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ABSTRACT 

The chronic neurological disorder known as epilepsy is characterized by frequent, unprovoked seizures that 

impacts millions of people globally. In order to effectively treatment and management epilepsy, early and accurate 

diagnosis is essential. Automated detection and categorization of epilepsy using Electroencephalogram (EEG) 

signals has been made possible by Deep Learning (DL) models. Several DL models, such as Convolutional Neural 

Networks (CNNs), Long Short-Term Memory (LSTM) networks, and hybrid models, have been used for epilepsy 

detection.  The research also evaluates and contrasts the models according to their structures, data processing 

methods, and performance indicators like specificity, sensitivity, and accuracy. Furthermore, the survey delves 

into the pros and cons of each method, highlighting the potential for future improvements in terms of model 

interpretability and real-time application. 
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I. INTRODUCTION 
The neurological condition known as 

epilepsy is characterized by frequent, unprovoked 

seizures caused by irregular brain electrical activity 

[1]. It encompasses various types of seizures 

including generalized seizures, which affect both 

hemispheres and focal seizures, which originate in 

one area [2]. The first class premonitory symptoms 

include sudden, momentary symptoms recurring 

frequently, dreamy state, sense of strangeness, 

dyspnea, palpitation, epigastric pain, while the 

second class include irritability, lethargy and 

somnolence [3]. In order to improve quality of life by 

reducing the frequency and severity of seizures, early 

detection of epilepsy is essential.  

Accurate detection also helps prevent 

potential complications associated with uncontrolled 

seizures, such as injury during a seizure, 

psychological distress and social stigma. Moreover, 

identifying specific seizure types enables healthcare 

providers to tailor treatment strategies effectively, 

ensuring that patients receive the most appropriate 

care for their condition. Electroencephalograms 

(EEGs) and brain imaging are among the diagnostic 

tests that are commonly used to confirm a diagnosis, 

along with a comprehensive medical history and 

neurological examinations [4].  Treatment options 

include antiepileptic medications, lifestyle 

modifications and in some cases, surgical 

interventions, tailored to the individual's needs and 

seizure type [5, 6, 7].  

Although several systematic treatments for 

individuals with epilepsy have been conducted, the 

response to these therapies can vary significantly 

among patients leading to a subset classified as 

having drug-resistant epilepsy. This resistance 

highlights the importance of incorporating advanced 

technologies including Artificial Intelligence (AI) 

into the diagnostic and treatment processes. AI can 

assist in analysing vast amounts of clinical data to 

identify patterns that may predict seizure 

occurrences, enabling personalized treatment 

strategies and optimizing patient management [8].  

Machine Learning (ML) significantly 

enhances the detection and management of epilepsy. 

By employing algorithms that learn from data, ML 

can identify complex patterns in patient information 

that may not be apparent through traditional analysis. 

This capability allows for the development of 

predictive models that can forecast seizure onset 

based on individual patient histories, environmental 

factors and physiological signals. A Support Vector 
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Machine (SVM) based model [9] was proposed 

which is optimized using Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) 

using EEG signals. A fuzzy- based feature extraction 

method [10] was introduced for enhancing the 

detection of epilepsy. However, ML models require 

high-quality, diverse datasets to train these 

algorithms effectively.  

To address these limitations, DL, a subset of 

ML has emerged as an effective tool for analysing 

complex data patterns in epilepsy care. DL models 

ability to automatically learn hierarchical features 

from raw data, without the need for manual feature 

extraction. Figure. 1 shows the process of 

classification task both in ML and DL.  

There are many researches done to detect 

epilepsy using DL models such as CNN, RNN, Deep 

Belief Network (DBN) and AE. These models help 

pathologists in evaluating EEG signals faster and 

more accurately and thereby help in reducing time 

spent in diagnosis of the images and enhance 

reliability. 

