
EYNAS BALKHAIR. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 12, December 2024, pp 32-37

www.ijera.com DOI: 10.9790/9622-14123237 32 | Page

 

Euclidean Algorithm Analysis
Eynas Balkhair

Date of Submission: 11-12-2024 Date of acceptance: 23-12-2024

I.
II. Introduction and Motivation

Driven by our curiosity to explore more of
the mathematical algorithms and the desire and
passion to learn more about algorithms and their
analysis, we have chosen an extremely important
algorithm that finds the greatest common divisor
which is of great importance. This algorithm is the
Euclidean algorithm that was developed about 300
BC by the Euclid of Alexandra who is an
established Greek mathematician (Macardle et al,
2008). The Euclidean algorithm is considered to be
among the best algorithms to find the GCD in
terms of efficiency up until today. Euclid who
developed this algorithm had also developed many
relevant and quite efficient algorithms that are
widely used by mathematicians and have many
applications. However, the greatest common
divisor itself holds significant importance. For
instance, it is used to simplify fractions as to reduce
them to the least possible ratio. Furthermore, it is
also used to find co-prime numbers once the GCD
is one, as well as to find the greatest possible
number of possible intersections in a grid.

The aim of this project is to deepen and
further strengthen our understanding of algorithms
and their complexity analysis. Furthermore, another
objective of this project is to enhance our academic
writing skills as well as our logical and algorithmic
thinking.

We aim to provide an in-depth coverage
of the Euclidean algorithm as to provide a good
reference for future researchers and students. By
reviewing the literature we get a better
understanding of the efficiency of the algorithm
and its counterparts. Afterwards, a concrete
definition of the problem, the algorithm, analysis
and implementation will be presented. We will be
using the C++ high-level programming language as
to give a clear implementation of the algorithm. We
hope this report meets the professional standards
and presents the algorithm in the best way possible.

III. Problem Definition
The Greatest Common Divisor

The greatest common divisor (GCD) of
two integers that are not zero is the largest natural
number that divides both integers (D'angelo &
West, 1997). It is also known as the greatest
common factor (GCF), highest common factor
(HCF), greatest common measure (GCM), and
highest common divisor (HCD). While it might be
easy to find the greatest divisor of a certain number
on its own, the problem gets harder as the number
becomes two or sometimes more. That is why there
are definitions that do not limit the greatest
common divisor to be that of only two numbers but
leaves it open-ended as the factor of a group of
natural numbers (Struve, Sullivan & Mazzarella,
2008).

IV. Literature Review
Finding the greatest common divisor

(GCD) is a problem that has been discussed widely
and tackled by many scientists. While the first
introduced algorithm was that of a brute force, as
time went by, many other algorithms that were
developed showed better performance. We will
cover three algorithms in this literature review in
the following order: Brute Force Algorithm, Binary
GCD Algorithm (Stein's Algorithm) and the
Euclidean Algorithm. It is important to highlight
these algorithms to understand the efficiency and
advantage that the Euclidean algorithm has over
them.

Firstly, the Brute Force Algorithm
suggests a straightforward solution that is not
efficient. The idea of this algorithm is start with the
largest number as to decrement it until the number
that divides both of the numbers is reached
(Altarawneh, 2011). Both the time and space
complexities of this algorithms are really bad since
they grow exponentially as the numbers grow. To
further demonstrate the loss let us suppose that two
numbers n and m are used as input to this algorithm

RESEARCH ARTICLE OPEN ACCESS

EYNAS BALKHAIR. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 12, December 2024, pp 32-37

www.ijera.com DOI: 10.9790/9622-14123237 32 | Page

and n is found to be larger, then in to give that
solution at least n/2 iterations are wasted in this
algorithm since a divisor of a number is at most its
half. The Brute Force Algorithm is found to
perform poorly in terms of time and space
complexities.
Secondly, Stein's algorithm shows better results
than the Brute Force algorithm. Josef Stein's
algorithm that was developed in 1967 is also called
the binary GCD algorithm. The algorithm attempts
to find the greatest common divisor for two
numbers m and n through the following process:
1-If m and n are even then the GCD becomes
2GCD(m/2, n/2);
2-If m is even and n is odd then the GCD becomes
GCD(m/2, n);
3-If m and n are odd then the GCD becomes
GCD(|m-n|/2, n);
4-GCD(m, 0).

