse set-

tings, including industrial environments, demonstrat-

ing its suitability for this project. 

 

4.2. Electromagnetic Sensors: 

Electromagnetic sensors play a crucial role 

in detecting disruptions in magnetic fields, indicative 

of gas leakages. These sensors are particularly effec-

tive in environments where gas leaks may alter the 

ambient electromagnetic fields. Their high sensitivity 

to such disturbances is critical for the early detection 

of leaks that might remain undetected by other sensor 

types. Table 4 shows the specifications of the SAS-

560 sensor. Their capability to detect subtle changes 

in the electromagnetic field enables precise localiza-

tion of gas leaks, facilitating timely and effective re-

sponses. 

 

Table 4. The specifications of the SAS-560 sensor. 

Specification Value 

Sensitivity High 

Frequency Range DC to 18 GHz 

Measurement Range 

-60 dBm 

to 

5 dBm 

Connector Type SMA Female 

Impedance 50 Ohms nominal 

Physical Dimensions 23.5 x 35.6 x 21.6 mm 

Power Supply 6V to 18V DC 

Operating Temperature -40°C to +85°C 

 

Key strengths of the electromagnetic sensor 

in our gas leak detection project include: 

• Able to identify quantifiable changes in elec-

tromagnetic fields that could potentially be linked to 

gas leaks. 

• Operates effectively across a broad spectrum of 

frequencies, ensuring comprehensive monitoring of 

potential disturbances. 

• Exhibits consistent and dependable perfor-

mance in diverse environmental conditions, such as 

variable temperatures and substantial electromagnetic 

interference. 

• The low maintenance requirement ensures sta-

ble performance, making it suitable for long-term 

monitoring in various environments. 
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4.3. Optical Sensor: 

 

Optical sensors are engineered with preci-

sion to detect variations in light that can indicate the 

presence of gases. These sensors are notable for their 

rapid response to optical changes in the environment, 

a crucial feature that facilitates the immediate identi-

fication of gas leaks. Table 5 shows the specifications 

of SparkFun SEN-15776 sensor.  

By utilizing the principles of light absorption 

and scattering, these sensors effectively operate in en-

vironments where the presence of gas can alter the 

optical characteristics of the atmosphere. 

 

Table 5. The specifications of the SparkFun's SEN-15776 sensor. 

Specification Value 

Sensitivity High 

Detection Method Light Absorption & Scattering 

Response Time <1 ms 

Light Source و Detector Infrared LEDو Photodiode 

Operating Voltage 3.3V to 5V DC 

Communication Interface I2C 

Measurement Range Up to 15 meters 

Operating Temperature -40°C to +85°C 

Dimension 18.5 x 13.5 x 4.5 mm 

 

Key strengths of the optical sensor in our 

gas leak detection project include : 

• The sensor detects light changes in less than 1 

millisecond, which is critical for immediate gas leak 

detection. 

• It detects fluctuations in light patterns that can 

be attributed to the presence of various gases. 

• Able to detect optical changes at distances up 

to 15 meters, providing extensive coverage for gas 

leak monitoring. 

• Equipped with an I2C interface, the sensor fa-

cilitates smooth and reliable data transmission, es-

sential for system integration and signal processing. 

• These sensors operate effectively across a 

wide temperature range, broadening their applicabil-

ity in various environmental conditions. 

 

4.4. Amphenol SGX Sensortech VQ546M: 

The thermal conductivity sensor (gas sen-

sor) is designed to detect gas leaks through varia-

tions in the thermal properties of the surrounding en-

vironment. This sensor accurately identifies temper-

ature fluctuations, making it a critical component of 

our comprehensive gas detection system. Table 6 

shows the specifications of the VQ546M sensor. It 

operates by measuring the thermal conductivity of 

the air, which alters in the presence of gases, provid-

ing an indirect yet effective method for detecting 

leaks. 

 

Table 6. The specifications of the VQ546M sensor. 

Specification Value 

Sensing Principle Thermal Conductivity 

Operating Voltage 5V DC 

Measurement Range 0-100% LEL 

Response Time <10 seconds 

Output Analog Voltage 

Operating Temperature -20°C to +50°C 

Dimension 20.3 x 20.3 x 17.4 mm 

 

Key strengths of the thermal conductivity 

sensor (gas sensor) in our gas leak detection project 

include: 

• The sensor's optimal sensitivity to temperature 

variations allows it to detect gas leaks that modify 

thermal conductivity, a critical factor in identifying 

regions where gas concentrations impact thermal 

equilibrium. 

• These sensors respond to gas leaks in minimal 

time, facilitating timely and efficient action. 

• This sensor can detect gas concentrations at 

low levels and offers wide versatility in monitoring 

all types of industrial gas leaks. 
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• Its energy-efficient design ensures that the sen-

sor can operate over extended periods, making it ideal 

for continuous, long-term monitoring systems. 

