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Accurate identification of plant diseases is crucial for preventing reductions in agricultural 

productivity and quantity. The study of patterns that are visible to the human eye and 

indicate disease states in plants is known as plant pathology. Maintaining plant health and 

identifying plant diseases are essential to agriculture's long-term viability. Manually monitoring 

plant diseases is a challenging task. It necessitates a substantial amount of effort, and specialized 

knowledge in the field of plant diseases, and also demands a significant amount of time for 

processing. Therefore, image processing is utilized to identify plant illnesses by taking leaf images 

and comparing them with existing data sets. The dataset comprises many plant species in picture 

format. The primary objective of this research was to utilize image processing and MobileNet V2 

with Transfer Learning to identify plant illnesses promptly and precisely. The role of agriculture in 

guaranteeing food security and economic stability is significant, and quick detection of plant diseases 

is essential in reducing crop loss. The objective of this research is to address the existing limitations 

in disease detection methods by proposing a new and automated approach for identifying plant 

diseases where we got 99.00 accuracy. 

 
 

1. Introduction 

Many economies rely heavily on agriculture, which 

provides food and raw materials for a wide range of 

industries [1]. Crop health and productivity are 

jeopardized by a range of diseases, resulting in 

substantial economic losses and food scarcity. 

Conventional illness detection methods depend on 

human proficiency, which can be time-consuming 

and prone to errors [2]. Advancements in computer 

vision, machine learning as well as in deep learning 

have the potential to enable automated, efficient, and 

dependable identification of plant diseases. 

India is an agrarian nation, with over 70% of its 

population relying on agriculture [3]. Farmers 

possess a vast array of options regarding selecting 

diverse and suitable plants, as well as identifying the 

most suited insecticides for their plants [4]. 

Consequently, crop damage would cause 

productivity to drop sharply, which would 

eventually affect the economy. 

 

As the plant's most sensitive component , the leaves 

show signs of disease early on [5]. It is essential to 

continuously monitor the crops for illnesses from 

their first stage of growth until they are ready for 

harvest. 

 

Originally, the technique employed to monitor plants 

for illnesses was visually inspecting them with the 

naked eye [6]. To manually survey the crop fields 

using this labor-intensivemethod, skilled individuals 

are needed. Many approaches have been used 

recently to develop automated and semi-automated 

systems for diagnosing illnesses in plants [7]. The 

ability to detect diseases by simply seeing symptoms 

on plant leaves not only simplifies the process but 

also reduces costs [8]. Thus far, these methods have 

proven to be rapid, cost- effective, and more precise 

compared to the conventional approach of farmers 

manually observing. 

Disease symptoms are typically observed on the 

fruit, stem, and leaves.Based on how the disease 

manifests itself, the plant leaf that is utilized for 

disease detection is chosen [9]. Agriculturalists 

frequently lack a thorough understanding of crop 

cultivation and the diseases that can impact their 

harvests [10]. Rather than consulting specialists 

. 
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,farmers can increase crop productivity by using this 

article. [11]. 

 

A greenhouse, also known as a glasshouse or, if 

equipped with adequate heating, a hothouse, is a 

building constructed mostly with transparent 

materials, such as glass, that is used for cultivating 

plants that require controlled climatic conditions 

[12]. This report provides valuable assistance to 

greenhouse farmers by offering practical strategies 

in lightof the increasing significance of greenhouse 

farming [13]. A variety of approaches can beused to 

assess plant disease detection and analyze it 

according to various criteria. 

 

1.1 Types of Plant Diseases 

 

Plant diseases are usually caused by infectious 

organisms such as bacteria, viruses, and fungus. 

Symptoms are the outward signs associated with 

specific illnesses ,while signs are the detectable 

evidence of infection. Symptoms of fungal 

infections include leaf spot and yellowing, as well as 

visible spores, Mold, or mildew. 

 

1.1.1 Bacteria Infection 

 

Plant infections brought on by fungi are known as 

fungal diseases. Whether they are single- or 

multicellular, fungi infect plants by robbing them of 

nutrition and disintegrating their tissue. The most 

prevalent type of illness in plants is fungus-related. 

[14]Plants are susceptible to some distinct signs or 

visible consequences of the illness. Symptoms of 

fungal infections include spots on plant leaves, leaf 

yellowing, and berries with Birdseye spots. Along 

with some fungi as a growth and as a Mold. 
 

 

Fig 1.1 Bacteria Infection 

1.1.2 Fungal Infection 
These could be deformities on the undersides of 

leaves or stems. These firsthand observations of the 

disease are referred to as infection symptoms. 

Bacteria are prokaryotic, single-celled creatures. 

Microbes are common and many of them might be 

advantageous, but some are cause illness in both 

plants and people. Bacterial symptoms are 

frequently more difficult to identify. compared to 

fungi, because bacteria are tiny. After making an 

contaminated stem, a possible milky white material 

known as "bacterial ooze." This is one sign that a 

bacterial infection is present. The other signs are 

moist, bacterially-filled areas on leaves that are 

saturated in water. As the illness worsens over time, 

the lesions eventually grow and provide the leaves 

with reddish-brown patches. Leaf spots are a 

common sign of bacterial illness. fruit stains. In 

contrast to fungal spots it contains veins on the leaf. 
 

