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ABSTRACT 

This article is concerned with the Bayesian selection of linear regression models. In order to achieve this 

objective, we will successively present the estimators obtained by maximum a posteriori in the two cases of a 

priori laws of the parameters 𝜷 and 𝝈𝟐: cases informative and non-informative one. In the non-informative case, 

we put forth the use of Jeffreys’ a priori law, which is based on Fisher’s information. In the informative case, we 

examine the a priori joint distribution of these two parameters, which follow a normal-gamma distribution. We 

then present some properties of these estimators for both cases. Based on these properties, we propose a new 

model selection criterion based on the calculation of the Kullback-Leibler divergence between the operational 

model (approximate) and the true model (unknown). 
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I. INTRODUCTION 
The topic of Bayesian model selection in 

linear regression has been the subject of extensive 

study. Over the years, numerous approaches have 

been proposed to address this key issue in Bayesian 

statistical modeling. Among the most notable works 

are the following: The BIC (Bayesian Information 

Criterion) was proposed by Schwarz (1978) [11], 

the Bayes factor by Kass and Raftery (1995) [5], the 

GBIC (Generalized Bayesian Information Criterion) 

Konishi et al. (2004) [7], and the MAPNI 

(Maximum a Posteriori Non Informatif) by G. 

Celeux et al. (2006) [2]. Nevertheless, some 

challenges remain unsolved. The calculation of the 

Bayes factor is often challenging when the model 

contains multiple explanatory variables. 

Furthermore, when multiple candidate models are 

available, the time required to validate the two 

hypotheses increases exponentially. In the case of 

the GBIC, we encountered a certain degree of 

difficulty in calculating this criterion, which is 

related to the challenge of determining its numerical 

value. This is due to the difficulty in determining the 

covariance matrix in the expression of this criterion. 

Finally, with regard to MAPNI, the criterion 

remains for the non-informative model, that is to 

say, the consideration of an a priori non-informative 

law. In this article, we put forth a Bayesian 

information criterion for a regression model. The 

criterion is obtained by calculating the average 

Kullback-Leibler divergence is a measure of 

dissimilarity between two probability distributions, 

P and Q. A small value of this quantity indicates that 

the chosen model is close to the true model. In this 

case, the minimum criterion will be a selected model 

that is hopefully close to the optimal choice. The 

remainder of this papers organized as follows: 

Section 2 provides a detailed account of Bayesian 

regression, followed by a proposed criterion for 

model selection. Discussions are presented before a 

conclusion and outlook in Section 3. 

II. CONTENTS 

2.1. Materials and methods 

Bayesian analysis, as developed by T. Bayes (1763) 

[1] and P. S. Laplace (1795) [9], begins with an 

examination of a given situation and the 

identification of an uncertainty pertaining to an 

unknown parameter 𝜃. This uncertainty is then 

quantified through the application of probabilistic 

distributions, utilizing fundamental principles of 

probability calculus. The uncertainty about 𝜃 is 
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modeled in the form of a distribution, known as an a 

priori distribution, which provides information 

about 𝜃 taken as a random variable. This is in 

contrast to frequentist analysis, which w it as a 

constant. This a priori distribution is updated by 

extracting information from the observations of the 

variable 𝑋, to obtain another master distribution 

known as the a posteriori distribution. 

We’ll apply the Bayesian approach to regression 

models. It is different from the classical approach. It 

takes into account data and information from 

previous studies. The basic Bayes formula combines 

this information with new observed data. 

 

2.1.1. Linear regression model 

Let𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)′ be an dependent variable to be explained, and let 𝑋 = [𝕝|𝑋1|𝑋2| … |𝑋𝑝−1] an explanatory 

variable where 𝑋𝑗 is the vector of size 𝑛 corresponding to the 𝑗 −th variable and 𝕝 = (1, … ,1)′, the linear 

regression model relating these two variables is represented as follows: 𝑦 = 𝛽0𝕝 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +
𝛽𝑝−1𝑋𝑝−1 + 𝜀 ou 𝑦 = 𝑋𝛽 + 𝜀 [10] 

where: 

1. 𝑋 = [

1
1

𝑥1,1

𝑥2,1

⋯ 𝑥1,𝑝−1

… 𝑥2,𝑝−1

⋮ ⋮ ⋱       ⋮
1 𝑥𝑛,1

⋯ 𝑥𝑛,𝑝−1

] is the matrix of explanatory variables; 

2. 𝛽 = [

𝛽0

𝛽1

⋮
𝛽𝑝−1

] is the vector of the unknown parameters; 

3. 𝜀 = [

𝜀1

𝜀2

⋮
𝜀𝑛

] is the error vector. 

Since 𝑋𝛽 = 𝐸(𝑦|𝛽) and 𝐷(𝑦|𝜎2) = 𝐷(𝜀|𝛽, 𝜎2) = 𝜎2𝑃−1 is the covariance the matrix of 𝑦, then, 𝑦|𝛽, 𝜎2 ∼
𝒩(𝑋𝛽, 𝜎2𝑃−1). 