 

 
Figure. 1 Process of epilepsy prediction using EEG data and classification algorithm [8] 

 

1.1 Epilepsy Prediction using Deep Learning 

Techniques 

DL has significantly advanced the field of epilepsy 

detection particularly through its ability to 

automatically learn and identify complex patterns in 

EEG signals without the need for manual feature 

extraction. Acquiring data, pre-processing, extracting 

features, selecting them and finally classifying them 

are the usual steps in a deep learning process. 

Data Acquisition: The initial step is the collection of 

raw EEG signals, typically sourced from clinical 

datasets or recorded in real-time using EEG devices. 

These signals are then digitized and stored in 

standard formats such as EDF [11] or HDF5 for 

further processing. 

Pre-processing: Pre-processing is crucial for 

reducing noise and artifacts that may interfere with 

the learning process. In EEG analysis for epilepsy 

detection, this stage often involves filtering 

techniques to remove unwanted frequencies (like 

noise or muscle activity) and normalizing the signal. 

Some popular methods include: 

 Bandpass Filtering: Utilized to concentrate 

on particular frequency ranges associated with 

seizure activity [12]. 

 Artifact Removal: The goal is to detect and 

remove any artifacts or noise using techniques such 

as Independent Component Analysis (ICA). 

Feature Extraction: Feature extraction is critical for 

identifying and quantifying characteristics of the 

EEG signals that correlate with seizures. This process 

involves extracting quantitative measurements 

related to the signal's time and frequency 

characteristics. Commonly used features include: 

 Time-Domain Features: Variance, Mean 

and standard deviation are examples of statistics that 

summarize the signal's overall behavior. 

 Frequency-Domain Features: Derived 

from techniques like Fast Fourier Transform (FFT), 

which capture power spectral densities in specific 

frequency bands associated with seizure activity. 

 Wavelet Transform Features: Utilizing 

Discrete Wavelet Transform (DWT) to capture time-

frequency representations, enabling the identification 

of transient patterns in the EEG signal [13]. 

Feature Learning: In some cases, DL models are 

able to automatically learn pertinent features from 

raw EEG signals through hierarchical 

representations. The most commonly used DL 

architectures in epilepsy detection include: 

 CNN: CNNs excel at extracting spatial 

features from 2D representations of EEG signals 

(e.g., spectrograms or topographic maps). They 

utilize convolutional layers to detect local patterns, 

enabling the model to learn features such as 
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waveforms and spatial distributions related to seizure 

activity. 

 Recurrent Neural Network (RNN): 

RNNs, particularly LSTM networks capture temporal 

dependencies and are capable of learning patterns 

over time, making them effective for detecting the 

onset of seizures and classifying seizure types [14]. 

 Auto-Encoder: These unsupervised 

learning models can be used for feature extraction 

and dimensionality reduction. By training on normal 

EEG data, autoencoders learn to reconstruct the input 

data, allowing them to identify anomalies indicative 

of seizure activity when applied to unseen data. 

Classification: After training, the DL model can 

classify incoming EEG signals in real-time. The 

classification process involves predicting whether a 

given segment of the EEG signal contains a seizure 

and identifying its type if applicable.  

This manuscript aims to provide a comprehensive 

review of different frameworks for epilepsy 

prediction and classification using EEG signals. In 

addition, provide a comparative analysis that 

addresses the benefits and drawbacks of those 

frameworks in order to propose future scope. Here is 

how the rest of the sections are prepared: In Section 

II, different DL frameworks that use EEG signals to 

forecast and categorize epileptic seizures are covered. 

A comparison of those models is given in Section III. 

The complete survey is summarized in Section IV, 

along with recommendations for the future scope. 