The time complexity of this algorithm is
found to be O(n2) which is an acceptable time
complexity of a practical algorithm (Sorenson,
1994). The binary GCD algorithm yields a better
time complexity performance.

Thirdly, the Euclidean algorithm has a
better time complexity than the Brute Force and the
binary GCD algorithms. Euclid who is known as
the father of Geometry developed many efficient
algorithms in his lifetime that are still in use until
today and the GCD Euclidean algorithm is no
exception. This widely used algorithm attempts to
find the greatest common divisor for two numbers
m and n in which m is greater than or equal to n. It
finds the GCD through dividing m by n then using
the remainder to divide quotient and when a
quotient of zero is reached, the number that was
divided is the greatest common divisor. Not only
does this algorithm eliminates many iterations but
it also has a better time complexity of O(log(n))
assuming that n is less than m which are being
investigated for the GCD (Ravi, 2007). Euclid's
algorithm has a good time complexity.

In conclusion, the three algorithms suggest
different ways to find the greatest common factor
but show different efficiencies. While the Brute
Force algorithm might work fine for small
numbers, as the numbers increase, the needed time
will greatly increase. On the other hand, Stein's
algorithm works better for large numbers and an
even better algorithm is Euclid's algorithm. That is
why we will further discuss the Euclidean
algorithm in this report as follows: The algorithm,
its proof, its time complexity and an

implementation of it using the C++ programming
language.

V. Euclidean Algorithm
The Euclidean algorithm finds the greatest common
factor through recursively implementing the
following steps on two nonnegative integers m and
n that are nonzero, where m>=n:

Euclidean Algorithm

Input: m and n ∈ N
Output: g ∈ N, GCD of m and n
If n=0, g=m
Else While (n<>0)
{
Remainder = m mod n
m=n
n=Remainder
}
g=m

Simply explained, this algorithm divides the larger
number by the smaller number then takes the
remainder and divide the smaller number by it until
the zero is reached, once the zero is reached then
the smaller number that was divided is the greatest
common divisor (D'angelo & West, 1997).
Example: GCD (198, 50)
198/50 198=50*3+48
50/48 50=1*48+2
48/2 48=24*2+0
The GCD is then 2 and it divides both 198 and 50

4.1. Proof
The way to go about proving this algorithm is by
mathematical induction that is used to prove a
theory over natural numbers.
Base case: m and n where m>n , suppose n=0 then
we can write m=m*1+0 which shows the GCD is
terms of n and m as a integer combination.
Induction step: Assuming that the Euclidean
algorithm generates the GCD of m and n where
m>=n>=1. Now the Euclidean algorithm gives the
first pair as GCD(m, n) which later on becomes
GCD (n, q) as the first step can be written like
m=an+q for a is a number that belongs to the set of
natural numbers. The algorithm can be written as
q=m-an and by using the proven proposition of
GCD(m, n) = GCD(m-an, n) it is proves that
GCD(m, n) = GCD(n, q). Since n>=q which in this
step could be less than or equal to zero, we can
safely say that after a number of iterations, the

EYNAS BALKHAIR. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 12, December 2024, pp 32-37

www.ijera.com DOI: 10.9790/9622-14123237 32 | Page

algorithm is bound to produce a pair GCD(p, 0)
that holds for p=GCD(m, n)=GCD(n, q) which
proves the validity of the algorithm (D'angelo &
West, 1997).