• Engineered to perform within a wide tempera-

ture range, the sensor maintains consistent perfor-

mance across diverse environmental conditions. 

• Notably, the sensor can detect both hydrogen 

and helium gases, as its operation depends on thermal 

conductivity a property influenced by these gases. 

This capability allows the sensor to be utilized in var-

ious gas detection settings, where both safety and ac-

curacy are paramount. 

Figure 2 shows the process of calibrating the 

VQ546M sensor using a helium-based calibration 

tool. The corresponding output metrics for both sen-

sors are systematically shown in Table 7. Data analy-

sis shows that our sensor calibration maintains an er-

ror margin of less than 2%. This level of accuracy is 

considered quite satisfactory. 

 
Figure 2. VQ546M sensor calibration. 

 

Table 7. VQ546M sensor and calibration sensor output. 

Helium Concentration (%) 
VQ546M Sensor 

Output(V) 

Calibrated Sensor 

Output(V) 

Calibration offset 

(%) 

0 3.4 4.499 0.19 

10 3.3 4.299 0.06 

20 3.2 4.098 0.15 

30 3.1 3.897 0.13 

40 3 3.698 0.05 

50 2.9 3.496 0.14 

60 2.82 3.216 0.12 

70 2.74 3.036 0.11 

80 2.66 2.855 0.14 

90 2.58 2.675 0.14 

100 2.5 2.495 0.17 

 

4.5. Algorithm : 

By employing an algorithm that is developed 

to combine and evaluate data from a multi-sensor ar-

ray, our research ensures dependable gas leak detec-

tion, with a verified accuracy rate of 94% during test-

ing. Figure 3 shows the gas leak detection system 

workflow. The procedure can be broken down into 

many important stages: 

 

• Data Collection: In the initial stage, each sensor 

in the array (PCS HC-SR04, SAS-560, SEN-15776, 

and VQ546M) collects environmental data. This in-

cludes measurements related to ultrasonic waves, 

electromagnetic fields, optical variations, and thermal 

conductivity. 

• Data Preprocessing: Once collected, the data 

undergoes preprocessing. This step filters out noise 

and normalizes the data, making it consistent and suit-

able for analysis. Preprocessing is crucial to improve 

the accuracy of the subsequent analysis and sensor fu-

sion. 

• Sensor Fusion: At this stage, the preprocessed 

data from all the sensors is integrated. Sensor fusion 

combines the strengths of each sensor type, creating a 

more comprehensive dataset. This integration enables 
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the detection system to capitalize on the unique capa-

bilities of each sensor, enhancing the overall sensitiv-

ity and reliability of the detection process. 

• Data Analysis: Following the fusion of the data, 

an advanced analysis is performed on it. At this stage, 

a mix of statistical techniques, pattern recognition, and 

machine learning algorithms may be applicable. The 

purpose of this endeavor is to recognize patterns and 

irregularities that are suggestive of gas leaks. The ac-

curacy of machine learning models improves over 

time through training on previous data. This occurs 

when these models are employed . 

• Leak Detection: In the final step, the system in-

terprets the analyzed data to identify potential gas 

leaks. If anomalies matching the characteristics of gas 

leaks are detected, the system flags them, providing 

details such as location, severity, and probable gas 

type. This enables timely and targeted responses to the 

detected leaks. 

 

 
Figure 3. Gas Leak Detection System Workflow. 

 

4.6. System Integration Diagram: 

One of the most significant components of 

our work is the combination of several sensors into a 

cohesive gas detection system. This is one of the most 

crucial aspects. For the aim of displaying this, a Sys-

tem Integration Diagram is utilized. This diagram 

provides a visualization of the architecture of the sys-

tem that is distinct and easy to comprehend. The pur-

pose of this image is to highlight the several ways in 

which the sensors are connected and to describe the 

way they communicate with the central processing 

unit. The information collected by each sensor is 

transmitted to a central processor, which is subse-

quently tasked with the responsibility of combining 

and interpreting collected data. The diagram also 

highlights the flow of information from the stage of 

data collection up to the final output, which includes 

leak detection warnings and potentially actionable in-

sights. Figure 4 shows the gas detection system inte-

gration diagram. This flow of information is repre-

sented in the graphical representation. 

