
Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 109 | Page

DBSCAN Clustering Algorithm for Efficient Container Allocation

in Cloud Computing Environment

Amany AbdElSamea Saeed*
*(Computers and Systems Department, Electronics Research Institute, Cairo, Egypt)

Abstract

The deployment, management, and scalability of applications in cloud computing environment have all been

revolutionized using containerization by encapsulating the applications and their dependencies into lightweight,

portable units called containers. Although containers have many advantages, such as isolation, consistency

across environments, and quick deployment, effective resource allocation is still a significant barrier in dynamic

and heterogeneous cloud systems. Clustering techniques are crucial for cloud computing environments because

they efficiently allocate and regulate resources to satisfy varying demands of workload. Clustering algorithms

aggregate related workloads or containers into clusters allowing for more efficient resource utilization and better

performance isolation. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a popular

clustering algorithm that effectively discovers clusters of arbitrary shapes in spatial data while effectively

handling noise. DBSCAN is very versatile and suitable to a wide range of datasets because it does not need a set

quantity of clusters, in contrast to other standard clustering techniques. In order to improve load balancing and

reduce resource execution times while simultaneously increasing resource utilization rates, this paper proposes

the DBSCAN clustering algorithm for containers. The experimental findings demonstrate that the suggested

algorithm performs better than FCFS in terms of response time, and throughput.

Keywords - Containers, Clustering Techniques, Resource Allocation, Machine Learning, Cloud Computing

--- ----------

Date of Submission: 08-06-2024 Date of acceptance: 22-06-2024

--- ----------

I. Introduction

Container-based virtualization [1] has

gained popularity recently as a lightweight,

portable, and scalable method for virtualizing

applications that make cloud management easier.

Containers virtualize at the operating system level,

removing the requirement for a separate guest

operating system for every container, in contrast to

traditional virtualization, which runs multiple

virtual machines (VMs) on a single physical

server. In order to ensure consistency across many

contexts and minimize compatibility difficulties,

containers first wrap applications and their

dependencies into self-contained entities. These

small, lightweight, and portable units ensure

consistency and dependability across many

contexts by encapsulating all the components an

application needs to run, such as libraries,

dependencies, runtime, and code. The host

operating system kernels are shared by containers

and use less system resources to operate; they

provide better resource utilization than virtual

machines (VMs). Containers support scalability

and resource optimization by enabling applications

to be efficiently packed and deployed across

distributed infrastructures. They enable

organizations to quickly adapt to variations in

workload without overprovisioning hardware

resources by facilitating the rapid scaling of

resources to meet fluctuating demand.

Container scheduling [2] is an essential part of

resource optimization and management in cloud

computing environment. It involves the allocation

of containers to available resources in order to

maximize efficiency and meet performance

requirements. The requirement for efficient

container scheduling techniques [3] has grown in

significance to guarantee the seamless functioning

of cloud-based systems. The dynamic and

unpredictable nature of contemporary cloud

workloads may not be well-suited for static or

rule-based approaches, which are frequently used

in traditional approaches to container allocation.

Static allocation algorithms [4] may result in

under- or overprovisioning of resources in

RESEARCH ARTICLE OPEN ACCESS

Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 110 | Page

dynamic environments where workload patterns

change quickly, increasing costs and lowering

performance. Furthermore, rule-based allocation

techniques may find it difficult to achieve the best

possible resource utilization and performance

isolation in multi-tenant systems with varying

application requirements. Clustering techniques

are important for resource allocation in cloud

computing systems since they effectively allocate

and manage resources to satisfy varying demands

of workload. Cluster analysis technique [5] is

extensively employed in various study domains

such as cloud computing, image processing,

artificial intelligence, and machine learning.

Clustering is an unsupervised machine learning

technique. Inferential data sets lacking labeled

output variables are used to make conclusions in

the unsupervised learning approach. Clustering is

the technique of dividing data sets into an

established number of groups so that the data

points inside a cluster have comparable

characteristics. A cluster is just an arrangement of

data points with the least amount of inter-cluster

distance possible. Clustering is used to segregate

the groups with identical traits.