 

2. REVIW ON VARIOUS DEEP LEARNING 

MODELS FOR EPILEPTIC SEIZURE 

DETECTION 

Ma et al. [15] presented a Mentor-Student 

architecture (MS4PS) for the purpose of detecting 

seizures in individual patients. Without transferring 

patient data or pre-trained model parameters, the 

MS4PS system's mentor-select-for-student 

knowledge transfer method could choose training 

data for a student model. Mentor and student models 

worked together to find high-quality samples that 

doctors could label as part of the architecture's active 

learning method. The mentor selected category-

certain EEG segments, while the student chose 

category-uncertain ones. This approach enabled 

efficient training of seizure detectors for newly 

diagnosed patients. 

An optimized neural network (ONASNet) 

model and Brain-Rhythmic Recurrence Biomarkers 

(BRRM) were used to develop a single-channel 

seizure detection system by Song et al. [16]. The 

nonlinear dynamics of EEG signals are reflected in 

BRRM's phase-space mapping of brain rhythm 

recurrence patterns. The architecture of ONASNet 

was developed using a modified neural network 

search strategy. To improve its performance on EEG 

data, transfer learning was applied. Combining 

BRRM with ONASNet enables the simultaneous 

extraction of features from numerous brain rhythms. 

When compared to complex feature engineering 

algorithms, the BRRM-ONASNet framework has a 

better chance of retaining crucial nonlinear features. 

Hu et al. [17] proposed an EEG hybrid 

transformer for the purpose of epilepsy detection. 

The model made up of four components: rhythm 

embedding block for extracting multi-view spatio-

temporal features, positional encoding for learning 

the dependencies between the features, self-attention 

block for further feature calculation and classifier 

block for binary classification. Also, a feature 

engineering method was introduced using Short-

Time Fourier Transform (STFT). In order to further 

enhance the model's performance based on patient-

specific information, two TL approaches were used: 

one that only fine-tuned inter-ictal samples, and 

another that fine-tuned both inter-ictal and pre-ictal 

samples. 

Ilias et al. [18] suggested dual approaches 

for epilepsy detection using EEG signals. The first 

method utilized STFT to convert single-channel EEG 

signals into three-channel images, which were then 

processed through various pretrained CNN models, 

including AlexNet and EfficientNet for 

classification. The second method features a 

multimodal deep neural network that processes the 

EEG signals through two branches of CNNs to 

capture low and high-frequency features. These 

signals were also transformed into images via STFT 

and analyzed using the EfficientNet-B7 model. A 

gated multimodal unit is incorporated to prioritize 

relevant modalities, ultimately yielding competitive 

performance. 

Jaishankar et al. [19] developed a DL-based 

approach for epilepsy seizure prediction using EEG 

data. The model aimed to analyse brain states and 

detect early signs of seizures, enabling timely 

intervention. For learning and enhancing 

discriminative features, the spatio-temporal features 

extracted from the raw EEG signals were fed into an 

Adaptive Grey Wolf Optimizer (AGWO). For 

classification, an adaptive Auto-Encoder with a 

Genetic Algorithm (aADGA) was employed.  

Prasanna et al. [20] developed a Brain 

Epilepsy Seizure-Detection Network (BESD-Net) 

that detects seizures automatically using DL and 

recurrent learning techniques. The EEG signals were 

first pre-processed to eliminate background noise and 

extraneous information. As a next step, features 

associated with diseases were extracted from the pre-

processed EEG data using a Customized CNN 

(CCNN). In order to maximize the extracted features' 

disease relevance, we used the ML-based Exhaustive 

Random Forest (ERF) feature selection. Selected 
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features from the ERF were then used to train an 

RNN with BiLSTM to identify seizures. 

Salafian et al. [21] developed a method for 

detecting epileptic seizures using Mutual 

Information-based CNN-Aided Learned factor 

graphs (MICAL). A one-dimensional CNN, factor 

graph inference, and a neural Mutual Information 

(MI) estimator were the three components of this 

method. During seizures, the algorithm was able to 

detect correlated electrical brain activity by using 

neural MI estimators to measure inter-channel 

statistical dependence. By using factor graphs 

informed by both components' soft estimates, the 1D 

CNN was able to improve detection accuracy by 

extracting features from raw EEG signals and 

capitalizing on temporal correlations. Results showed 

superior generalizability and performance when 

tested on the CHB-MIT dataset. 