Thus, the likelihood function of 𝑦 knowing 𝛽 and 𝜎2 is defined as follows: 

𝑝(𝑦|𝛽, 𝜎2) = (2𝜋𝜎2)−𝑛 2⁄ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)}. 

Therefore, 

 ln(𝑝(𝑦|𝛽, 𝜎2)) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) −

1

2𝜎2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)

                                      = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) −

1

2𝜎2
(𝑦′𝑃𝑦 − 2𝛽′𝑋′𝑃𝑦 + 𝛽′𝑋′𝑃𝑋𝛽)                                          (1)

 

Deriving (1) with respect to the variable 𝛽, we obtain �̂� = (𝑋′𝑃𝑋)−1𝑋′𝑃𝑦, the maximum likelihood estimator 

of 𝛽. Similarly, for the parameter 𝜎2, we obtain:  �̂�2 =
1

𝑛
(𝑦 − 𝑋�̂�)

′
𝑃(𝑦 − 𝑋�̂�), the maximum likelihood 

estimator of 𝜎2. 

 

2.1.2. Case of a priori non-informative law 

One of the commonly used a priori laws is the so-called standard law (Jeffreys’ a priori law [3]). Although it is 

improper, the resulting a posteriori law is proper probability density. For this standard a priori law, we have no 

information about the parameters other than 𝜎2, so 𝛽 and 𝜎2 are assumed to be uniformly distributed and 

independent; this gives the joint a priori law of this parameters as follows: 𝜋(𝛽, 𝜎2) ∝
1

𝜎2. 

By putting 𝜏 = 1 𝜎2⁄ , we therefore have𝜋(𝛽, 𝜏) ∝
1

𝜏
. Using the likelihood function with the standard a priori 

joint distribution, we obtain a posteriori joint distribution: 

𝜋(𝛽, 𝜏|𝑦) ∝ (2𝜋)−𝑛 2⁄ 𝜏𝑛 2⁄ 𝑒𝑥𝑝 {−
𝜏

2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)}

                  ∝ 𝜏𝑛 2−1⁄ 𝑒𝑥𝑝 {−
𝜏

2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)}                                                                                            (2)

 

The exponent of the term (2) can be written as follows: 
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(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽) = 𝑦′𝑃𝑦 − 2𝛽′𝑋′𝑃𝑦 + 𝛽′𝑋′𝑃𝑋𝛽                                                                                                                    

      = 𝑦′𝑃𝑦 − 2(𝜇∗)′𝑋′𝑃𝑦 + (𝜇∗)′𝑋′𝑃𝑋𝜇∗ + (𝛽 − 𝜇∗)′𝑋′𝑃𝑋(𝛽 − 𝜇∗)

                              = (𝑦 − 𝑋𝜇∗)′𝑃(𝑦 − 𝑋𝜇∗) + (𝛽 − 𝜇∗)′𝑋′𝑃𝑋(𝛽 − 𝜇∗)                                                    (3)        

 

With 𝜇∗ = (𝑋′𝑃𝑋)−1𝑋′𝑃𝑦 [6]. 

Remark 2.1. Let 𝑌 be an 𝑚 × 1 random vector and 𝑋 a random variable. Assume that 𝑌, 𝑋~𝑁𝐺(𝜇, 𝑉, 𝑎, 𝑏), so 

the joint density function 𝑓(𝑦, 𝑥|𝜇, 𝑉, 𝑎, 𝑏) is written as [6]: 

𝑓(𝑦, 𝑥|𝜇, 𝑉𝑎, 𝑏) = (2𝜋)𝑚 2⁄ (𝑑𝑒𝑡 𝑉)−1 2⁄ 𝑎𝑏(𝛤(𝑏))
−1

                                               𝑥−𝑚 2⁄ +𝑏−1𝑒𝑥𝑝 {−
𝑥

2
[2𝑎 + (𝑦 − 𝜇)𝑇𝑉−1(𝑦 − 𝜇)]}                                   (4) 

 

with 𝑎 > 0, 𝑏 > 0, 0 < 𝑥 < +∞ and −∞ < 𝑦𝑖 < +∞. 

If the random variables 𝑌 and 𝑋 are distributed according to the normal-gamma (NG) distribution, 

𝑌, 𝑋~𝑁𝐺(𝜇, 𝑉, 𝑎, 𝑏), then the random vector 𝑌 has a marginal distribution that can be expressed as a 

𝑡 −multivariate distribution, also known as a multivariate Student: 

𝑌~𝑡(𝜇, 𝑎𝑉 𝑏⁄ , 2𝑏)                                                                                                                                                       (5) 

and the random variable 𝑋 has marginal distribution that is the gamma distribution: 

𝑋~𝐺(𝑎, 𝑏)                                                                                                                                                                    (6) 

Substitution of the expression in (2) into (3) and comparison with the result obtained with 𝑛 2 − 1 = 𝑝 2⁄⁄ +
(𝑛 − 𝑝) 2 − 1⁄  in (4) reveals that the a posteriori density function (2) is such that: 

𝛽, 𝜏|𝑦~𝑁𝐺(𝜇∗, (𝑋′𝑃𝑋)−1, 𝑛�̂�2 2, (𝑛 − 𝑝) 2⁄⁄ ).                                                                                                           (7) 

According to (5), the a posteriori marginal distribution for the vector 𝛽  of unknown parameters is determined 

by the 𝑡 −multivariate distribution [6]: 

𝛽|𝑦~𝑡 (𝜇∗,
𝑛

𝑛 − 𝑝
�̂�2(𝑋′𝑃𝑋)−1, 𝑛 − 𝑝). 