Fig 1.2 Bacteria Infection 

1.1.3 Virus Infection 

 

Infectious particles too small for a light microscope 

to detect are called viruses. They breakinto host cells 

and take control of host equipment to make the host 

millions of viral replicas. Since viruses don't exhibit 

symptoms in plants, Even with light, viruses cannotbe 

seen directly through a magnifying glass. However, 

there are indications that a virus infection is the 

cause of the mosaic leaf pattern and the yellowed or 

crumbled foliage that a traind eye can see. This 

traditional arrangement of the name of several plant 

viruses comes from discoloration like the virus 

known as tobacco mosaic. Moreover, a decline in 

plant Growth is frequently observed in viral 

infections as well. 
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Fig 1.3 Virus Infection 

 

II. Literature Review 

Paper 1: 

Title: Plant disease detection using image processing 

and machine learning algorithm [15] 

Publisher: Xidian University  

Year: 2022 

Dataset:Realtime Data 

 

Summary: To extract the necessary information 

from the leaves, the k-means clustering technique is 

applied. Additionally, by acquiring a contrast image 

of the leaf and using neural networks, the 

characteristics of the leaf's diseased portion are 

improved. Each image is segmented using k-means 

clustering, which requires more time, on a sample 

collection of grouped images consisting of additional 

three cluster. 

Accuracy : 89.8% 

Paper 2 

Title: Plant Infection Detection Using Image 

Processing [16] 

Publisher: IjmerYear: 2018 

Dataset: Plant Disease Database 

Summary: The region of interest's (ROI) dimensions 

will be reduced in comparison to theoriginal picture. 

For texture analysis, the gray level co-occurrence 

matrix (GLCM) is among the finest techniques. Not 

It has a cheap learning cost, is simple to expand, 

supports dynamic neural networks, is easy to debug 

and modify, and is modular. 

Accuracy : 98 % k-means and GLCM technique 

Paper 3 

Title: Plant diseases and pests detection based on 

deep learning [17] 

Publisher:   Springer   Nature,Year:   2022 

Dataset:  Grape  lead  disease  dataset 

Summary: The traditional plant diseases and pests 

classification network is the same as the original 

picture classification method when there are more 

than two classes of plant diseases and pests to 

classify. The data obtained from the DCNN mode 

were used to classify nine distinct forms of rice 

illnesses.the accuracy achieved 97.5%. 

Accuracy : 97.5 % 

Paper 4 

Title: Leaf Disease Detection using Image 

Processing [18] 

Publisher: VIT university 

Year: 2017 

Dataset: Cotton leaf Dataset 
Summary: we can boost crop output by using an 

adequate amount of pesticides to successfully 

control the pests, based on the amount of disease 

present in the leaf. By utilizing several segmentation 

and classification techniques, we can expand on this 

strategy.It takes a lot of time to extract features from 

RGB, HSV, YIQ, and dithered images. 

Affected area prediction: 49.88 % 

Paper 5 

Title: Plant Disease Detection using CNN[19] 

Dataset: Rice disease Image, Plant village dataset 

Publisher: National College of Ireland 

Year: 2020 

Summary: Transfer Learning and RESNET 34 are 

used in this work. All levels are frozenby default in 

transfer learning, with the exception of the last two 

layers. These incorporate new weights and are 

specific to the plant disease classification task. By 

freezing, it is possible to train these layers 

independently of diseases without having to 

backpropagate the gradients. The latter layers are 

trained using the 1cycle policy in precisely this 

manner.The model did not show much benefit from 

augmentation, which helped CNN generalize more 

consistently. 

Accuracy :97.2% 

 

Paper 6 

Title: Plant Disease Detection using Image 

Processing [20] 

Year: 2020 

Publisher: Ijert 

Dataset: Plant village dataset 
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Summary: An end-to-end Android application with 

TFLite is part of the suggested system.The suggested 

method decided to create a plant disease detection 

Android app. Crop leaves are analyzed using 

Convolutional Neural Network models and 

algorithms to identify diseases and species. Bacteria 

can have more difficult-to-see symptoms than fungi 

becauseof their small size. If a sick stem is severed, 

a white substance may be visible. 

Accuracy :90.34% 

Paper 7 

Title: Leaf Disease Detection Using Machine 

Learning [21] 

Publisher: Journal of Seabold 

Year: 2020 

Dataset:Leafdataset 

Summary: Each data point in an n-dimensional 

space is plotted in SVM, and the number of 

dimensions reflects the number of features being 

classified. Even though ongoing plant health 

monitoring and disease detection improve 

production quality and quantity, ML incurs costs 

each time. 

Accuracy:88% 

Paper 8 

Title: Rice Leaf Disease Detection Using Machine 

Learning Techniques [22] 

Publisher: International Conference on, Sustainable 

Technologies 

Year: 2019 
Summary: The accuracy of the algorithms' 

predictions regarding rice leaf diseases varied. Using 

test data, it was discovered that the decision tree had 

the best accuracy, scoring 97.9167%. Because the 

tree is constructed using information theory concepts 

like entropy and information gain, it takes longer. 