 
Figure 4. Gas detection system integration diagram. 
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4.7. Experimental Setup Illustration: 

This section outlines the experimental con-

figuration used in our research, which focuses on de-

veloping a sensor system for detecting gas leaks. Our 

setup includes a chamber specifically designed to 

study gas dispersion under controlled conditions, 

maintaining the internal pressure at 1 atmosphere to 

reflect typical environmental scenarios. Figure 5 il-

lustrates our setup, highlighting the complexity and 

key components fundamental to our experimental 

strategy.  Within this setup, various sensors—electro-

magnetic, ultrasonic, optical, and thermal conductiv-

ity—are strategically placed to optimize detection ef-

ficiency. The electromagnetic sensor is affixed to the 

inner wall of the chamber to monitor magnetic field 

disturbances, while the other sensors are situated atop 

the chamber to effectively capture a broad spectrum 

of gas dispersion patterns.  All sensors are connected 

to a central processing unit that utilizes advanced 

deep-learning algorithms to analyze the extensive 

data collected. This software infrastructure is de-

signed to detect subtle patterns and anomalies in the 

data that could indicate gas leaks. The system's capa-

bility to process this information in real-time en-

hances its responsiveness and effectiveness in miti-

gating potential hazards. 

Moreover, the system includes gas release 

mechanisms that accurately simulate helium leaks, fa-

cilitating thorough testing of the sensor's performance 

under various conditions. It also features a compre-

hensive monitoring system that observes environ-

mental conditions and gas behavior, ensuring all per-

tinent variables are accounted for during tests. Essen-

tial safety mechanisms are implemented to ensure the 

secure transport and handling of gases within the test 

environment, including a specific mechanism for gas 

injection. This configuration not only verifies the ac-

curacy and reliability of our measurements but also 

improves the overall functionality and safety of the 

detection system. 

 

 
Figure 5. Overview of settings and test environment. 

 

4.8. Measurable Outputs: 

Figure 6 illustrates the initial testing phase of 

our sensor array and presents the preliminary detec-

tion results. This figure displays the raw data output 

from each sensor, encompassing both detection sig-

nals and observed errors during the tests. In this phase, 

helium gas was systematically introduced into the sys-

tem at various levels and concentrations to simulate 

real conditions. 

Changes in data values are more valuable 

than the absolute values themselves. The sensors do 

not directly detect leakage but monitor and analyze 

fluctuations in the collected data to indicate the pres-

ence of a leak. variations in the output of any sensor 

suggest sensor errors, which must be filtered out to re-

veal the true data. This filtering is crucial to differen-

tiate between actual leakage signals and noise, ensur-

ing accurate detection and analysis. 
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Figure 6. The initial assessment of gas-detecting sensors. 

 

 

 

LSTM models are utilized in this research 

due to their ability to process time series data and 

maintain long-term dependencies, which is important 

for gas leak detection systems requiring continuous 

sensor data analysis.  

 

Compared to traditional machine learning mod-

els, LSTMs can better recognize complex patterns 

and temporal changes, enhancing detection accuracy. 

 

The working method of the LSTM model is as fol-

lows: 

• Data Collection: Data from various sensors (ul-

trasonic, electromagnetic, optical, and thermal con-

ductivity) are fed into the LSTM model. 

 

• Data Preprocessing: The data undergoes pre-

processing to filter out noise and normalize it. 

 

• Model Training: The LSTM model is trained 

on extensive datasets of sensor readings and gas leak 

incidents, using LSTM neural networks to learn long-

term dependencies in the data. 

• Leak Detection: The LSTM model analyzes 

temporal patterns and examines the sensor data to ac-

curately detect gas leaks. 

 

For the above reasons, we employed a deep 

learning model with LSTM networks to enhance the 

accuracy of sensor data. This method effectively dif-

ferentiates between actual sensor detections and er-

rors, facilitating precise error identification.  

 

The LSTM model, trained on comprehen-

sive datasets, identifies relevant patterns and noise, 

enabling the isolation and elimination of distortive 

data. 

 Figure 7 shows the sensor output under normal con-

ditions. Due to stable environmental conditions, the 

sensor output data typically remains below 5 percent, 

indicating natural levels of helium gas. This implies 

that no specific detection has occurred, reflecting nat-

ural conditions and the absence of gas leaks.  LSTM 

model, architecture handles the dynamics of gas sen-

sor responses, considering various environmental in-

fluences.  

The LSTM model tracks long-term depend-

encies crucial for analyzing temporal changes in gas 

dispersion, achieving a detection accuracy of 94%. 
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Figure 7. Sensor Output in Typical Conditions. 

 

Figure 8 shows the cumulative detection of 

the sensors, accurately reflecting the output data from 

each sensor. The source of these changes is the direct 

impact of helium gas at various concentrations on the 

sensor outputs, which is displayed in different charts 

for each sensor according to its sensitivity to the de-

tected gas. This data is obtained after separating noise 

and errors from the sensor data using LSTM.  Table 8 

provides a detailed comparison of the performance 

metrics for the LSTM model before and after the ap-

plication of noise reduction and data preprocessing 

techniques. These metrics are for evaluating the effec-

tiveness of the LSTM model in accurately detecting 

gas leaks, and these metrics include accuracy, mean 

squared error (MSE), precision, recall, and F1-score. 