Therefore, the maximum a posteriori estimator �̂�𝑀𝐴𝑃 of 𝛽 is written by 𝑎𝑟𝑔 max
𝛽

𝜋(𝛽|𝑦). Let �̂�𝑀𝐴𝑃 =

(𝑋′𝑃𝑋)−1𝑋′𝑃𝑦. And the covariance matrix 𝐷(𝛽|𝑦) is written 𝐷(𝛽|𝑦) =
𝑛

𝑛−𝑝−2
�̂�2(𝑋′𝑃𝑋)−1. Next, the marginal 

distribution for the weight parameter 𝜏 obtained from the a posteriori (7) is the gamma distribution, as can be 

seen from (6) 𝜏|𝑦~𝐺(𝑛�̂�2 2, (𝑛 − 𝑝) 2⁄⁄ ).  

The inverse gamma distribution is therefore the a posteriori distribution of variance 𝜎2 : 
𝜎2|𝑦~𝐼𝐺(𝑛�̂�2 2, (𝑛 − 𝑝) 2⁄⁄ ). 

The maximum a posteriori estimator of 𝜎2 is thus defined by: 

�̂�𝑀𝐴𝑃
2 = 𝑎𝑟𝑔 max

𝜎2
𝜋(𝜎2|𝑦) =

𝑛

𝑛 − 𝑝 + 2
�̂�2 =

(𝑦 − 𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝑦 − 𝑋�̂�𝑀𝐴𝑃)

𝑛 − 𝑝 + 2
. 

The variance of 𝜎2 is 𝑉(𝜎2|𝑦) =
2𝑛2(�̂�2)

2

(𝑛−𝑝−2)2(𝑛−𝑝−4)
. 

Properties 2.1. (Laws of estimators). The Bayesian estimators �̂�𝑀𝐴𝑃 and �̂�𝑀𝐴𝑃
2  have the following properties: 

 (𝑛 − 𝑝 + 2)�̂�𝑀𝐴𝑃
2 𝜎2⁄   follows a Chi-square with 𝑛 − 𝑝 degrees of freedom (𝜒𝑛−𝑝

2 ), 

 
(𝑛−𝑝)(𝛽−�̂�𝑀𝐴𝑃)

′
𝑋′𝑃𝑋(𝛽−�̂�𝑀𝐴𝑃)

𝑝(𝑛−𝑝+2) �̂�𝑀𝐴𝑃
2   follows a Fisher distribution with (𝑝, 𝑛 − 𝑝) degrees of freedom 

(𝐹(𝑝, 𝑛 − 𝑝)). 

2.1.3. Case of a priori informative law 

Let the variance factor 𝜎2 now be a random and unknown variable. To obtain a conjugate prior for the unknown 

parameters 𝛽 and 𝜎2, we introduce in place of 𝜎2 the parameter of unknown weight 𝜏 with 𝜏 = 1 𝜎2⁄ .  As 

(det(𝜏−1𝑃−1))
−1 2⁄

= (det (𝑃))1/2𝜏𝑛 2⁄ , the likelihood function is written as follows : 

𝑝(𝑦|𝛽, 𝜏) = (2𝜋)−𝑛 2⁄ (det (𝑃))1/2𝜏𝑛 2⁄ 𝑒𝑥𝑝 [−
𝜏

2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)] 

As a priori for 𝛽 and 𝜏, the density function (4) of the normal-gamma distribution: 

𝛽, 𝜏~𝑁𝐺(𝜇, 𝑉, 𝑎, 𝑏)                                                                                                                                                     (8) 

is chosen [8]. The joint a posteriori distribution is then obtained by combining the likelihood function with the 

joint a priori distribution: 
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𝜋(𝛽, 𝜏|𝑦) ∝ 𝜏𝑝 2+𝑏−1⁄ 𝑒𝑥𝑝 {−
𝜏

2
[2𝑎 + (𝛽 − 𝜇)′𝑉−1(𝛽 − 𝜇)]} 𝜏𝑛 2⁄ 𝑒𝑥𝑝 [−

𝜏

2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)]

                 = 𝜏𝑛 2+𝑏+𝑝 2−1⁄⁄ 𝑒𝑥𝑝 {−
𝜏

2
[2𝑎 + (𝛽 − 𝜇)′𝑉−1(𝛽 − 𝜇) + (𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)]}                      (9) 

 

The bracketed expression for the exponent can be written as: 

2𝑎 + 𝑦′𝑃𝑦 + 𝜇′𝑉−1𝜇 − 2𝛽′(𝑋′𝑃𝑦 + 𝑉−1𝜇) + 𝛽′(𝑋′𝑃𝑋 + 𝑉−1)𝛽                                                                                                                      

= 2𝑎 + 𝑦′𝑃𝑦 + 𝜇′𝑉−1𝜇 − (𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)𝜇∗ + (𝛽 − 𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − 𝜇∗)