F1 score : 96.5%. 

 

 

III. Proposed Methodology 

 

3.1 Methodology 

The proposed methodology entails a sequential 

strategy to identify and diagnose diseases: 

The images of plants that are exhibiting disease 

symptoms are obtained from the predetermined 

datasets of plants. These datasets were produced 

using various imaging technologies, such as 

cellphones or drones. The images are then used for 

data collection. 

The gathered images are subjected to preprocessing, 

which consists of noise reduction, image 

enhancement,  and  segmentation,  among  other 

techniques, to distinguish between the areas that are 

healthy and those that are sick. 

A deep learning model known as a MobileNet-v2 a 

convolutional neural network is trained using an 

image dataset that has already been preprocessed. 

MobileNet-v2 have demonstrated exceptional 

efficacy in completing image recognition tasks., and 

it will be finetuned for the classification of plant 

diseases. 

A trained MobileNet-v2 is used to sort photos into 

healthy and disease-related groups If. the disease is 

present, the system will be able to recognize it in its 

specific form. 

Real-time illness monitoring in the field is going to 

be made possible due to the integrationof the system 

with an intuitive user interface. When diseases are 

found, it will notify the appropriate parties so that 

action can be taken immediately 

3.2 WorkFlow 

 

 

 

 

Fig 3.1 Work Flow 

 

3.3 Data Set 

This dataset contains below parameters 

color: Original RGB images 

grayscale: gray-scaled version of the raw images 

segmented: RGB images with just the leaf segmented 

and color corrected. 

In this Dataset it consists of 38 classes among which 

consist  of  images  of   types  of  plants: 

1. Healthy 2. Infectious 
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3.4 Data Preparation 

Here Dataset is prepared for plant leaf disease 

detection by first defining the directory path where 

the dataset is stored. It then iterates through each 

class folder within the dataset directory, retrieving 

the list of image files for each class. For eachimage 

file, the full path is constructed and appended to a 

list (`image_paths`), along with the corresponding 

class label, forming a structured dataset 

representation. Finally, this information is organized 

into a panda DataFrame (‘df’), containing two 

columns: 'image_path', storing the paths to 

individual images, and 'label', containing the 

corresponding class labels. This systematic approach 

streamlines subsequent data handling processes, 

facilitating efficient model training and evaluation. 

 
 

Fig 3.2 Data Preparation 

 

3.5 Data Analysis 

The creation of a captivating grid showcasing 

sample images for visual exploration, spotlighting a 

representative image from each distinct plant class 

present in the dataset. Commencing with the 

determination of the number of unique classes 

(num_classes) and the calculation of the grid layout 

based on the designated number of images per row 

(num_images_per_row), the figure's size 

dynamically adjusts to accommodate the computed 

number of rows. Through a meticulously crafted loop 

iterating over each unique plant class, a bespoke 

subplot emerges, poised to unveil a sample image.As 

the path to the inaugural image affiliated with the 

current class is unveiled from the DataFrame, 

OpenCV (cv2) steps in to summon the image into 

existence. Should the imagemanifest successfully, it 

graces the grid with its presence, crowned with its 

corresponding class label serving as a regal title. Any 

misadventures encountered along the path of image 
 

3.3 Sample Images 

loading or retrieval are dutifully recorded for 

posterity. Ultimately, this mosaic of imagerypaints a 

vivid portrait of the diverse plant classes residing 

within the dataset, inviting observers to delve into 

the tapestry of botanical diversity and unearth the 

nuances embedded within. 

3.5.2 Plant Leaf Analysis 

The visualization of class distribution within the 

dataset through a horizontal bar plot. . Initially, it 

computes the occurrence count for each unique class 

label in the DataFrame utilizing the `value_counts () 

` method. Subsequently, these class counts are 

depicted as horizontal bars, where the different plant 

species are indicated by the y-axis and the number of 

photos is represented by the x-axis.Additionally, 

data labels denoting the count of images for each 

class are displayed at the end of each respective bar. 

This visual representation furnishes a comprehensive 

overview of the dataset's class distribution, thereby 

accentuating any potential class imbalances that 

could impact model training and subsequent 

performance evaluation. 

 

Fig 3.4 Plant Leaf analysis 

3.5.3 Balancing The Dataset 

The dataset exhibits a class imbalance, as seen in 

Figure 3.4.Thus, we use an oversampling method to 

our dataset. We created the balance_dataset function 

to make sure every class has the same amount of 

samples. In order to resample the minority classes 

with replacement to match the maximum class size, 

this function first determines the maximum class 

size. The balanced subsets are joined and shuffled 

after  oversampling  to  guarantee  a  random 
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distribution. By effectively mitigating bias towards 

the majority class, this method improves the 

generalization capacity of the model. As such, this 

step is essential to enhancing on model's prediction 

performance on minority classes. 