4.2. Time complexity analysis
To be as precise as possible, the two notations of
the lower bound (best case) Ω(f(n)) and upper
bound (worst case) O(f(n)) will be used to give an
analysis that is as concise as possible.
The best case is pretty trivial to analyze as it
obviously happens when n=m which will yield a
time complexity of Ω(1).
The worst case is also easy to realize as it happens
when one of the numbers is 1 and the other is
greater, in that case the time complexity becomes
n(m) when m is the number that is greater than 1.
However, this problem can be solved really easily
by making an exception before applying the
algorithm to immediately announce 1 as the
greatest common factor. In this case, the previously
stated worst case is eliminated and we are now
faced with a new worst case scenario.
The time complexity after adding the modification
to the algorithm can be logically arrived to
assuming that m is greater than n. Using the lemma
that states that for any two integers m and n where
m>n then m mod n< m/2, and referring to the pairs
that were used in the proof: GCD(m, n) (n, q)
(q, p). We can see that p<n/2 by the lemma which
makes for n being reduced by one half each time.
Therefore, the time complexity becomes that of
O(log2n) which is also widely written as O(lgn)
which is a good indicator of the algorithm's
efficiency (Ravi, 1997). This time complexity
shows that the algorithm is indeed efficient and
feasible.

4.3.
4.4. Implementation
We will present the code first followed with the flowchart and four instances of the output.
A. C++ source code
Euclidean Algorithm C++ implementation
#include <iostream>
using namespace std;
int GCD(int m, int n){

int remainder=0;
while (n!=0){

remainder= m%n;
m=n;
n=remainder;

}
return m;

EYNAS BALKHAIR. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 12, December 2024, pp 32-37

www.ijera.com DOI: 10.9790/9622-14123237 32 | Page

}
int main()
{

int gcd, num1, num2, temp;
cout<<"GCD"<<endl;
cout<<"Enter the first number : \n";
cin>>num1;
cout<<"Enter the second number: \n";
cin>>num2;
if (num1<num2){ //To ensure that the greater number is num1

temp=num2;
num2=num1;
num1=temp;

}
if (num1==num2)

gcd=num1;
else if (num1==0|| num1==1)

gcd=num1;
else gcd=GCD(num1, num2);

cout<<"The greatest commond divisor GCD("<<num1<<", "<<num2<<") is :\n "<<gcd<<endl;
cin>>num2;
}

B.
C. Flowchart

EYNAS BALKHAIR. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 12, December 2024, pp 32-37

www.ijera.com DOI: 10.9790/9622-14123237 32 | Page

Figure 1: Flowchart for implemented Euclidean
algorithm
D. Output instances

Figure 2: Implementation instance using arbitrary
numbers

Figure 3: Implementation instance of a special case
of one and zero

Figure 4: Implementation instance of two prime
numbers that have no GCD

Figure 5: Implementation instance of a number and
1

4.4 The effect of the Euclidean algorithm's
solution in the societal context
This algorithm's solution has facilitated many
engineering operations through the effective
algorithm that yields the greatest common divisor.
The most important and popular applications for
the greatest common divisor are found in:
Mathematics, encryption and graphics (Koblitz,
1987).
In mathematics, the greatest common divisor is
used to simplify fractions and reduce them to the
least form. Furthermore, it is also used to find co-
prime numbers that are the numbers which are
found to be only divisible by 1 mutually.
In encryption, the greatest common divisor is used
in the Rivest, Shamir, Adleman (RSA)
cryptosystem that uses a public key to encrypt and
a private key to decrypt. It is used to find the
greatest common divisor for n which is defined in
the system and to calculate a number e such that the
result of the GCD is one.

EYNAS BALKHAIR. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 12, December 2024, pp 32-37

www.ijera.com DOI: 10.9790/9622-14123237 32 | Page

In graphics, the greatest common divisor is used to
find the largest possible numbers of intersects in a
grid. That is, given a certain grid with a number of
rows and column, the greatest common divisor can
provide the largest number that represents the
intersections in that grid.
Overall, the Euclid's algorithm that facilitated
calculating the greatest common factor has also
facilitated the various applications for the greatest
common divisor that affect the society. In an
indirect way, the greatest common divisor
facilitates encryption which preserves the privacy
of the people in society. Moreover, since many
computer applications and algorithms require
finding the greatest common factor, it then subtly
facilitates the life of people indirectly.