Clustering is grouped into two types Hard, and

Soft Clustering. One data point can belong to only

one cluster in hard clustering. On the other hand,

the result of soft clustering is a probability

likelihood of a data point being in each of the pre-

specified number of clusters. There are three main

data clustering methods, Partition-based clustering

[6], [7], Hierarchical clustering [8], [9], and

Density-based clustering [10], [11], [12]. All

clustering techniques, at their core, follow similar

methodologies. First, this work computes the

similarities, and uses that information to batch or

group the data points.

This work will first focus on highlighting the main

difference between partition-based clustering

specifically k-mean clustering algorithm [13] and

density-based clustering specifically DBSAN

clustering algorithm. It is crucial to evaluate these

variables and choose the clustering algorithm that

most closely fits the unique specifications and

limitations of the container assignment. Deciding

whether DBSCAN or K-means is preferable for

Table 1. The difference among k-means and

DBSCAN clustering algorithms

Parameter K-means Clustering DBSCAN Clustering

Cluster

Shape

The resulting clusters must

all have the same feature

size and be roughly

spherical or convex in

appearance.

The resulting clusters

may not all have the same

size features and are

shaped arbitrarily.

Number

of

clusters

The number of clusters

that are specified has an

impact on K-means

clustering.

There is no need to

provide the number of

clusters.

Datasets

Handling

For larger datasets, K-

means clustering is more

effective.

High dimensional

datasets are not

effectively handled by

DBSCAN Clustering.

Outliers

K-means In datasets with

noise and outliers,

clustering performs

poorly.

Noise in datasets and

outliers are effectively

handled via DBSCAN

clustering.

Number

of

clusters

It requires one parameter

Number of clusters (K)

Two parameters are

needed: Minimum Points

(M) and Radius (R).

Densities

variation

K-means clustering

algorithm remains

unaffected by variations in

data point density.

Data points with different

densities or sparse

datasets are not well

suited for DBSCAN

clustering.

Pros

- The fastest approach

based on centroid

- Scalability for huge data

sets

- Minimize intra-cluster

variance metrics

- Resistant to outliers

- It can manage a variety

of shaped and sized

clusters.

- It is not necessary to

indicate the number of

clusters

Cons

- Suffers when the data

contains noise.

- It is impossible to

identify outliers.

It minimizes intra-cluster

variance, although it still

has a local minimum

issue.

- Unsuitable for datasets

including non-convex

shapes

- Difficult to determine the

ideal k value

- Extremely sensitive to

the two parameters,

MinPts and epsilon

- Data sets with

significant variability in

densities are difficult for

DBSCAN to cluster.

Use cases

Even cluster size, flat

geometry, general purpose

clusters

Uneven cluster sizes,

non-flat geometry

Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 111 | Page

allocating containers rely on the specific

characteristics of the workload and the goals of the

allocation process. The decision between

DBSCAN and K-means for container allocation

ultimately comes down to computational

considerations, workload characteristics, and the

desired degree of cluster formation flexibility.

Table 1 shows the distinction between the

DBSCAN and k-means clustering. K-means is a

partitioning technique that works well in situations

when clusters are well-separated and generally

spherical in shape. It is also simple to apply. If

there is a need for a simple and computationally

efficient clustering method and the workload

characteristics are largely similar across

containers, K-means could be helpful in container

allocation.

Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) [14] is a widely used

clustering technique that effectively handles noise

while finding clusters of any forms in spatial data.

DBSCAN is especially well-suited for datasets

where the number of clusters is unknown or

fluctuates, as it does not necessitate predetermined

cluster counts, in contrast to other partitioning

techniques such as K-means. Two parameters are

used to group together closely packed data points:

MinPts, which is the lowest number of points

required to form a dense (core point) region, and

epsilon (ε), that is the maximum distance among

points in the cluster. DBSCAN is able to

discriminate between three types of points: noise

points, which are neither core nor border points,

reachable from a core point but lacking enough

neighbors to form their own cluster, and core

points, which have an adequate number of

neighbors within ε. DBSCAN is robust in

situations with irregularly shaped or sparse

clusters because of its hierarchical approach,

which enables it to recognize clusters of varied

densities and shapes. DBSCAN is a strong

clustering technique that performs exceptionally

well at finding clusters in noisy, complex

geographical data.