Shi & Liu [22] introduced a Vision 

Transformer Network with Broad Attention (B2-ViT 

Net), a two-tiered model for seizure detection. Its 

purpose is to automatically predict seizures by 

extracting generalized spatio-temporal long-range 

correlation features. It featured a robust generalized 

feature search capability, enabling comprehensive 

learning of generalized spatiotemporal correlations 

across extensive data spaces, thereby enhancing 

feature representation. Furthermore, the attention 

mechanism used in this model calculated interaction 

weights between channels, effectively determining 

the importance of every channel at given time. 

Shoka et al. [23] developed an encrypted 

EEG classification system for epilepsy detection. To 

encrypt EEG spectrograms, the system used Arnold 

Transform and Chaotic Baker Map algorithms. 

Subsequently, CNN-based transfer learning models 

were used for classification. Before being fed into 

pretrained CNNs like ResNet50, AlexNet, and 

GoogleNet, EEG time series were encrypted and 

transformed into 2D spectrograms. The encrypted 

images were resized and classified into seizure and 

non-seizure states.  

Wang et al. [24] developed a lightweight 

PCNN-BiLSTM architecture for epilepsy detection. 

To tackle challenges related to EEG dataset 

imbalance, small window segmentation was 

employed alongside the Synthetic Minority 

Oversampling Technique (SMOTE) to augment and 

balance the data. In order to maximize the number of 

samples, the initial EEG data was initially segmented 

using a sliding window algorithm. This algorithm 

transformed longer time series data into multiple 

shorter segments. Following this, the SMOTE 

algorithm was used to evenly distribute the sample 

sizes among the smaller classes by expanding them 

proportionally. Lastly, the PCNN-BiLSTM model 

was fed the processed data. which automatically 

extracted features and performed triple classification, 

distinguishing between normal, interictal, and ictal 

states. 

de Sousa et al. [25] devised an automated 

framework for detecting Interictal Discharges (IEDs) 

in EEG recordings, addressing the limitations of 

manual analysis, which is laborious and mistake-

prone manual analysis. The framework employs 

unsupervised deep learning models, specifically AE 

and Variational AE (VAE), to learn normal patterns 

in EEG data and reconstruct samples for epilepsy 

detection. 

Grubov et al. [26] presented a dual-phase 

algorithm for seizure detection and classification. In 

the first phase, one-class SVM (OCSVM) was 

employed for identifying outliers i.e., data pre-

processing in the EEG signal. It was inspired from the 

extreme value theory. The second phase employed 

CNN to improve prediction accuracy in the 

classification of epileptic seizures. The combined 

OCSVM-CNN model incorporated knowledge from 

different fields which generates approximately ten 

times fewer false positive predictions than the two 

initial approaches. 

Hosseinzadeh et al. [27] introduced a hybrid 

technique that combines DL and Ensemble Learning 

(EL) to improve the accuracy of epileptic seizure 

detection utilizing EEG signals. The methodology 

encompassed dual pre-processing stages. Initially, 

each EEG recording underwent segmentation into 

smaller segments, facilitating the models' analysis of 

shorter time windows thereby enhancing the 

feasibility of the classification task. In the second 

step, the dataset underwent normalization through 

techniques including standardization and min-max 

normalization, resulting in the transformation of data 

points into a standard range between 0 and 1. 

Following the pre-processing phase, a Bidirectional 

LSTM (Bi-LSTM) network was utilized for the 

purpose of feature extraction. The ensemble model, 

which incorporates Bi-LSTM, SVM, XGBoost and 

Random Forest (RF), significantly improved the 

overall detection accuracy. 