 

 

 

Fig 3.5 Balanced Dataset 

 

3.6   Splitting Data into Training and Testing 

The provided  code segment   orchestrates the 

preparatory steps vital for training the dataset, 

meticulously encoding class labels into numerical 

values and dividing it into test, validation, and 

training  sets   using scikit-learn's  flexible 

train_test_split method. First, a fakedictionary called 

class_labels_dict is created, acting as the conduit to 

map each unique class label to a corresponding 

numerical index. Subsequently, the 'label' column in 

the DataFrame undergoes a transformative journey, 

shedding its textual guise and embracing anumerical 

identity through the seamless substitution of class 

labels with their numerical counterparts. The dataset 

then embarks on a voyage of division, traversing the 

realm of training, validation, and test sets, guided by 

the steady hand of train_test_split. The datasetin this 

adventure is split harmoniously into training and test 

sets in an 80:20 ratio, providing the foundation for 

further investigation. Further division ensues, as the 

training set is partitioned anew into training and 

validation    cohorts, fostering  an environment 

conducive to model refinement and validation. 

Finally, the class  labels in  each partition 

metamorphose into strings, unveiled in a ritualistic 

display, offering a glimpse into the diverse tapestry 

ofunique class labels adorning the training set. This 

meticulous preprocessing ritual not onlyorchestrates 

the harmonious division of the dataset but also 

ensures its compatibility with the discerning palates 

of machine learning algorithms, thus paving the way 

for fruitful model training, validation, and evaluation 

endeavors. 

 

 

3.7 Data Augmentation and Generator Setup 

To augment the training data with diverse 

transformations,  an  ImageDataGenerator  named 

`train_datagen` is defined. This generator facilitates 

various augmentations such as rotation, shifting, 

shearing, zooming, and horizontal flipping, thereby 

enriching the dataset and enhancing model 

robustness. Utilizing the `flow_from_dataframe` 

method, batches of training data (referred to as 

`train_generator`) are generated from the DataFrame 

`train_df`, with specific configurations set to ensure 

optimal training conditions. These configurations 

include setting the target image size to (224, 224), 

defining a batch size of 40, and specifying the class 

mode as 'categorical', aligning with the categorical 

nature of the labels. Similarly, generators 

(`val_generator` and `test_generator`) are established 

for validation and test data, albeit with minimal 

augmentation to preserve the integrity of the 

validation and evaluation processes. Additionally, 

pixel values are rescaled to the range [0, 1], ensuring 

consistency across datasets and facilitating seamless 

integration with machine learning models. Through 

these meticulously crafted generators, the dataset is 

primed for training, validation, and evaluation, 

embodying a holistic approach toward robust model 

development and performance assessment. 

3.8 Model Selection and Building 

Here, the MobileNetV2 architecture, a lightweight 

convolutional neural network (CNN) pre-trained on 

ImageNet, as the base model for transfer learning. By 

leveraging pre-trained weights, the model benefits 

from features learned on a large-scale image dataset, 

enabling efficient extraction of relevant features 

from leaf disease images. The addition of Global 

Average Pooling and dense layers facilitates the 

adaptation of the base model to the specific task of 

classifying leaf diseases. Multi-class classification is 

made possible by the model's generation of 

probability distributions over the disease classes 

using the softmax activation function in the output 

layer. 

In this configuration, the process commences with 

the instantiation of MobileNetV2 as thebase model, 

adorned with pre-trained weights sourced from 

ImageNet.  The  top  classification  layers  are 
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deliberately excluded, thereby enabling the 

incorporation of customclassification layers tailored 

to the specific task at hand. Subsequently, the 

number of classes (referred to as `num_classes`) is 

determined based on the length of the dictionary 

housing class labels (`class_labels_dict`), ensuring 

alignment between the model architecture and the 

dataset's categorical structure. Custom classification 

layers are then meticulously crafted and added atop 

the base model, commencing with a 

GlobalAveragePooling2D layer for spatial data 

reduction, a Dense layer with 1024 units that uses 

ReLU activation to add non-linearity and encourage 

feature expression, comes next. Finally, a Dense 

layer is appended with softmax activation, 

facilitating multi-class classification by producing 

probability distributions across the various classes. 

The model is artfully constructed using the Model 

class, seamlessly melding the input from the base 

model with the output from the custom classification 

layers, thereby culminating in a unified architecture 

poised to embark on the journey of training and 

inference. 

3.9 Model Compilation 

Following the model construction, the next 

imperative task is to compile it, thereby configuring 

its optimization strategy, loss function, and 

evaluation metrics. In this endeavor, the Adam 

optimizer is chosen, boasting adaptive learning rates 

and robust performance across various scenarios. 