DBSCAN is useful when working with datasets

that contain a variety of cluster sizes, densities,

and forms, as well as when identifying noise spots

are necessary. DBSCAN may be useful in the

context of container allocation if resource

requirements fluctuate or spike unexpectedly, or if

the workload characteristics change dramatically

throughout containers. In response to these

differences, DBSCAN can discover clusters and

adjust its identification, which could result in more

reliable resource allocation decisions.

 The DBSCAN clustering algorithm for containers

is proposed in this paper to improve load

balancing and reduce resource execution times

while increasing the resource utilization rate for

containers and VMs. The reason of choosing

DBSCAN is that Partitioning methods and

hierarchical clustering are appropriate only for

small, well-separated clusters. Furthermore, they

are also negatively impacted by data noise and

outliers. Also Real-world data may have

anomalies since Clusters can have any shape and

noise can be presented in data. The proposed

method's execution time is compared with that of

the FCFS and maintains significant improvement

of the resource utilization among virtual machines

and physical machines. More precisely, the major

contribution of this paper might be summed up as

follows:

a) Provides a detailed analysis of k-mean

clustering algorithm and DBSCAN

clustering algorithm

b) Introduces and implements a DBSCAN

clustering algorithm for containers

c) Comparing the outcome of the suggested

method against that of the FCFS

algorithm.

This paper has the following format: Section II

presents the related work. Section III identifies the

basic DBSCAN clustering technique. Section IV

presents the proposed DBSCAN clustering

technique for containers. Section V covers the

implementation and simulation results. Finally,

future work and the conclusion are discussed in

Section VI.

II. Related Work

The most recent research on resource

allocation in cloud computing systems using the

DBSCAN clustering method is reviewed in this

section. S.M.F D Syed Mustapha et al. [10] [11]

suggests a task scheduling technique that achieves

great efficiency by utilizing DBSCAN (density-

Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 112 | Page

based spatial clustering). Authors aim to address

the shortcoming of current techniques that treat the

cloud as a stand-alone entity. In contrast, the

current configuration treats the entire data center

as a single entity with a variety of resources and

comparable performance. By clustering resources

with comparable historical performance and

shortening the load balancing time with ideal

execution time, the DBSCAN algorithm will be

used in this work to simultaneously improve the

system's performance and resource utilization.

According to the results, the suggested algorithm

works better in terms of the average start and

finish times than the conventional methods (PSO,

ACO) algorithms. The paper drawback is that the

work didn't consider other objective functions,

such as power.

Nahid Gholizadeh et al. [12] speed up the

DBSCAN execution speed so that large datasets

may be processed by the algorithm in a reasonable

amount of time. In order to handle the issue, the

K-means++ algorithm was used to apply the first

grouping to the data. Next, clustering was done

independently in each group using DBSCAN. As

a result, the clustering execution speed

significantly enhanced and the computational load

of DBSCAN execution decreased. Lastly, border

clusters were combined if required. The results of

using the suggested technique showed that it was

able to significantly shorten the DBSCAN

execution time (98% in the best-case scenario)

without significantly altering the clustering's

qualitative evaluation criteria. One benefit of the

approach is that it can be used on a single system

and doesn't require a lot of hardware resources.

Using the suggested approach to address a

shortage of hardware resources and powerful

equipment would be especially effective. Utilizing

the suggested algorithm could also prevent

pointless system operations, spare a lot of system

resources and time, and eventually lessen the

system's depreciation. One drawback is that the

suggested method ignores noise in calculations.

Quality of clustering will rise if the procedure can

be enhanced to incorporate noise.

Nafi Shahriar et al. [13] use four separate

platforms (R, Python, Matlab, and Wolfram) to

compare the runtime and accuracy of the

DBSCAN and K-means algorithms. Their analysis

reveals that Matlab executes K-Means more

quickly than R, Python, and Wolfram. After

further analysis, it was found that Matlab

outperformed Python, R, and Wolfram in terms of

speed for DBSCAN. The drawback of the paper is

that didn't consider the usage the DBSCAN and k-

mean for resource allocation in cloud computing

environment.