= 2𝑎 + 𝑦′𝑃𝑦 + 𝜇′𝑉−1𝜇 − 2(𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1𝜇) + (𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)(𝜇∗)′ + (𝛽 − 𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − 𝜇∗)

     = 2𝑎 + (𝜇 − 𝜇∗)′𝑉−1(𝜇 − 𝜇∗) + (𝑦 − 𝑋𝜇∗)′𝑃(𝑦 − 𝑋𝜇∗) + (𝛽 − 𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − 𝜇∗)           (10)

 

With 𝜇∗ = (𝑋′𝑃𝑋 + 𝑉−1)−1(𝑋′𝑃𝑦 + 𝑉−1𝜇). Substituting (10) into (9) and comparing with (4), we obtain: 

𝛽, 𝜏|𝑦~𝑁𝐺(𝜇∗, 𝑉∗, 𝑎∗, 𝑏∗)                                                                                                                                       (11) 

where: 

 𝑉∗ = (𝑋′𝑃𝑋 + 𝑉−1)−1; 
 𝑎∗ = [2𝑎 + (𝜇 − 𝜇∗)′𝑉−1(𝜇 − 𝜇∗) + (𝑦 − 𝑋𝜇∗)′𝑃(𝑦 − 𝑋𝜇∗)] 2;⁄  

 𝑏∗ = 𝑛 2⁄ + 𝑏. 

In accordance with (5) and (11), the a posteriori marginal distribution of 𝛽 is identified as the 𝑡 −multivariate 

distribution, specifically: 

𝛽|𝑦~𝑡(𝜇∗, 𝑎∗𝑉∗ 𝑏∗⁄ , 2𝑏∗) 

Consequently, the maximum a posteriori �̂�𝑀𝐴𝑃 estimator of 𝛽 is given 𝑎𝑟𝑔 max
𝛽

𝜋(𝛽|𝑦) = 𝜇∗. Therefore, �̂�𝑀𝐴𝑃 

can be expressed as: 

�̂�𝑀𝐴𝑃 = (𝑋′𝑃𝑋 + 𝑉−1)−1(𝑋′𝑃𝑦 + 𝑉−1𝜇). 

Moreover, according to (6), the a posteriori marginal distribution for the weight parameter 𝜏 is the gamma 

distribution. Consequently, the variance, 𝜎2 =
1

𝜏
 has an inverse gamma distribution [6], [4]:  

𝜎2|𝑦~𝐼𝐺(𝑎∗, 𝑏∗) 

Therefore, the maximum a posteriori estimator �̂�𝑀𝐴𝑃
2  of 𝜎2 is given by 𝑎𝑟𝑔 max

𝜎2
𝜋(𝜎2|𝑦) =

𝑎∗

𝑏∗+1
. So we have: 

�̂�𝑀𝐴𝑃
2 =

2𝑎 + (𝜇 − �̂�𝑀𝐴𝑃)
𝑇

𝑉−1(𝜇 − �̂�𝑀𝐴𝑃) + (𝑦 − 𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝑦 − 𝑋�̂�𝑀𝐴𝑃)

𝑛 + 2𝑏 + 2
. 

And the variance of 𝜎2 is 𝑉(𝜎2|𝑦) = (
𝑏∗+1

𝑏∗−1
)

2 (�̂�𝑀𝐴𝑃
2 )

2

𝑏∗−2
. The covariance matrix of 𝛽 is 𝐷(𝛽|𝑦) = 𝐸((𝛽 −

𝐸(𝛽|𝑦))′(𝛽 − 𝐸(𝛽|𝑦))) = (
𝑏∗+1

𝑏∗−1
) �̂�𝑀𝐴𝑃

2 (𝑋′𝑃𝑋 + 𝑉−1)−1. 

Properties 2.2. Bayesian estimators for informative a priori law have the following properties: 

1. 2(𝑏∗ + 1)
�̂�𝑀𝐴𝑃

2

𝜎2  follows a Chi-square distribution with 2𝑏∗ degrees of freedom; 

2. 
𝑏∗(𝛽−�̂�𝑀𝐴𝑃)

′
(𝑋′𝑃𝑋+𝑉−1)(𝛽−�̂�𝑀𝐴𝑃)

𝑝(𝑏∗+1)�̂�𝑀𝐴𝑃
2   follows a Fisher distribution with (𝑝, 2𝑏∗) degrees of freedom. 