With a learning rate of 0.001, the optimizer navigates 

the optimization landscape, steering the model 

towards convergence with efficiency. Categorical 

cross-entropy is designated as the loss function, 

ideally suited for multi-class classification tasks, 

while accuracy emerges as the metric of choice, 

providing insight into the model's classification 

prowess. With these configurations meticulously 

crafted, the model stands poised for training, 

equipped with the tools necessary to navigate the 

intricacies of the dataset and refine its parameters 

towards achieving optimal 

3.10 Model Training 

With a holistic approach towards model training, the 

number of epochs is explicitly defined, set at 10 to 

ensure a comprehensive exploration of the dataset 

and facilitate convergence towards optimal 

performance. The model embarks on its training 

journey by fitting to the training data 

(`train_generator`), iteratively refining its parameters 

over the specified number of epochs. Concurrently, 

the validation data (`val_generator`) is leveraged to 

monitor the model's performance during training, 

safeguarding against overfitting and providing 

insights into its generalization capabilities. The 

training history, encapsulating crucial metrics such 

as training/validation loss and accuracy, is 

meticulously recorded andstored within the `history` 

variable. This treasure trove of data serves as a 

foundation for comprehensive analysis and 

visualization, offering valuable insights into the 

model's progression and facilitating informed 

decisions throughout the development process. By 

adhering to this structured approach, the groundwork 

is laid for the creation of a robust and effective plant 

leaf disease detection system, poised to deliver 

accurate diagnoses and contribute towards 

mitigating agricultural challenges. 

3.11 Hyper Parameter Tunning 
The code snippet performs hyperparameter tuning 

specifically targeting the fine-tuning of the model's 

convolutional layers. By setting the last 40 layers of 

the model as trainable, the code allows for more 

focused optimization on these layers during training. 

This approach is often employed in transfer learning 

scenarios where the initial layers of a pre-trained 

model capture generic features like edges and 

textures, while the later layers learn more task- 

specific features. By fine-tuning only a portion of 

the model's layers, computational resources are 

conserved while still enabling the adaptation of the 

model to the specific taskof classifying leaf diseases. 

The learning rate for fine-tuning is set to a 
small value of 0.00001, with the goal of carefully 

modifying the trainable layers' weights in order to 

reduce the possibility of deviating from the 

previously learnt features..A smaller learning rate is 

typically used during fine-tuning to ensure more 

stable convergence and prevent catastrophic 

forgetting of previously learned features. The 

categorical cross-entropy loss function, which is 

widely used for multi-class classification tasks, is 

then used to create the model and the Adam 

optimizer with the given learning rate for fine-tuning. 

Furthermore, accuracy is measured as a statistic to 

trackthe model's performance throughout training. 

 

Finally, the model is trained for 10 epochs on the 

fine-tuning dataset, which is typically a subset of the 

original training data. This limited number of epochs 

helps prevent overfitting and allows the model to 

further refine its parameters to better discriminate 

between different leaf disease classes. Overall, this 

hyperparameter tuning strategy aims to strike a 

balance between leveraging the pre-trained features 

and fine-tuning the model to achieve optimal 

performance on the specific task of leaf disease 

classification. 

3.12 Fine Tuning Set up 

In the process of fine-tuning the model, a crucial 

step involves defining a variable `n` to specify the 

number of layers to freeze. This strategic maneuver is 
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instrumental in mitigating overfitting while 

safeguarding the invaluable features gleaned by the 

pre-trained layers. By iteratively traversing through 

the layers of the model, excluding the last `n` layers, 

a deliberate decision is made to set `trainable` to 

True for each layer. This nuanced approach 

empowers these selected layers to undergo updates 

during the fine-tuning process, while simultaneously 

preserving the integrity of the weights in the 

remaining layers, ensuring that the foundational 

features learned by earlier layers remain unaltered. 

Through this meticulous orchestration of selective 

unfreezing, the model embarks on a journey of 

refinement, delicately balancing the incorporation of 

new insights with the preservation of established 

knowledge, thereby facilitating the attainment of 

optimal performance and generalization capabilities. 

3.13 Adjust Learning Rate 

In the intricate dance of fine-tuning, a critical aspect 

involves the calibration of a new learning rate 

(`learning_rate_finetune`). Unlike the initial training 

phase, where a relativelyhigher learning rate may be 

employed to facilitate rapid convergence, fine- 

tuning necessitates a more delicate approach. This 

new learning rate is typically set to a smaller 

magnitude, serving as a stabilizing force to prevent 

drastic alterations to the pre-trained weights and 

ensuring a smoother trajectory during the fine-tuning 

process. By embracing this nuanced adjustment, the 

model embarks on a journey of refinement with a 

tempered pace, delicately navigating the 

optimization landscape to seamlessly integrate new 

insights while preserving the integrity of the 

foundational knowledge gleaned from pre-training. 

Through the harmonious interplay of meticulous 

adjustments and strategic considerations, the model 

emerges rejuvenated, poised to elevate its 

performance and adaptability to the intricacies of the 

target task. 

3.14 Model Compilation for Fine Tunning 

In the final stage of model preparation for fine- 

tuning, a critical step involves recompilingthe model 

with the updated learning rate tailored for the fine- 

tuning phase. This recalibration ensures that the 

optimization process aligns with the nuanced 

requirements offine-tuning, where a smaller learning 

rate is imperative to facilitate stable convergence 

while preserving the integrity of pre-trained weights. 

To this end, The model is carefully configured with 

the modified learning rate and assembled using the 

Adam optimizer. This optimizer, renowned for its 

adaptive learning rate mechanisms, navigates the 

optimization landscape with precision, ensuring 

smooth fine-tuning without jeopardizing the pre- 

learned features. Furthermore, categorical cross- 

entropy is designated as the loss function, ideal for 

multi-class  classification  tasks,  while  accuracy 

emerges as the metric of choice to gauge the model's 

classification prowess. Through this judicious 

orchestration of model compilation, the stage is set 

for fine-tuning, as the model stands poised to refine 

its parameters with a measured stride, elevating its 

performance and adaptability to the intricacies of the 

target task. 