Weipeng Jing et al. [14] suggested a better parallel

DBSCAN approach (DBSCAN-PSM), which

simplifies the stages involved in data splitting and

regional querying. It also realizes algorithm

parallelization on the Spark platform by utilizing

the pre-construction strategy of KD trees. The

experimental results demonstrate a significant

increase in DBSCAN's efficiency compared to a

stand-alone method based on the Spark platform,

which is beneficial for processing large amounts

of data. The drawback of the algorithm is that it

doesn't make use of the statistical properties of

data sets, automatically choosing eps and MinPts

values to raise the algorithm's degree of

automation. Also it doesn't use various partitioning

techniques for various sorts of data sets to increase

parallelization even more.

The previous related work neglected to take

into account using DBSCAN for container

resource allocation in cloud computing

environments but this paper provides DBSCAN

clustering algorithm for efficient container

allocation in cloud computing environment.

III. Basic DBSCAN clustering

algorithm

Clusters are dense regions in the data space that

are divided by regions with a lower point density.

The DBSCAN method is based on the logical idea

of "clusters" and "noise". A minimum number of

points must exist in the vicinity of a specific radius

for each point within a cluster, according to the

primary concept.

A. DBSCAN clustering algorithm parameters

- Epsilon: It is the maximum distance among 2

points for them to be considered neighbors to each

other. It define the neighborhood surrounding a

https://ieeexplore.ieee.org/author/37088343538

Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 113 | Page

data point, which means that two points are

thought to be adjacent when their distances are

less than or equal to epsilon. An excessively small

epsilon number will be seen as an outlier for a

significant portion of the data. If the selection is

made at a very high size, the clusters will merge,

resulting in the majority of the data points being in

the same clusters.

- MinPts: The smallest quantity of neighbors (data

points) in an eps radius. A bigger value of MinPts

must be selected for larger datasets. MinPts >=

D+1 is the general formula for calculating the

minimal MinPts, where D is how many

dimensions the dataset contains. At least three

must be selected as the minimum value for

MinPts.

B. Data Points Classification

- Core-Point: If a point contains more than MinPts

points within an epsilon, it is considered a core-

point.

- Border-Point: A point near a core-point but with

fewer points within an eps than MinPts.

- Outlier or Noise: A point that is neither a core-

point nor a boundary-point

C. DBSCAN Pseudocode

The DBSCAN technique functions in multiple

crucial steps. The algorithm works by defining two

parameters MinPts (a Minimum number of Points)

and eps (a distance threshold). In order to get

every point inside the Eps distance, the method

first chooses an arbitrary point at random from the

dataset. This point is referred to as a "core point"

and a cluster is formed if the total number of

points retrieved inside the eps distance zone is

more than MinPts. After that, the algorithm

gathers all of the points that are within each core

point's eps distance and adds them to the cluster.

All core points go through this process again until

no more points can be added to the cluster. After

that, the algorithm moves on to the next

unexplored point and keeps going until every point

has been reached as shown in Algorithm 1.

DBSCAN starts by choosing a dataset data point

that hasn't been visited yet. Based on a

predetermined distance threshold ε (epsilon), the

algorithm determines the neighborhood of the

specified point. The chosen point is designated as

a core-point if exists more points in this

neighborhood than there are below a

predetermined threshold (MinPts).

Algorithm 1 Basic DBSCAN Clustering

Algorithm

Input: Dataset D, eps, and MinPts.

Output: The assignment of each receiving datum

to a cluster.

/Initialization/

Initialize the labels of all the data points to be

Unvisited

For each point P in dataset D do

if label(P) is not Unvisited then

 label(P)  Visited

neighbors = get points that are within a

point's eps distance

if number of neighbours < MinPts

 Identify a point as noise

else

 Construct a new cluster

 Include a point in the cluster

 For each neighbor in neighbors

 If neighbor is not visited

 Mark neighbor as visited

 NewNeighbors = retrieve points

within eps distance of neighbor

 If number of NewNeighbors >

MinPts

 Add NewNeighbors to

neighbors

 end for

 add cluster to clusters

end for
return clusters

DBSCAN adds reachable points inside the ε-

neighborhood to the cluster iteratively, starting

from a core point. If these points are within the

epsilon neighborhood of a core point or are core

points themselves, they join the same cluster.

Border points are those that are within a core

point's ε-neighborhood but do not have enough

neighbors to be classified as core points in and of

themselves. Although border points are a

component of the cluster, they don't help it grow.

Noise points are points that are neither core nor

Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 114 | Page

within a core point's ε-neighborhood. These points

are regarded as outliers as they don't fit into any

cluster. Clusters are created as the algorithm goes

along by combining core points and the points that

border them. The process ends once each point has

been examined and categorized into a cluster.