2.2. Results 

A useful measure of the deviation between the operational model and the approximate model is defined from the 

Kullback-Leibler divergence [8]: 

∆(𝛽, 𝜎2) = 𝐸𝑦(−2 ln(𝑝(𝑦|𝛽, 𝜎2)))                                                                                                                       (12) 

Where 𝑝(𝑦|𝛽, 𝜎2) is the likelihood function under the approximate model. A reasonable criterion for judging 

the quality of the family of approximations given the data is 𝐸(�̂�,�̂�2){∆(𝛽, 𝜎2)}. Given a collection of competing 

families of approximations, the one that minimizes 𝐸(�̂�,�̂�2){∆(𝛽, 𝜎2)} is in some sense closest to truth and 

should be preferred. Of course, 𝐸(�̂�,�̂�2){∆(𝛽, 𝜎2)} is unknown, but it can be estimated if certain additional 

assumptions are made. In this subsection, we will compute this quantity in the two previous cases of maximum a 

posteriori estimators (non-informative and informative a priori law), i.e. (�̂�, �̂�2) = (�̂�𝑀𝐴𝑃 , �̂�𝑀𝐴𝑃
2 ) in order to 

propose a Bayesian regression model selection criterion. And this criterion will be called Bayesian Kullback-

Leibler Information Criterion, denoted as BKLIC. 

2.2.1. For the case a priori non-informative law 

The maximum a posteriori estimators �̂�𝑀𝐴𝑃 and �̂�𝑀𝐴𝑃
2  of  𝛽 and 𝜎2 are: 

 �̂�𝑀𝐴𝑃 = (𝑋′𝑃𝑋)−1𝑋′𝑃𝑦; 
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 �̂�𝑀𝐴𝑃
2 =

(𝑦−𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝑦−𝑋�̂�𝑀𝐴𝑃)

𝑛−𝑝+2
. 

We’ll determine the quantity −2𝐸𝑦𝐸�̂�𝑀𝐴𝑃(𝑥)[ln(𝑝(𝑦|�̂�𝑀𝐴𝑃(𝑥))] where �̂�𝑀𝐴𝑃 = (�̂�𝑀𝐴𝑃 , �̂�𝑀𝐴𝑃
2 ). 

We know that ln(𝑝(𝑦|𝛽, 𝜎2) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) +

1

2
ln(det (𝑃)) −

1

2𝜎2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽). 

So, ln(𝑝(𝑦|�̂�𝑀𝐴𝑃 , �̂�𝑀𝐴𝑃
2 ) = −

𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det (𝑃)) −

1

2�̂�𝑀𝐴𝑃
2 (𝑦 − 𝑋�̂�𝑀𝐴𝑃)

′
𝑃(𝑦 − 𝑋�̂�𝑀𝐴𝑃). 

Therefore, ln(𝑝(𝑦|�̂�𝑀𝐴𝑃 , �̂�𝑀𝐴𝑃
2 ) = −

𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) −
𝑛−𝑝+2

2
. 

Hence, 

𝑇 = 𝐸𝑦𝐸�̂�𝑀𝐴𝑃(𝑥)(ln(𝑝(𝑦|�̂�𝑀𝐴𝑃(𝑥)))

  = 𝐸�̂�𝑀𝐴𝑃(𝑥)𝐸𝑦 [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det (𝑃)) −

1

2�̂�𝑀𝐴𝑃
2 (𝑦 − 𝑋�̂�𝑀𝐴𝑃)

′
𝑃(𝑦 − 𝑋�̂�𝑀𝐴𝑃)]

 = 𝐸�̂�𝑀𝐴𝑃(𝑥) [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det (𝑃)) −

1

2�̂�𝑀𝐴𝑃
2 𝐸𝑦 ((𝑦 − 𝑋�̂�𝑀𝐴𝑃)

′
𝑃(𝑦 − 𝑋�̂�𝑀𝐴𝑃))]

 

We know that: 

𝐸𝑦[(𝑦 − 𝑋�̂�𝑀𝐴𝑃)′𝑃(𝑦 − 𝑋�̂�𝑀𝐴𝑃)] 

               = 𝐸𝑦 [((𝑦 − 𝑋𝛽) + (𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃))
′

𝑃 ((𝑦 − 𝑋𝛽) + (𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃))]

      = 𝐸𝑦[(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)] + 𝐸𝑦 [2(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝑦 − 𝑋𝛽)]

+𝐸𝑦 [(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)]

            = 𝐸𝑦[(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)] + [2(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝐸𝑦(𝑦) − 𝑋𝛽)]

+ [(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)]

 

The term in the middle of the previous expression cancels out because 𝐸𝑦(𝑦) = 𝑋𝛽. Moreover, the first term 

can be written as follows: 𝐸𝑦[(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)] = 𝐸𝑦[𝜀′𝑃𝜀] = 𝐸𝑦[𝑡𝑟(𝜀′𝑃𝜀)] = 𝑡𝑟[𝑃𝐸𝑦(𝜀′𝜀)] =

𝑡𝑟(𝜎2𝑃𝑃−1) = 𝑛𝜎2. So we have the result: 𝐸𝑦 [(𝑦 − 𝑋�̂�𝑀𝐴𝑃)
𝑇

(𝑦 − 𝑋�̂�𝑀𝐴𝑃)] = 𝑛𝜎2 + [(𝑋𝛽 −

𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)]. Using this partial result, we thus have: 

 𝑇 = 𝐸�̂�𝑀𝐴𝑃(𝑥) [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det(𝑃))] − 𝐸�̂�𝑀𝐴𝑃(𝑥) [

𝑛𝜎2 + [(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)
′
𝑃(𝑋𝛽 − 𝑋�̂�𝑀𝐴𝑃)]