Liang et al. [28] proposed a Double Discrete 

Variational Auto-Encoder (D2-VAE) network for 

unsupervised representation learning of generic 

patterns in EEG signals. This model achieved a local-

global compressed representation of EEG signals 

through learnable quantization coding and 

distributional discretization based on histogram 

statistics, significantly enhancing the quality of 

feature learning for long signals. Additionally, a 

Vector Quantized Variational Auto-Encoder (VQ-

VAE) was introduced to extract and characterize 

local patterns in EEG signals. This component 

employed vector quantization techniques to map 

continuous data to a discrete representation space, 
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allowing for more effective capture of important 

features. Furthermore, local pattern discretization 

was achieved by assigning discrete indexes to signal 

segments using the trained VQ-VAE. 

Data augmentation and hybrid DL models 

were presented by Palanisamy & Rengaraj [29] as a 

method of early detection of epileptic seizures 

induced by stress and anxiety. In order to create 

synthetic seizure signals from the BONN EEG 

dataset, Position Data Augmentation (PDA) and 

Random Data Augmentation (RDA) were executed. 

After that, two newly-proposed methods, Particle 

Swarm Optimization of LSTM (PSO-LSTM) and 

Fuzzy C-Means clustering (FCM) with PSO-LSTM 

(FCM-PSO-LSTM) were used to examine the 

enhanced signals. In order to optimize the feature 

extraction and classification hyperparameters of 

LSTM models, the FCM-PSO-LSTM approach 

combines FCM clustering with PSO. The PSO-

LSTM method uses PSO for optimizing the LSTM 

directly. 

Qi et al. [30] suggested a EEG data 

augmentation network (EDAN) using Semi-

Supervised Seizure Prediction Model (SSSPM). The 

model aims to utilize the auxiliary information of 

limited labelled samples for guiding the learning and 

training towards massive unlabelled samples to 

predict seizures. Initially, the EEG signals were made 

consistent with their distribution based on the original 

EEG signals to prevent model overfitting. Then, the 

SSSPM model performed data augmentation, label 

guessing, interpolation and deep pairwise 

representation alignment based on the time–

frequency representations of EEG signals. This 

method required labeling only a small amount of data 

to achieve satisfactory results in patient-specific 

seizure prediction. 

Sadiq et al. [31] developed a novel approach 

for epilepsy detection based on a Hellinger distance 

classifier combined with PSO. The first phase 

involved using PSO to select relevant features from 

EEG signals, optimizing the feature set for better 

accuracy. In the second phase, the Hellinger distance 

metric was applied to classify the selected features. 

The process iteratively refined the feature selection to 

enhance model performance.  

A real-time method for detecting epilepsy 

seizures was developed by Shen et al. [32] using 

Google-Net CNN and STFT. The analysis was 

performed in real-time using a sliding window 

technique. Each 2-second EEG episode took 0.02 

seconds to process, and on average, it took 9.85 

seconds to detect the beginning of a seizure. After 

applying a 6th-order Butterworth band-pass filter, six 

EEG channels were subjected to time-frequency 

analysis using STFT. The extracted time-frequency 

spectra were used as input for a 29 layer Google-Net 

CNN model, which was trained using the leave-one-

out method. The CNN model achieved high 

validation accuracy in distinguishing seizure states 

from seizure-free ones. 

Tang et al. [33] introduces an automatic 

epilepsy detection. It involved combining path 

signature with Bi-LSTM networks that were 

enhanced by an attention mechanism. While the Bi-

LSTM delves further into the signals' temporal 

patterns, the path signature algorithm analyzes the 

dynamic interdependencies between the EEG 

channels. The attention mechanism improves model 

focus by assigning weights to essential features. The 

model was tested on both public and private EEG 

datasets, demonstrating superior performance and 

robustness in cross-patient evaluations.  

