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ABSTRACT

Continuous development in software results in complexity and this confuses the design and programming stages,
which makes the maintenance of the software difficult and thus affects the quality of software. Bad smells refer
to weak solutions that can lead to issues with software maintainability. These smells are common problems that
arise in implementation, design, and architecture, and can be identified by using a set of metrics and their
threshold values. This paper conducted multiple case studies on 9 Apache projects in order to (1) determine the
most effective tool for detecting bad smells, (2) learn how to detect bad smells using the most effective tools, and
(3) identify the detection strategies used by those tools. Additionally, machine learning techniques were used to
identify Design Smells. The aim was to demonstrate that ML techniques can be used to identify design smells,

with the created dataset being made available once our work is accepted and published.
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I. INTRODUCTION

Code smells are indicators of quality issues
that can have a negative impact on many aspects of
software quality. Fowler [1] was the first to use the
metaphor of "code smells" to refer to signs of a weak
solution that can lead to issues with code
maintainability. Too many code smells in a system
can make it difficult to maintain and develop further.
Code smells are also known as bad smells, code
anomalies, design flaws, and anti-patternsm [2] .

Bad smells can be used to detect Technical
Debt (TD), and it is the most commonly used
indicator for TD, as reported by Alves et al. [3] and
Ben Idris et al. [4]. TD was first introduced by Ward
Cunningham, who famously said, “Shipping first-
time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with
a rewrite” [5]. Seventeen types of TD have been
mentioned by [4], many of them, but not all, can be
identified by using bad smells and each type of smell
can be recognized by using a set of metrics and their
threshold values. After detecting the bad smells,
refactoring can be performed to reduce technical
debt. However, many software developers opt for
adding new features or fixing existing bugs rather
than refactoring, as refactoring does not offer any
immediate rewards. God Class (GC) and Data Class
(DC) are two types of design smells. These two
design smells have been characterized as follows:
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Data Class consists of fields with getters and setters
and nothing else, is often manipulated too much by
other classes. God Class is a class that does too
much work on its own, delegating only minor tasks
to other classes and using data from other classes

[6]. We focus our attention on those two types of

design smells because they are very common.

Normally, tools are used to detect bad

smells during maintenance phase. However, the
problem appears if different tools are used to detect
GC and DC due to the fact that different tools use
different thresholds, which affect the accuracy of the
detector results. The question is how we should
detect the GC and DC with high accuracy. For that
reason, we will use machine learning techniques to
detect GC and DC. Different machine learning
models will be applied to achieve the best possible
classification accuracy. The objective of this
research paper was as follows: Carry out empirical
studies on open-source projects, use machine
learning techniques to detect design smells, and
provide datasets on design smells. The main
contributions of this paper are the following:

e We conducted a case study to explore the use of
bad smell tools, analyze open source projects, and
extract metrics values for the purpose of detecting
GC and DC.

e We applied machine learning techniques to
identify GC and DC in open-source projects.
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e We compiled a dataset that will be made available
to other researchers upon the publication of our
findings.

The rest of this paper is organized as
follows. Section 2 highlights the related works. Our
methodology is discussed in Section 3. Section 4
presents a case study will be conducted and machine
learning will be applied to detect design smells. The
results, and discussion are provided in Section 5.
Section 6 presents the threats that may be affecting
the findings and Section 7concludes our work.

I1. RELATED WORKS

Khoma et al. [7] used a Bayesian approach
to detect code and design smells. The goal of the
paper was to develop a method for automatically
detecting code and design smells in software
systems. The developed approach was able to detect
code and design smells with an accuracy of up to
97%. Later, Khoma et al. [8] proposed a new
approach to detecting anti-patterns, called BDTEX.
BDTEX is a GQM-based Bayesian approach that
uses a probabilistic model to detect anti-patterns in
software systems. The goal of this research paper is
to develop an effective and efficient method for
detecting anti-patterns in software systems. The
authors evaluated the performance of BDTEX on
two real-world software systems and found that it
was able to detect anti-patterns with high accuracy
and low false positive rates.