2�̂�𝑀𝐴𝑃
2 ]

     = 𝐸�̂�𝑀𝐴𝑃(𝑥) [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det(𝑃))] −

1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

𝑛𝜎2

�̂�𝑀𝐴𝑃
2 ]

−
1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

(𝛽 − �̂�𝑀𝐴𝑃)
′
𝑋′𝑃𝑋(𝛽 − �̂�𝑀𝐴𝑃)

�̂�𝑀𝐴𝑃
2 ]                                       (13)

 

We know that 
(𝑛−𝑝+2)�̂�𝑀𝐴𝑃

2

𝜎2 ~𝜒𝑛−𝑝
2  from property (2.1). Since, 

�̂�𝑀𝐴𝑃
2

𝜎2 =
1

𝑛−𝑝+2

(𝑛−𝑝+2)�̂�𝐵
2

𝜎2 , we have: 

1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

𝑛𝜎2

�̂�𝑀𝐴𝑃
2 ] =

𝑛

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

1

�̂�𝑀𝐴𝑃
2

𝜎2

]

        =
𝑛

2
𝐸𝑀𝐴𝑃(𝑥) [

1

1

𝑛−𝑝+2

(𝑛−𝑝+2)�̂�𝑀𝐴𝑃
2

𝜎2

]

                      =
𝑛(𝑛 − 𝑝 + 2)

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

1

(𝑛−𝑝+2)�̂�𝑀𝐴𝑃
2

𝜎2

]

=
 𝑛(𝑛 − 𝑝 + 2)

2(𝑛 − 𝑝 − 2)
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Furthermore, 
(𝛽−�̂�𝑀𝐴𝑃)

′
𝑋′𝑃𝑋(𝛽−�̂�𝑀𝐴𝑃)

�̂�𝑀𝐴𝑃
2 =

𝑝(𝑛−𝑝+2)

𝑛−𝑝

(𝑛−𝑝)(𝛽−�̂�𝑀𝐴𝑃)
′
𝑋′𝑃𝑋(𝛽−�̂�𝑀𝐴𝑃)

𝑝(𝑛−𝑝+2)�̂�𝑀𝐴𝑃
2 .  

From property (2.2) we have 
(𝑛−𝑝)(𝛽−�̂�𝑀𝐴𝑃)

′
𝑋′𝑃𝑋(𝛽−�̂�𝑀𝐴𝑃)

𝑝(𝑛−𝑝+2)�̂�𝑀𝐴𝑃
2 ~𝐹(𝑝, 𝑛 − 𝑝). This will give the following result: 

1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

(𝛽 − �̂�𝑀𝐴𝑃)
′
𝑋′𝑃𝑋(𝛽 − �̂�𝑀𝐴𝑃)

�̂�𝑀𝐴𝑃
2 ] =

𝑝(𝑛 − 𝑝 + 2)

2(𝑛 − 𝑝)
𝐸�̂�𝐵(𝑥) [

(𝑛 − 𝑝)(𝛽 − �̂�𝑀𝐴𝑃)
′
𝑋′𝑃𝑋(𝛽 − �̂�𝑀𝐴𝑃)

𝑝(𝑛 − 𝑝 + 2)�̂�𝑀𝐴𝑃
2 ]

                  =
𝑝(𝑛 − 𝑝 + 2)

2(𝑛 − 𝑝)

(𝑛 − 𝑝)

(𝑛 − 𝑝 − 2)

=
𝑝(𝑛 − 𝑝 + 2)

2(𝑛 − 𝑝 − 2)

 

Using the previous results, we have: 

𝑇 = 𝐸�̂�𝑀𝐴𝑃(𝑥) [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det(𝑃))] −

(𝑛 + 𝑝)(𝑛 − 𝑝 + 2)

2(𝑛 − 𝑝 − 2)

 = 𝐸 [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det(𝑃))] −

(𝑛 + 𝑝)(𝑛 − 𝑝 + 2)

2(𝑛 − 𝑝 − 2)

 

Let, −2𝑇 = 𝑛 ln(2𝜋) + 𝑛 ln(�̂�𝑀𝐴𝑃
2 ) − ln(det(𝑃)) +

(𝑛+𝑝)(𝑛−𝑝+2)

𝑛−𝑝−2
. 

Therefore, a selection criterion for a multiple linear regression model in the Bayesian estimation framework can 

be obtained when the a priori distribution of the unknown parameters is non-informative: 

𝐵𝐾𝐿𝐼𝐶 = 𝑛 ln(2𝜋) + 𝑛 ln(�̂�𝑀𝐴𝑃
2 ) − ln(det(𝑃)) +

(𝑛 + 𝑝)(𝑛 − 𝑝 + 2)

2(𝑛 − 𝑝 − 2)
. 