Zhu et al. [34] suggested a fusion method 

that integrated Squeeze and Excitation Network (SE-

Net), Temporal Convolutional Network (TCN) and 

Bidirectional Gated Recurrent Unit (BiGRU) models, 

termed SE-TCN-BiGRU for automatic seizure 

detection. Initially, the filtered multi-channel EEG 

signals were fed into SE-Net to select the most 

relevant channels. The selected signals were then 

passed to TCN for temporal-spatial feature 

extraction. The temporal information from these 

features was further refined by BiGRU, enhancing 

the model's classification capability. Finally, the 

output from BiGRU was sent to a Fully Connected 

(FC) layer and post-processed to generate the final 

classification results. 

Pan et al. [35] introduced a dual-method 

framework based on Empirical Mode Decomposition 

(EMD) for epilepsy detection. The first approach, 

referred to as EMD-EEG, decomposed EEG signals 

using EMD, which were then arranged into a matrix 

and input into a CNN for detection and classification. 

The second method, EMD-PSD, followed a similar 

process but employed the Discrete Fourier Transform 

(DFT). After decomposing the signals via EMD, DFT 

was applied to each component and the Power 

Spectral Density (PSD) was computed using 

amplitude values. Similar to the first approach, the 

resulting PSD was then fed into the CNN for epilepsy 

detection.  

 

II. COMPARATIVE ANALYSIS 
Table 1 provides a comparison of the aforementioned 

models derived for epileptic seizure prediction using 

EEG signals, and this section presents a comparative 

study according to the advantages and disadvantages 

of these models. 
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Table 1. Comparison of different epileptic seizure prediction models 

Ref 

No. 

Techniques Advantages Disadvantages Dataset Performance 

Metrics 

[15]  MS4PS The model uses an active 

learning approach that 

combines mentor and 

student models that 

reduces labeling burden 

on doctors 

The primary goal of the 

model fails to improve 

seizure detection 

performance but rather 

to confirm that MS4PS 

is feasible. 

CHB-

MIT 

dataset 

Average F1= 

0.69, Average 

Seizure = 24 

[16]  BRRM, 

ONASNet 

The multi-channel model 

analyses color images 

that eliminates need for 

complex 3D CNNs to 

process sub-bands, 

thereby simplifying the 

computational process. 

Transferring ONASNet 

from image 

classification to epileptic 

pattern detection, 

potentially limiting its 

effectiveness. 

Bonn 

EEG 

dataset 

Accuracy = 

99.67%, 

Precision = 

99.68%, 

Latency = 66 

ms, Model Size 

= 47.16 MB 

[17]  STFT, CNN, 

Hybrid 

Transformer, 

TL 

The use of parallel 

attention heads allows 

the model to focus on 

patterns across different 

rhythms, enhancing the 

interpretability of the 

detection process 

Two-fold reduction in 

wavelet transform 

decomposition can cause 

minor boundary errors 

between rhythm 

frequency bands, leading 

to the loss of useful 

rhythm information 

CHB-

MIT 

sEEG 

dataset 

Sensitivity = 

91.7% 

[18]  STFT, CNN The model has the ability 

to selectively filter and 

suppress irrelevant 

information from the two 

different input 

modalities. thereby 

enhances the model's 

focus on the most critical 

features, 

The dataset 

demonstrates an 

imbalance, which may 

impact the performance 

of the model 

Bonn 

EEG 

dataset 

Precision = 

98.03%, Recall 

= 97.33%, F1-

score = 97.65%, 

Accuracy = 

97.20% 

[19]  AGWO, 

aADGA 

The model demonstrates 

reduced computational 

complexity during the 

validation process, 

improving efficiency. 

The sensitivity is lower 

than the state-of-the-art 

approaches 

CHB-

MIT 

sEEG 

dataset 

Accuracy = 

97.49%, F-score 

= 98.2%, 

Sensitivity = 

95.90%, 

Precision = 

96.90%, 

Specificity = 

96.90%, MCC = 

0.5232, 

Execution time 

= 82.72 min 

[20]  BESD-Net, 

ERF, RNN, 

BiLSTM 

The model circumvents 

the issue of overfitting. 