IV. DBSCAN clustering algorithm for

containers in cloud computing

environment

Algorithm 2 DBSCAN Clustering Scheduling

Algorithm for Containers in Cloud Computing

Input: VM list, Container list, eps, and MinPts.

Output: Allocation of containers on VMs

/Cloudsim initialization/

Initialize CloudSim by creating the Datacenter

Broker, containers, virtual machines and cloudlets.

Provide the unallocated container list and

unassigned VM list to the Datacenter broker

Initialize eps and MinPts

/Clustering the containers using DBSCAN /

for each container in containerlist do

Get the values of MIPS and RAM size of

each container

end for

for each container C in containerList do

if C is not Unvisited then

 C  Visited

neighbors = get containers that are within

a point's eps distance

if number of neighbours < MinPts

 Add C to list of

Unassigned_Containers

else

 Create a new cluster

Container_Cluster

 Add C to cluster Container_Cluster

For each Container Q in the

neighbors (neighborhood of C) do

 If Q is not visited

 Q  Visited

 NewNeighbors = retrieve

containers within eps distance of Q

 If number of NewNeighbors >

MinPts

 Add NewNeighbors to

neighbors

 end for

If Q does not currently belong to any

cluster

 Add Q to cluster Container_Cluster

end for
Add Container_Cluster to list of Container clusters

Container_Clusters

return Container_Clusters

/ Clustering the VMs using DBSCAN

for each VM in VMlist do

Get the values of MIPS and RAM size of

each VM

end for

Apply DBSCAN clustering algorithm on the VMs

for each container in containerlist do

Assign container to VM of appropriate

cluster

end for

sendNow (container id, virtual machine id)

Algorithm 2 presents the pseudocode for the

suggested DBSCAN clustering container

allocation algorithm in cloud computing

environment. DBSCAN could be beneficial if the

workload characteristics vary significantly across

different containers, or if there are unpredictable

spikes or variations in resource requirements.

DBSCAN can adapt to these variations and

identify clusters accordingly, potentially leading to

more robust resource allocation decisions. Firstly,

the Datacenter Broker, virtual machines, and

cloudlets are created as part of the initialization of

the CloudSim simulator. Datacenter Broker

receives the list of unallocated containers and

unassigned VMs. The Modified DBSCAN

clustering algorithm is utilized to categorize the

containers. Datacenter broker calculates each

virtual machine's processing capacity based on

RAM, size, and MIPS and deploys the modified

DBSCAN clustering technique on VMs then

assign the containers to VM of appropriate cluster.

V. Implementation and simulation

results

This section verifies the modified DBSCAN

placement strategy for containers in cloud

computing environment, which are subsequently

assessed using ContainerCloudSim simulator.

Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 115 | Page

A. Implementation Environment

ContainerCloudSim [15] has the same layered

architecture as CloudSim, with the necessary

modifications to integrate the container idea.

ContainerCloudSim provides containerized cloud

data centers, hosts, containers, virtual machines,

applications, and their workloads. Both VM-level

and container-level container provisioning are

offered by the simulator. The percentage of the

virtual machine's total processing power which is

allotted to every container is defined at the VM

level. On the other hand, at the container level,

every application service hosted on the container

can be allocated a set number of resources. As a

finer abstraction of an application service housed

in the container, a task unit is thought to facilitate

interoperability with CloudSim. In the latest

version of the ContainerCloudSim, time shared

and space shared provisioning strategies are

applied for both levels.

B. Parameter setting

Using ContainerCloudSim, we evaluate our

proposed DBSCAN clustering scheduling method

for cloud computing containers and compare it

with other job scheduling algorithms. Table 2

shows how the suggested algorithm's parameters

are set up to give us the optimum performance.

We initialize the value of the epsilon to 5 and the

MinPts to 15.