2.2.2. For the case of a priori informative  

The maximum a posteriori estimators �̂�𝑀𝐴𝑃 and �̂�𝑀𝐴𝑃
2  of  𝛽 and 𝜎2 are: 

 �̂�𝑀𝐴𝑃 = (𝑋′𝑃𝑋 + 𝑉−1)−1(𝑋′𝑃𝑦 + 𝑉−1𝜇); 

 �̂�𝑀𝐴𝑃
2 =

2𝑎+(𝜇−�̂�𝑀𝐴𝑃)
′
𝑉−1(𝜇−�̂�𝑀𝐴𝑃)+(𝑦−𝑋�̂�𝑀𝐴𝑃)

′
𝑃(𝑦−𝑋�̂�𝑀𝐴𝑃)

𝑛+2𝑏+2
. 

From relation (13), we have: 

𝑇 = 𝐸�̂�𝑀𝐴𝑃(𝑥) [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 )] −
1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

𝑛𝜎2

�̂�𝑀𝐴𝑃
2 ] −

1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

(𝛽 − �̂�𝑀𝐴𝑃)
′
𝑋′𝑃𝑋(𝛽 − �̂�𝑀𝐴𝑃)

�̂�𝑀𝐴𝑃
2 ]

= 𝐸�̂�𝑀𝐴𝑃(𝑥) [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 )] −
1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

𝑛𝜎2

�̂�𝑀𝐴𝑃
2 ]

   −
1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

(𝛽 − �̂�𝑀𝐴𝑃)
′
(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − �̂�𝑀𝐴𝑃)

�̂�𝑀𝐴𝑃
2 ] +

1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

(𝛽 − �̂�𝑀𝐴𝑃)
′
𝑉−1(𝛽 − �̂�𝑀𝐴𝑃)

�̂�𝑀𝐴𝑃
2 ]

 

The preceding expression will be evaluated in order to ascertain the value of the last three terms, utilizing the 

properties of estimators for the case of informative a priori distribution: 

−
1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

𝑛𝜎2

�̂�𝑀𝐴𝑃
2 ] = −

𝑛

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

𝜎2

�̂�𝑀𝐴𝑃
2 ]

                                   = −
𝑛

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

1

�̂�𝑀𝐴𝑃
2

𝜎2

]

                                          = −𝑛(𝑏∗ + 1)𝐸�̂�𝑀𝐴𝑃(𝑥) [
1

2(𝑏∗ + 1)
�̂�𝑀𝐴𝑃

2

𝜎2

]

  = −
𝑛(𝑏∗ + 1)

2𝑏∗ − 2
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Furthermore: 

−
1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

(𝛽 − �̂�𝑀𝐴𝑃)
′
(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − �̂�𝑀𝐴𝑃)

�̂�𝑀𝐴𝑃
2 ] = −

𝑝(𝑏∗ + 1)

2𝑏∗
𝐸�̂�𝑀𝐴𝑃(𝑥) [

𝑏∗(𝛽 − �̂�𝑀𝐴𝑃)
′
(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − �̂�𝑀𝐴𝑃)

𝑝(𝑏∗ + 1)�̂�𝑀𝐴𝑃
2 ]

                     =
𝑝(𝑏∗ + 1)

2𝑏∗

2𝑏∗

2𝑏∗ − 2

       = −
𝑝(𝑏∗ + 1)

2(𝑏∗ − 1)

 

Finally: 

1

2
𝐸�̂�𝑀𝐴𝑃(𝑥) [

(𝛽 − �̂�𝑀𝐴𝑃)
′
𝑉−1(𝛽 − �̂�𝑀𝐴𝑃)

�̂�𝑀𝐴𝑃
2 ] = 𝐸�̂�𝑀𝐴𝑃

[(𝛽 − �̂�𝑀𝐴𝑃)
′
𝑉−1(𝛽 − �̂�𝑀𝐴𝑃)] 𝐸�̂�𝑀𝐴𝑃

2 [
1

�̂�𝑀𝐴𝑃
2 ]

                                                                     =
1

2�̂�𝑀𝐴𝑃
2 𝐸�̂�𝑀𝐴𝑃

[𝑡𝑟 ((𝛽 − �̂�𝑀𝐴𝑃)
′
𝑉−1(𝛽 − �̂�𝑀𝐴𝑃))]

                                                                                          =
1

2�̂�𝑀𝐴𝑃
2 𝑡𝑟 [𝑉−1𝐸�̂�𝑀𝐴𝑃

[(𝛽 − �̂�𝑀𝐴𝑃)
′
(𝛽 − �̂�𝑀𝐴𝑃)]]

                                                                                 =
1

2�̂�𝑀𝐴𝑃
2 𝑡𝑟 [𝑉−1𝐸�̂�𝑀𝐴𝑃

[(𝛽 − 𝐸(𝛽|𝑦))′(𝛽 − 𝐸(𝛽|𝑦))]]

                                                                       =
1

2�̂�𝑀𝐴𝑃
2 𝑡𝑟 [𝑉−1 (

𝑏∗ + 1

𝑏∗ − 1
) �̂�𝑀𝐴𝑃

2 (𝑋′𝑃𝑋 + 𝑉−1)−1]

                                                            =
1

2
(

𝑏∗ + 1

𝑏∗ − 1
) 𝑡𝑟 [((𝑋′𝑃𝑋 + 𝑉−1)𝑉)

−1
]