Each of these metrics serves a specific purpose in as-

sessing different aspects of the model's performance. 

 

• F1 Score: The F1 score is a criterion for meas-

uring the accuracy of a test. It considers both preci-

sion and recall of the test to calculate the score. The 

F1 score is the harmonic mean of precision and recall, 

where the F1 score reaches its best value at 1 (indicat-

ing perfect precision and recall) and its worst value at 

0. 

• Recall (Sensitivity): Recall, also known as 

sensitivity, is the ratio of correctly predicted positive 

observations to all observations in the actual class. A 

high recall indicates that the class is correctly recog-

nized (with a small number of false negatives), 

whereas a low recall means that the class is often 

missed. 

• Precision: Precision is the ratio of correctly 

predicted positive observations to the total predicted 

positives. High precision indicates that an algorithm 

returns more relevant results than irrelevant ones. 

• Accuracy: Accuracy is a metric used to evalu-

ate the performance of a classification model. It is the 

ratio of the number of correct predictions to the total 

number of predictions made. Accuracy measures the 

overall effectiveness of a model in correctly predict-

ing classes. 

• Mean Squared Error (MSE): Squared Error 

(MSE) is a measure used to evaluate the performance 

of a regression model. It calculates the average of the 

squares of the errors—that is, the average squared dif-

ference between the predicted values and the actual 

values. MSE quantifies the difference between the 

predicted values and the actual values, with lower val-

ues indicating better model performance. It is sensi-

tive to outliers since it squares the errors, giving more 

weight to larger errors. 

The results in Table 8 show significant im-

provements in these metrics after applying the LSTM 

model. For instance, Accuracy increased from 72% to 

94%, and MSE decreased from 0.25 to 0.06, indicat-

ing enhanced predictive performance. Precision and 

Recall values also saw notable improvements, result-

ing in a higher F1-Score. These enhancements 

demonstrate the LSTM model's capability to effec-

tively handle and analyze complex sensor data, lead-

ing to more accurate and reliable gas leak detection.  

The final phase involves calibrating each sensor 

against an accurate gas sensor to ensure uniformity 

and alignment in gas presence measurements, The de-

tails of this sensor are given in Section 4.4 and Figure 

2, and this sensor was chosen because of its precise 

calibration and provides a reliable standard for com-

parison. As shown in Figure 9, the outputs of the var-

ious sensors are compared with the gas sensor's read-

ings.  The changes in the sensor output align exactly 
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with the times when the gas sensor detects the pres-

ence of gas. These variations indicate the presence of 

gas, and the magnitude of these changes corresponds 

to different gas concentrations. With the increase in 

gas concentration detected by the gas sensor, the num-

ber of changes in the output of each sensor changes, 

this change depends on the sensitivity of each sensor 

to gas. The combined results of all the sensors to-

gether lead to accurate gas detection. 

 
Figure 8. Gas detection by each sensor. 
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Table 8. Training table (deep learning). 

Epoch 

  

Iteration 

  

Time Elapsed 

(h:m:s) 

Mini-batch 

RMSE 

Mini-batch 

Loss 
Base Learning Rate 

1 100 00:30:00 0.35 0.50 0.01 

2 100 01:00:00 0.30 0.45 0.01 

3 100 01:30:00 0.25 0.40 0.01 

4 100 02:00:00 0.20 0.35 0.005 

5 100 02:30:00 0.18 0.30 0.005 

Evaluation Metric 

  
Raw and raw data with noise Data after LSTM 

Accuracy 72% 94% 

Mean Squared Error (MSE) 0.25 0.06 

Precision 70% 91% 

Recall 75% 90% 

F1-Score 0.72 0.91 

 

 
Figure 9. Gas detection by system. 

 

V. Conclusion 
This study focuses on gas leak detection us-

ing a multi-sensor array in conjunction with deep-

learning algorithms. To detect gas leaks with an ac-

curacy rate of 94%, this system uses thermal conduc-

tivity sensors, electromagnetic, optical, and ultra-

sonic sensors, and the analytical power of Long 

Short-Term Memory (LSTM) networks. As a result 

of real-time data processing and testing with helium 

at different concentrations and time intervals, the sen-

sors have shown they can detect gas concentrations 

of 5% and more. To maintain a regulated and safe 

testing environment, we replaced hydrogen in our 

studies with helium. Integration of LSTM led to a 

considerable improvement in performance measures, 

as seen in Table 8. In addition to offering a scalable 

and dependable method for accurate and quick leak 

detection, this study has promising implications for 

other industrial domains. 

Our Future work will focus on refining deep 

learning algorithms to increase their efficiency in 

real-time applications, potentially reducing the time 

needed for data processing while maintaining high 

accuracy levels.   
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