Table 2. ContainerCloudSim Parameter Setting

Type Parameters Value

Containers TYPES

MIPS

PES

RAM

BW

3

4658, 9320, 18636

1

128, 256, 512

2500

Virtual

Machine

TYPES

PES

RAM

BW

SIZE

4

2, 4, 1, 8

1024, 2048, 4096, 8192

100000

2500

Hosts TYPES

MIPS

PES

RAM

BW

STORAGE

3

37274

4, 8, 16

65536, 131072, 262144

1000000

1000000

C. Experimental results

A comparison is made between our

DBSCAN clustering scheduling technique for

cloud computing containers and FCFS scheduling

algorithm [17]. DBSCAN is one of the most

effective and frequently referenced density-based

clustering algorithms. It is thought to be able to

detect clusters of random size and shape in sizable

datasets tainted by noise with a considerable

degree of accuracy. In FCFS scheduling algorithm,

Requests are queued in the order that they are

received by FCFS, which processes them

automatically. FCFS is the most basic CPU

scheduling algorithm currently in use.

Fig. 1. Relative improvement in execution

time of the proposed DBSCAN algorithm w.r.t

FCFS algorithm

The relative increase in execution time of the

suggested DBSCAN algorithm for containers in

comparison to the FCFS algorithm is displayed in

Fig. 1. It is shown that the proposed method

achieves a satisfactory balance of system loads

and minimizes the required time. We find that as

the number of cloudlets grows, the relative

response time rises linearly. It performs best when

there are 500 cloudlets because the execution time

advantage over the FCFS method is 6%. The

relative improvement in execution time is 5.7%,

5.3%, and 4.3% for 700, 800, and 600 cloudlets,

respectively. When the number of the cloudlets is

400 the relative improvement in execution time is

the worst since it is about 1.3%.

Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 116 | Page

Fig. 2. Throughput

In terms of throughput across all cloudlets, Fig. 2

shows that the recommended method performs

better than FCFS. While some of the cloudlets we

sent were successful, some weren't. Containers can

be optimally placed on virtual machines (VMs)

with shorter reaction times and faster throughput

thanks to the recommended technique, which

works best when there are 1000 cloudlets. The

algorithm performs worst when the number of

cloudlets is small (100 and 200 cloudlets).

VI. Conclusion

In the context of container allocation,

DBSCAN can be used to group containers with

similar resource requirements and workload

characteristics into clusters, allowing for more

efficient resource utilization and better

performance isolation. By identifying clusters of

containers that share common resource demands,

DBSCAN enables containers to be allocated to

hosts in a way that minimizes resource contention

and maximizes resource utilization. Additionally,

DBSCAN can adapt to changing workload

patterns and dynamically adjust cluster boundaries

in response to fluctuations in resource demand,

making it well-suited for dynamic cloud

environments where workload patterns are

constantly evolving. The DBSCAN algorithm's

primary benefit is that datasets do not require

predetermination of the number of clusters. Given

that the DBSCAN method can accurately and

efficiently handle the noise points, it is more

useful to identify a group that is surrounded by

noise as opposed to another group.

This paper suggests a DBSCAN clustering

technique for containers in order to enhance load

balancing, decrease resource execution times, and

increase resource utilization rates at the same time.

The experimental findings demonstrate that, in

terms of execution time and throughput, the

suggested approach outperforms the FCFS

algorithm. According to the experimental findings,

the suggested method outperforms alternative

algorithms by a margin of 6%. Instead of using

simulation in the future, we can implement the

suggested DBSCAN allocation technique on an

actual platform. In order to optimize the placement

of containers on virtual machines, we can also

experiment with various machine learning

methods.

REFERENCES

[1] S. Abraham, A. K. Paul, R. I. S. Khan and A. R.

Butt, "On the Use of Containers in High

Performance Computing Environments," 2020

IEEE 13th International Conference on Cloud

Computing (CLOUD), Beijing, China, pp. 284-

293, 2020, doi:

10.1109/CLOUD49709.2020.00048.

[2] M. K.Hussein, M. H. Mousa, and M. A. Alqarni,

"A placement architecture for a container as a

service (CaaS) in a cloud environment", Journal of

Cloud Computing, vol. 8, 2019.

https://doi.org/10.1186/s13677-019-0131-1

[3] A. M. Hafez, A. Abdelsamea, A. A. El-Moursy, S.

M. Nassar and M. B. E. Fayek, "Modified Ant

Colony Placement Algorithm for

Containers," 2020 15th International Conference

on Computer Engineering and Systems (ICCES),

Cairo, Egypt, pp. 1-6,2020, doi:

10.1109/ICCES51560.2020.9334671.