                                                 =
1

2
(

𝑏∗ + 1

𝑏∗ − 1
) 𝑡𝑟[(𝑋′𝑃𝑋𝑉 + 𝐼)−1]

 

The previous results allow us to write: 

𝑇 = 𝐸�̂�𝑀𝐴𝑃(𝑥) [−
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det(𝑃))] − (

𝑏∗ + 1

𝑏∗ − 1
) [

𝑛 + 𝑝

2
−

1

2
𝑡𝑟[(𝑋′𝑃𝑋𝑉 + 𝐼)−1]]

= −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(�̂�𝑀𝐴𝑃

2 ) +
1

2
ln(det(𝑃)) − (

𝑏∗ + 1

𝑏∗ − 1
) [

𝑛 + 𝑝

2
−

1

2
𝑡𝑟[(𝑋′𝑃𝑋𝑉 + 𝐼)−1]]

 

Therefore, we can conclude that, −2𝑇 = 𝑛 ln(2𝜋) + 𝑛 ln(�̂�𝑀𝐴𝑃
2 ) − ln(det(𝑃)) + (

𝑏∗+1

𝑏∗−1
) [𝑛 + 𝑝 − 𝑡𝑟[(𝑋′𝑃𝑋𝑉 +

𝐼)−1]]. 

Similarly, as with a non-informative a priori law, a criterion for selecting a multiple linear regression model 

exists in the event that the a priori law is informative: 

𝐵𝐾𝐿𝐼𝐶 = 𝑛 ln(2𝜋) + 𝑛 ln(�̂�𝑀𝐴𝑃
2 ) − ln(det(𝑃)) + (

𝑏∗ + 1

𝑏∗ − 1
) [𝑛 + 𝑝 − 𝑡𝑟[(𝑋′𝑃𝑋𝑉 + 𝐼)−1]]. 

2.4. Discussions 

In the present subsection we will utilize a database designated as “eucalyptus” for our analysis. The data set 

comprises the height and circumference of 1,429 eucalyptus trees. The dependent variable is their height and the 

explanatory variables are their circumference and its square root. In this context, we will evaluate the quality of 

the models 𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀 and 𝑦 = 𝛼0 + 𝛼1𝑋1 + 𝜖. Calculating the AIC, BIC and BKLIC, we 

obtain the results on the table below: 

Table 1. Criteria values for the two candidate models 

 

 Model 1:  𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀 Model 2: 𝑦 = 𝛼0 + 𝛼1𝑋1 + 𝜖 

AIC 

 

BIC 

4429.074 

 

4446.133 

4578.454 

 

4594.248 

BKLIC1 

 

BKLIC2 

3710.088 

 

4460.712 

3862.964 

 

4608.43 
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where BKLIC1 is the new criterion for non-informative a priori law and BKLIC2 for the informative a priori 

law. These four criteria lead us to choose model 1, i.e. the adapted forecasting model seems to be the multiple 

regression model. After estimating the parameters of the chosen model, we obtain the following results in the 

case where the a priori law is informative: 

                               beta_0        beta_1      beta_2          sigma^2 

Maximum a posteriori: -24.3446729  -0.4828339   9.9850919   1.3220238 

The resulting model is written as follows: 𝑦 = −24.34 − 0.48𝑋1 + 9.99𝑋2. 

 

Comment: We can see that these criteria select the 

same model. This allows us to say that these new 

criteria can be used within the framework of 

Bayesian statistics, more precisely in the case of 

Bayesian regression: one for the estimate whose a 

priori distribution is uninformative and the other for 

the a priori distribution that is informative. 

Furthermore, this criterion can be represented 

graphically as a function of the number of 

explanatory variables. A sample of size 𝑛 = 20 was 

taken, and the various values of this criterion were 

obtained according to the number of independent 

variables (explanatory variables 𝑘) for the two cases 

of a priori laws (see Table 2). 

 

Table 2. Various values of the two criteria as a function of explanatory variables 

 

Number of explanatory 

variables 

BKLIC1 BKLIC2 

1 57.0925 70.17104 

2 -1261.5 21.25829 

3 -1258.951 22.47774 

4 -1255.976 22.72266 

 

A minimum is topically obtained for a specific value of 𝑘. This minimum provides the optimal model, as 

illustrated in Fig. 1 below: 

 
Figure1: BKLIC curves 

 

III. CONCLUSION 

In this article. We put forth two Bayesian 

information criteria for the purpose of selecting a 

linear regression model. The two criteria provide an 

accessible tool for selecting a Bayesian linear 

regression model when estimators are obtained by 

maximum a posteriori. These criteria do not adhere 

to a single a priori case; rather, they consider two 

cases simultaneously. Moreover, experimental 

results demonstrate the efficacy of these two criteria 

in identifying a reliable model among the 

candidates. From an explanatory standpoint, the 
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results produced by these criteria align with those of 

the classical criteria, particularly in the context of 

small sizes. This validates the efficacy of our 

criterion in the domain of Bayesian linear regression 

model inference. However, further development is 

necessary. In the future, we intend to extend these 

two criteria to the Bayesian analysis of time series 

models, including AR(p) and ARMA(p,q) models. 
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