The lack of real-time 

implementation may 

limit the practical 

applicability of the 

model in clinical 

settings. 

CHB-

MIT 

sEEG 

dataset 

Precision = 

98.36%, 

Sensitivity = 

97.54%, F1-

score = 97.91%, 

Accuracy = 

98%, 

Specificity = 

95.08% 

[21]  MICAL, 

CNN 

MI can detect higher-

order statistical 

The neural MI estimator 

increases the algorithm's 

CHB-

MIT 

dataset 

Accuracy = 

95.39%, 

Precision = 56. 
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dependencies between 

recordings. 

computational 

complexity. 

09%, Recall = 

78.75%, F1-

score = 65.4%, 

AUC-ROC = 

95.6%, AUC-

PR = 74% 

[22]  B2-ViT Net The model employs an 

attention mechanism to 

clarify spatial 

interactions and temporal 

dependencies in seizure 

prediction, enhancing 

interpretability. 

If the training and test 

sets have different 

distributions, the model 

will not be able to 

handle it. 

CHB-

MIT 

dataset 

For 40s, 

window, AUC = 

86%, Sn = 79.5 

% 

[23]  CNN, 

Arnold, 

Chaotic 

This model is one way to 

enhance performance 

while protecting EEG 

signals over an 

unsecured network.  

The model demonstrates 

considerable 

computational 

complexity, which may 

hinder its efficiency and 

scalability in practical 

applications 

CHB-

MIT 

dataset 

With Arnold, 

Accuracy = 

86.11%, 

Precision = 

84.21%, 

Recall= 88.89% 

[24]  PCNN-

BiLSTM, 

SMOTE, 

Small 

window 

The low resource 

requirements, it is ideal 

for clinical medical 

devices and wearables, 

offering it a significant 

edge over recent research 

advancements.  

Utilizing data 

augmentation techniques 

does not improve the 

generated data's quality 

to the level of real-world 

data. 

CHB-

MIT 

dataset 

Accuracy = 

98.52%, 

Precision 

=98.44%, 

Sensitivity = 

97.99%, 

Specificity = 

99.35% 

[25]  AE, VAE The abnormality score 

demonstrated a clear 

difference between 

controls and patients 

with epilepsy 

Long-term EEG data 

labeling poses 

significant challenges 

due to the extensive time 

required for accurate 

labeling 

Twente 

dataset 

Sensitivity = 

81.9% 

Specificity = 

91.7% 

[26]  OCSVM, 

CNN 

The two-stage algorithm 

has ten times fewer false 

positives 

The algorithms used in 

this approach are not 

optimized. 

Pirogov 

dataset 

Precision = 

57.33%, Recall 

= 84.31%, F1-

score = 68.25% 

[27]  BiLSTM, 

SVM, 

XGBoost, 

RF 

Integrating the model 

with clinical systems 

like EHRs and decision 

support systems will 

facilitate its adoption in 

medical practice. 

Segmenting recordings 

into 1-second chunks 

may lose temporal 

context, affecting the 

detection of longer-term 

EEG patterns. 

Bonn 

EEG 

dataset 

Accuracy = 

98.58%, 

Precision = 

97.37% 

[28]  D2-VAE, 

VQ-VAE 

The model focuses on 

the characteristics of 

epileptic seizures, 

aligning more closely 

with the transmission 

characteristics of EEG 

signals for different types 

of information. 

The model involves 

complex operations that 

can lead to increased 

computational costs, 

making it less suitable 

for real-time 

applications 

Bonn, 

Bern-

Barcelon

a, New 

Delhi 

EEG 

datasets 

Accuracy = 

99.52% 
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[29]  FCM-PSO-

LSTM, 

Fuzzy logic, 

LSTM is effective for 

sequence prediction due 

to learning long-term 

dependencies property 

The time complexity 

remains a significant 

concern 

Bonn, 

CHB-

MIT, 

SIENA 

EEG 

datasets 

Accuracy = 

98%  

[30]  SSSPM, 

EDAN 

SSL requires labeling 

only a small amount of 

data to achieve 

satisfactory results in 

patient-specific seizure 

prediction. 