3.15 Fine-Tuning Process 

In the pivotal phase of fine-tuning, it is imperative to 

define the number of epochs (`epochs_finetune`) to 

guide the duration of this refinement process. This 

parameter dictates the extent to which the model is 

allowed to adapt and specialize to the intricacies of 

the specific task of plant leaf disease detection. Once 

established, The training data is used to fit the 

model. (`train_generator`) over the specified number 

of epochs, embarking on a journey of refinement and 

adaptation. Throughout this process, the validation 

data (`val_generator`) serves as a steadfast 

companion, diligently monitoring the model's 

performance and safeguarding against the perils of 

overfitting. By scrutinizing the interplay between 

training and validation metrics, the model navigates 

the optimization landscape with poise and precision, 

striking a delicate balance between exploration and 

exploitation. The fine-tuning training history, 

encapsulating crucial metrics such as 

training/validation loss and accuracy, is 

meticulously  recorded  and  stored  within  the 

`history_finetune` variable. This repository of 

insights serves as a cornerstone for further analysis 

and visualization, illuminating the model's 

progression and evolution as it acclimates to the 

demands of the target task. Through this iterative 

process of refinement, the model harnesses the 

synergy between pre-rained features and newly 

acquired representations, culminating in a robust and 

specialized architecture primed for the nuanced 

challenges of plant leaf disease detection 

3.16 Model Evaluation 

To comprehensively assess the model's performance 

on unseen test data, we leverage the`evaluate` 

method, a quintessential tool for evaluating models 

on data that hasn't been encountered during training 

or validation. By invoking this method with the test 

data generator (`test_generator`), the model 

undergoes rigorous scrutiny, enabling the 

computation of both test loss and accuracy. These 

crucial performance metrics provide invaluable 

insights into the model's generalization capabilities 

and efficacy in real-world scenarios. The computed 

test loss and accuracy are then dutifully stored in 

the variables `test_loss` and `test_accuracy`, 

respectively, serving as a testament to the model's 

prowess and reliability in the face of novel 

challenges. Through this meticulous evaluation 

process, the model's true capabilities are unveiled, 
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empowering stakeholders with the confidence to 

deploy it in practical applications with unwavering 

assurance. 

 

IV Result 

4.1 Visualization of Training and Validation 

Metrics Visualizing the trajectory of training and 

validation accuracy over epochs offers invaluable 

insights into the model's learning dynamics, enabling 

a comprehensive assessment of its progress and 

performance. By plotting these metrics, one gains a 

nuanced understanding of how the model's accuracy 

evolves throughout the training process. Such visual 

scrutiny is pivotal in discerning potential signs of 

overfitting or underfitting, as deviations between the 

training and validation accuracy curves may indicate 

the presence of such phenomena. Thus, through this 

graphical representation, stakeholders can 

effectively monitor the model's learning journey, 

identify areas of improvement, and iteratively refine 

the trainingstrategy to achieve optimal performance 

and generalization capabilities. 
 

 

Fig 4.1 Training and Validation Accuracy 

 

The visualization of training and validation loss over 

epochs offers a nuanced perspective on the model's 

error minimization and generalization prowess 

throughout the training process. By plotting these 

loss metrics, stakeholders get insightful knowledge 

about the effectivenessof the model's learning 

strategy and its ability to navigate the optimization 

landscape. This graphical representation serves as a 

compass, guiding the assessment of how effectively 

the model is converging towards minimizing its error 

while simultaneouslygauging its ability to generalize 

to unseen data. Fluctuations and trends observed in 

the loss curves provide actionable insights into the 

model's performance trajectory, allowing for 

informed adjustments to training strategies and 

architecture design. As such, this visual analysis 

serves as a cornerstone in the iterative refinement of 

models,  facilitating  the  attainment  of  optimal 

 

performance and robust generalization capabilities. 

 

Fig 4.1 Training and Validation Loss 

 

4.2 Confusion Matrix 

 

The confusion matrix, also called the error matrix, is 

one of the most crucial instruments for assessing a 

classification model's performance. It offers a 

thorough analysis of the model's predictions and 

how well they match the available empirical data. 

 

 

1. Actual Classes: The plant diseases included in the 

collection are identified by these actual labels. Every 

class corresponds to a certain plant disease, like 

apple Apple_scab, Blueberry well, and so forth. 

 

2. Predicted Classes: The model uses these labels to 

categorize each input image in an effort to determine 

which illness is depicted in the plant image. 

 

There are 38 classes in the dataset, and the confusion 

matrix is 38 by 38. The matrix's cells each indicate 

the number of times the actual class and the 
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anticipated.this 38 classes consist of both healthy 

and healthy leaves of the plant. 
 

 

Fig 4.3 Confusion Matrix 

 

From the above confusion matrix we can calculate 

True positive, False Positive , False Negative and 

True Negative 

 True Positive: The values that can be 

derived from the confusion matrix's 

diagonal are known as True Positives. 