VI. Conclusion
After defining the greatest common factor

and introducing three algorithms of which we
chose the one with the best performance, we
presented the best algorithm, its proof, its time
complexity analysis and its implementation. The
most important highlighted elements were the
algorithm's proof and its complexity analysis that
was improved greatly with a simple modification.

Overall, an in-depth study for the Euclidean
algorithm was presented in this report. The
algorithm which showed yielded an impressive
result in terms of time complexity analysis also
showed a straightforward and direct steps to the
algorithm. However, the algorithm needed a small
modification to drastically change its worst case
time bound. The algorithm was proved to work
correctly and was proved by mathematical
induction.

While the strength of this report lies in its
synthesis and clarity that come with a thorough
explanation of every section, it also has points of
weakness. The weakness of this study is that it does
not cover all the algorithms of the greatest common
divisor. This means that there could be a more
efficient algorithm or a part of another algorithm
that could have been used to enhance the solution
to the greatest common factor problem.

Finally, a good recommendation for a
future study would be to present a thorough
explanation Bishop algorithm for finding the
greatest common divisor that is proven to have a
better time complexity than the Euclidean
algorithm but strangely slows down for small
numbers (Altarawneh, 2011). It would also be
useful to compare the Euclidean algorithm with its

extended version that provides along with the GCD
two numbers that are multiplied by n and m
respectively to give the GCD.

5. Reflection
Through working on this project we have

been able to come closer as a team and work
together on producing the best report. This has
been quite an enriching experience since we
learned a lot about divisibility and mathematical
proofs as well as the greatest common factor. Since
we find mathematics to be interesting, this project
was not boring to research, understand and work
with.

Nonetheless, we have faced some
problems in finding the time to gather and meet
during to the short time frame that was assigned.
Moreover, some of us were confused about the
tasks that were assigned to them but we were able
to overcome these problems in the end. We believe
that this has been a rich experience that has also
improved our academic writing skills as well as our
algorithmic skills. Furthermore, we were exposed
to many research papers and improved our skills of
finding relevant information that were are looking
for through an enormous amount of irrelevant
information. Overall, this project has been a great
opportunity for us to learn from.

Last but not least, this report is a result of
Sumyyah Toonsi and Lamia Balbaid working on
the implementation of the algorithm and its
complexity analysis as well as Eynas Balkhair
writing introductory paragraphs. The report
sections were written by Sumyyah Toonsi and the
slides to the presentation were made by Eynas
Balkhair and Lamia Blabaid and revised by
Sumyyah Toonsi.

References
[1]. Ravi, S. S. (2007). Euclid's algorithm cont'd

[PDF document]. Retrieved Lecture Notes
Online Web Site:
http://www.albany.edu/~csi503/pdfs/.

[2]. Altarawneh, H. (2011). A comparison of
several greatest common divisor (GCD)
algorithms. International Journal of
Computer Applications, 26(5).

[3]. D'angelo, J. P., & West D. B. (1997).
Mathematical thinking: Problem-solving and
Proofs. United States of America: Prentice-
Hall.

[4]. Koblitz, N. (1987). A course in number
theory and cryptography. New York:
Springer.

http://www.albany.edu/~csi503/pdfs/

EYNAS BALKHAIR. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 14, Issue 12, December 2024, pp 32-37

www.ijera.com DOI: 10.9790/9622-14123237 32 | Page

[5]. Macardle, et al. (2008). Scientists:
Extraordinary People Who Altered the
Course of History. New York: Metro Books.

[6]. Soernson, J. (1994). Two fast GCD
algorithms. Journal of Algorithms, 16.

[7]. Struve, K.R. & Sullivan, M. & Mazzarella,
J. (2008). Elementary and intermediate
Algebra. (n.p.): Pearson Education.