The model trained on 

EEG data from one 

patient will perform 

poorly when tested on 

data from another 

patient. 

CHB-

MIT 

dataset 

Sensitivity = 

87.65%,  

[31]  PSO The effectiveness of the 

Hellinger distance 

classifier combined with 

PSO results in a highly 

accurate and reliable 

diagnostic tool 

The computational 

complexity of the model 

reduces the performance 

Bonn 

EEG 

dataset 

Accuracy = 

86.25%, Recall 

= 84.5%, 

Precision = 

100%, F1-score 

= 91.6%, MCC 

= 0.616 

[32]  STFT, 

GoogleNet 

CNN 

The computational 

efficiency of the model 

allows for minimal delay 

in real-time seizure 

detection. 

It is unable to identify  

seizures marked by 

amplitude depression 

CHB-

MIT 

dataset 

Accuracy = 

97.74%, 

Sensitivity = 

98.90%, FP rate 

= 1.94%,  Delay 

= 9.85s 

[33]  PS, 

BiLSTM, 

AM 

Signal rhythm 

decomposition and post-

processing operations are 

unnecessary for the 

model. 

Due to fewer seizure 

segments and more 

noise-affected scalp 

EEG recordings, some 

patients have sensitivity 

levels below 80%. 

TUH 

CHB-

MIT,  

dataset 

Sensitivity = 

91.05%, 

Specificity = 

98.63%, 

Accuracy = 

94.84%. 

[34]  SE-TCN-

BiGRU 

The model significantly 

reduces the false 

detection rate 

Significant differences 

in ictal EEG patterns 

among patients may 

cause performance 

decline in cross-patient 

scenarios. 

CHB-

MIT 

dataset 

Accuracy = 

96.28%, 

Specificity = 

96.05%, 

Sensitivity = 

94.6%, F1-score 

= 91.16%, MCC 

= 88.92%, Time 

= 5.33s 

[35]  EMD, CNN, 

PSD 

The models are not 

overfitting  

The model exhibits high 

computational 

complexity 

Unknow

n dataset 

Accuracy = 

100%, 

Sensitivity = 

100%, 

Specificity = 

100% 

 

III. RESULT AND DISCUSSION 

The performance evaluation of the existing DL techniques presented in Table 1 illustrates the overall prediction 

and classification of seizure detection. 
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Figure. 2 Comparison of accuracy of different DL models on various datasets 

 

Using a variety of datasets, Figure 2 

compares the accuracy of seizure detection models. It 

is evident that the model from [35] outperformed the 

others, demonstrating superior effectiveness in 

predicting epileptic seizures. In contrast, the models 

from [23] and [31] performed the worst, likely due to 

their computational complexity, which negatively 

impacted their overall performance. 

 

IV. CONCLUSION 
Epilepsy is a severe neurological disorder 

that requires timely and accurate detection to prevent 

recurrent seizures and improve patient outcomes. 

Early diagnosis is critical to managing the condition 

effectively. Recently, DL techniques have been 

extensively utilized for epilepsy detection by 

analysing EEG signals. In this survey, various DL 

approaches are evaluated for their effectiveness in 

predicting epilepsy, outlining their advantages, 

limitations and performance metrics. The challenges 

identified in existing models guide researchers to 

develop more efficient frameworks for epilepsy 

diagnosis and management, supporting clinical 

decision-making and accurate outcome prediction. 

Future research will focus on advanced DL models 

capable of processing diverse EEG datasets and 

identifying subtle epilepsy patterns to enhance 

treatment strategies. 
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