 False Positive: The confusion matrix's TP 

value is absent, and the associated column's 

sum is what counts. 

 False Negative: The confusion matrix's TP 

value is absent from the sum of the relevant 

columns. 

 True Negative: The total of all columns' 

and rows' values, excluding the values for 

the class for which the values are being 

calculated. 

4.3 ROC Curve 

Plotting the True Positive Rate (TPR) on the y-axis 

and the False Positive Rate (FPR) on the x-axis, the 

ROC curve assesses the performance of the model. 

Every ROC curve for our 38 classes displays an 

AUC of 1.00, signifying flawless categorization. 

This indicates that the top left corner of each class's 

ROC curve is reached (TPR of 1, FPR of 0). The 

diagonal line from (0,0) to (1,1) in the plot 

represents a random guessing baseline within these 

38 classes. Its AUC of 0.50 indicates that it has no 

discriminative potential. The model's exceptional 

ability to differentiate between positive and negative 

instances for each class is demonstrated by its 

flawless AUCs, highlighting its potential for precise 

diagnosis of plant diseases in agriculture. 
 

 

 

Fig 4.4 ROC Curve 

4.4 Model Comparision 

In this work, we evaluate three convolutional neural 

network (CNN) architectures on a plant disease 

classification task: MobileNetV2, ResNet50, and 

InceptionV3. Recall, f1-score, accuracy, and 

precision are among the evaluation measures. 

 

Model Accuracy Precision Recall F1-score 

MobileNet 

V2 
99.00 99.00 99.00 99.00 

Resnet50 94.23 92.30 94.25 93.26 

Inception 

V3 

94.89 95.20 94.12 94.65 

Table 4.1 Model Comparison 

MobileNetV2 

MobileNet V2 outperformed all other models in 

terms of accuracy, precision, recall, and f1-score, 

with 99.00%. This suggests that MobileNetV2 is a 

strong model for this classification task and that it is 

very successful at correctly recognizing plant 

illnesses. High accuracy and efficiency are provided 

by the model's lightweight architecture, which is 

tailored for embedded and mobile vision 

applications. 

 

ResNet50 

ResNet50 obtained lesser metrics than 

MobileNetV2, but it was still performing well: 

94.23% accuracy, 92.30% precision, 94.25% recall, 
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and 93.26% f1-score. Although ResNet50's deeper 

architecture, which makes use of residual 

connections to address the vanishing gradient issue, 

offers good performance, MobileNetV2's accuracy is 

superior for this particular task. 

 

Inception V3 
With accuracy of 94.89%, precision of 95.20%, 

recall of 94.12%, and f1-score of 94.65%, 

InceptionV3 displayed a well-rounded performance. 

InceptionV3, which uses inception modules to 

record multi-scale characteristics and is well-known 

for its intricate design, scores marginally worse 

overall than MobileNetV2 but beats ResNet50 in 

terms of precision and f1-score. 

 

V Conclusion 

This research proposal that focuses on utilizing 

image processing and MobileNet-v2 to detect plant 

diseases presents a potentially useful solution to the 

difficulties that are causedby disease outbreaks in the 

agricultural industry. The research helps to reduce 

crop losses and ensures that food security is 

maintained by contributing to the creation of an 

automated system with real-time illness detection 

capabilities. It is anticipated that the suggested 

methodology, which combines conventional 

MobileNet-v2 analysis with image processing, will 

produce findings that are both accurate and effective. 

This study demonstrates the potential for technology 

to revolutionize agriculture and to alleviate the limits 

of conventional techniques of disease detection. 

 

This research presents a novel approach to the 

identification of plant illnesses, which has the 

potential to bring about a sea change in agricultural 

practices, as well as to contribute to the safety of food 

supplies and the viability of the economy. It 

establishes the groundwork for additional 

developments in the industry, solving the issues 

faced by plant diseases and providing a brighter 

future for agriculture as a whole. 

By employing the MobileNetV2 architecture as a 

base model and fine-tuning its convolutional layers, 

we have developed a robust classifier capable of 

accurately identifying various leaf diseases from 

images. The utilization of transfer learning allowed 

us to leverage pre-trained features from ImageNet, 

lessening the computing burden and improving the 

model's capacity to extrapolate to unobserved data. 

We adjusted the model's hyperparameters to better 

suit the particular goal of classifying leaf 

diseases,optimizing its performance with careful 

adjustment of learning rates and layer trainability. 

 

The outcomes of this research demonstrate the 

potential for AI-driven solutions to revolutionize 

disease diagnosis and management in agriculture. 

With the trained model, farmers and agricultural 

experts can swiftly and accurately identify leaf 

diseases, enabling timely intervention and treatment 

to mitigate crop losses. Moreover, the automated 

classification system facilitates early detection of 

diseases, allowing for proactive measures to prevent 

their spread and minimize economic losses. 

Additionally, the scalability and adaptability of the 

model make it appropriate for use in a range of 

agricultural environments, including large-scale 

plantations and small-scale farms. 