[4] K. Shrikant, V. Gupta, A. Khandare, P. Furia,"A

Comparative Study of Clustering Algorithm".

Intelligent Computing and Networking, Springer,

Singapore vol. 301, 2022.

https://doi.org/10.1007/978-981-16-4863-2_19

[5] A. Priyadarshini, S. K. Pradhan, S. Pattnaik, S. R.

Laha, and B. K. Pattanayak, “Dynamic Task

Migration for Enhanced Load Balancing in Cloud

Computing using K-means Clustering and Ant

Colony Optimization", International Journal on

Recent and Innovation Trends in Computing and

Communication, vol. 11, no. 7, pp. 156–162 , July,

2023.

[6] G. Muthusamy, S. R. Chandran, "Cluster-based

Task Scheduling Using K-Means Clustering for

Load Balancing in Cloud Datacenters", Journal of

Internet Technology, Vol. 22, No.1, pp. 121–130,

2021.

[7] P. Charles, and V. Alagumalai,"Load Balancing in

Cloud Computing Using Agglomerative

Hierarchical Clustering Approach", Journal of

https://doi.org/10.1186/s13677-019-0131-1
https://doi.org/10.1007/978-981-16-4863-2_19

Amany AbdElSamea Saeed*. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 6, June, 2024, pp: 109-117

www.ijera.com DOI: 10.9790/9622-1406109117 117 | Page

Advanced Research in Dynamical and Control

Systems, vol. 4, pp. 1720-1723, 2019.

[8] X. Wu, J. Wei, S. Yuan, Z. Chen and X. Wang,

"Hierarchical Clustering Algorithm Based on Fast

and Uniform Segmentation," 2022 12th

International Conference on Cloud Computing,

Data Science & Engineering, Noida, India, pp. 88-

93, 2022, doi:

10.1109/Confluence52989.2022.9734143.

[9] A. Fahim, "A varied density-based clustering

algorithm", Journal of Computational Science,

Vol. 66, 2023,

https://doi.org/10.1016/j.jocs.2022.101925.

[10] S.M.FD.S. Mustapha, P. Gupta, "DBSCAN

inspired task scheduling algorithm for cloud

infrastructure", Internet of Things and Cyber-

Physical Systems, vol. 4, pp. 32-39, 2024.

https://doi.org/10.1016/j.iotcps.2023.07.001

[11] S.M.FD.S. Mustapha, P. Gupta, " Fault aware task

scheduling in cloud using min-min and

DBSCAN", Internet of Things and Cyber-Physical

Systems, vol. 4, pp. 68-76, 2024.

https://doi.org/10.1016/j.iotcps.2023.07.003.

[12] N. Gholizadeh, H. Saadatfar, Hamid, N. Hanafi,

"K-DBSCAN: An improved DBSCAN algorithm

for big data". The Journal of Supercomputing, vol.

77, pp. 1-22, 2021.https://doi.org/

10.1007/s11227-020-03524-3.

[13] N. Shahriar, S. M. Akib Al Faisal, M. M. Pinjor,

M. A. Sharif Zobayer Rafi, and A. Rahman

Sarkar, "Comparative Performance Analysis of K-

Means and DBSCAN Clustering algorithms on

various platforms," 2019 22nd International

Conference on Computer and Information

Technology (ICCIT), Dhaka, Bangladesh, pp. 1-6,

2019.

https://doi.org/10.1109/ICCIT48885.2019.903853

5.

[14] W. Jing, C. Zhao, C. Jiang, "An improvement

method of DBSCAN algorithm on cloud

computing". Procedia Computer Science. vol. 147,

pp. 596-604, 2019.

https://doi.org/10.1016/j.procs.2019.01.208.

[15] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros,

and R. Buyya, “ContainerCloudSim: An

Environment for Modeling and Simulation of

Containers in Cloud Data Centers”, Softw. Pract.

Exper., pp.1–17, 2010.

https://doi.org/10.1016/j.iotcps.2023.07.001
https://doi.org/10.1016/j.iotcps.2023.07.003
https://doi.org/10.1109/ICCIT48885.2019.9038535
https://doi.org/10.1109/ICCIT48885.2019.9038535
https://doi.org/10.1016/j.procs.2019.01.208