Overall, this research highlights the transformative 

impact of deep learning in agriculture, offering a 

potent instrument for boosting crop health, raising 

output, and guaranteeing food security. 

 

VI References 
 

   1] Rong Zhou, Shunichi Kaneko, Fumio 

Tanaka, Miyuki Kayamori, Motoshige 

Shimizu,"Disease detection of Cercospora 

Leaf Spot in sugar beet by robust template 

matching," Computers and Electronics in 

Agriculture, 2014,108, 58-70. 

  2] Jayme Garcia Arnal Barbedo, "A review on 

the main challenges in automatic plant 

disease identification based on visible range 

images," Biosystems Engineering,2015, 

144,52-60. 

  3] D. Al Bashish, M. Braik and S. Bani- 

Ahmad, "A Framework for Detection and 

Classification of Plant Leaf and Stem 

Diseases," in International Conference on 

Signal and Image Processing, 2010. 

  4] Jagadeesh D. Pujari, Rajesh Yakkundimath, 

Abdulmunaf S. Byadg, "Image Processing 

Based Detection of Fungal Diseases In 

Plants," in International Conference on 

Information and Communication, 2015. 

  6] C. Zhang, X. Wang and X. Li, "Design of 

Monitoring and Control Plant Disease 

System Based on DSP&FPGA," in Second 

International Conference on Networks 

Security, Wireless Communications and 

TrustedComputing, 2010. 

  7] Elham Omrani, Benyamin Khoshnevisan, 

Shahaboddin Shamshirband, Hadi Saboohi, 

Nor Badrul Anuar, Mohd Hairul Nizam Md 

Nasir, "Potential of radial basis 

function based support vector regression 

http://www.ijera.com/


Smita Upadhyay al. Int. Journal of Engineering Research and Application 

ISSN : 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 217-228 

 

www.ijera.com 
 

 
www.ijera.com                                 DOI: 10.9790/9622-1406217228                                  228 | Page 

 

 

 

 

 

 

  

 for apple disease detection," Journal of 

Measurement, 2014, 233-252. 

  8] H. Hashim, M. A. Haron, F. N. Osman and 

S. A. M. Al Junid, "Classification of Rubber 

Tree Leaf Disease Using Spectrometer," 

IEEE,2010 ,1-8. 

  9] Kumar, Surender & Kaur, Rupinder, "Plant 

disease detection using image processing- a 

review," International Journal of Computer 

Applications,2015, 124, 1-16. 

 10] Vijai Singh, A.K. Misra, "Detection of Plant 

Leaf Diseases Using Image Segmentation 

and Soft Computing Techniques," 

Information Processing in Agriculture,2017 

,4( 10), 41-49. 

11] Wang Jun and Wang Shitong "Image 

thresholding using weighted parzen window 

estimation.," Journal of Applied Sciences, 

vol. 8, no. 5, pp. 772-779, 2008. 

12] Trimi Neha Tete, Sushma Kamlu, 

"Detection of Plant Disease Using 

Threshold, K- Mean Cluster and.," World 

Congress on Computing and 

CommunicationTechnologies., 2014, 35- 

37, 2014. 

13] Sabrol, Hiteshwari & Kumar, Satish, 

"Recognition of Tomato Late Blight by 

using DWT and Component Analysis," in 

IEEE Conference, 2017. 

14] S. D. Khirade and A. B. Patil, , "Plant 

disease detection using image processing," 

International Conference on Computing 

Communication Control and automation, 

2015, 768-771. 

15] N, Banupriya & chowdry, Rajaneni & 

Yogeshwari, & V, Varsha,, "Plant disease 

detection using image processing and 

machine learning algorithm.," 

10.37896/jxu14.7/012 , 2022. 

16] Meyyappan,  Senthilkumar  & 

Chandramouleeswaran, Sridhathan, "Plant 

Infection Detection Using Image 

Processing.," International Journal of 

Modern Engineering Research 

(IJMER),2018, 8, . 2249-6645. 

 

17] Liu, J., Wang, X. Plant diseases and pests " 

Plant diseases and pests detection based on 

deep learning: a review," Plant Methods, 17, 

1-18. 

18] Radha, Suja. , "Leaf Disease Detection 

using Image Processing.," Journal of 

Chemical and Pharmaceutical Sciences.. 

19] 
 

E. Harte, "Plant Diseases detection using 

CNN    ,"   10.13140/RG.2.2.36485.99048 . , 

2020. 

20] Suresh, V & Krishnan, Mohana & 

Hemavarthini, M & Jayanthan, D, "Plant 

Disease Detection using Image Processing,"  

INTERNATIONAL JOURNAL OF 

ENGINEERING RESEARCH & 

TECHNOLOGY, 2020,9. 

21] A. S. Tulshan and N. Raul, "Leaf Disease 

Detection Using Machine Learning," 2022 

15, 1828-1832. 

22] Ahmed, Kawcher & Shahidi, Tasmia & 

Irfanul Alam, Syed & Momen, Sifat. Ahmed, 

"Rice Leaf Disease Detection Using Machine 

LearningTechniques,"10.1109/STI47673.201

9.9068096,2019,1-5. 

 

http://www.ijera.com/