Maneerat and P. Muenchaisri [9] used
Machine Learning Techniques to predict bad smells
from software design models. The results showed
that the proposed approach was able to detect bad
smells with an accuracy of up to 90%. With an
accuracy of up to 97%. Maiga et al. [10] used a
Support Vector Machine (SVM) to detect anti-
patterns in software systems. Their goal was to
develop a method for automatically detecting anti-
patterns in software systems using SVM. They
showed that SVM was more accurate than other
methods such as decision trees and neural networks.
Kaur et al. [2] used SVM approach to detect code
smells. The goal of the paper was to develop an
automated system for detecting code smells in
software systems. The authors found that their SVM-
based approach was able to accurately detect code
smells with an accuracy of up to 97%. Additionally,
they found that their approach was able to detect
code smells more quickly than other existing
methods.
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Fontana et al. [11] proposed an approach
based on machine learning technique to detect code
smells. The results showed that the proposed
approach was able to detect code smells with an
accuracy of up to 80%. In 2016, Fontana et al. [12]
used a dataset of Java projects to compare the
performance of different machine learning
techniques for code smell detection. The goal of this
paper was to evaluate the effectiveness of different
machine learning techniques for detecting code
smells in software projects. The results showed that
SVMs and Random Forests (RFs) were the most
effective machine learning techniques for detecting
code smells in software projects. In 2017, Fontana et
al. [13] classified code smell severity using Machine
Learning Techniques. The results showed that the
proposed approach was able to classify code smell
severity with an accuracy of up to 90%.

In 2018, Di Nucci et al [14] replicated
Fontana’s work to compare the performance of
different machine learning techniques for code smell
detection. Their aims were to evaluate the
effectiveness of different machine learning
techniques for detecting code smells in software
projects and to compare their performance with
existing approaches such as static analysis tools and
rule-based systems. Their results showed that SVMs
were the most effective machine learning technique
for detecting all four types of code smells in
software  projects, outperforming  existing
approaches such as static analysis tools and rule-
based systems. Based on relational association rule
mining, Czibula et al. [15] detected software design
defects. The results showed that the proposed
approach was able to detect software design flaws
with an accuracy of up to 95%.

Finally, in 2020, Ben Idris et al. [16] used
machine learning-based approach to prioritize
software components' risk. The goal of the paper
was to develop a method for prioritizing software
components' risk. The results showed that the
proposed approach was able to accurately prioritize
software components' risk with extraordinary
performance. We have distinguished our study from
the previous literature by noting the following four
points:

o Unlike [2] [8] [10] [13] [14], we created our own
dataset based on Apache projects, which we then
analyzed.
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e We focused on detecting Design smell
specifically God Class and Data Class smells,
while [9] concentrated on other types of design
smells and [11] focused on code smells, and [7]
[8] [10] did not detect Data Class. While [13]
classified the severity of the God and Data Class.

e Our study employed the PMD tool for extracting
the internal structure and rules used to detect GC
and DC smells, whereas literary [17] used a
different tool related to code smell detection.

e We compared our study to previous literature by
using three metrics to detect GC class and four
metrics to detect Data Class while [12] utilized
one and three metrics to detect the God Class and
Data Class smells respectively. Additionally, we
employed more than 30 machine learning models,
which are detailed in Section 3, whereas the prior
studies used only one or no more than 30 models.
This comparison provides a clear understanding
of how our research differs from what has been
done before. By presenting this information in an
organized way, we aim to show the originality of
our work.

1. METHODOLOGY

The purpose of this work is to build a
machine learning model that can detect design
smells in open-source projects. To do this, we must
create our own dataset. We will use a design smell
tool to analyze various open-source projects in a
case study. This case study will help us building our
own dataset by answering these three research
questions:

e RQ1: What are the most effective tool used by
researchers to identify bad smells?

¢ RQ2: Which type of bad smells can be detected
by the most effective tools in RQ1?

e RQ3: What are the detection strategies used by
the most effective tools in RQ1?

RQL1 helps us find the best tool that can be
used to generate our dataset, while RQ2 assists us in
focusing on the type of smells that are deemed more
hazardous based on the effective tools. Finally, RQ3
aids us in discovering the most reliable methods
used by researchers to detect design smells.

3.1 Select a Detection Tool
In order to answer RQ1, we conducted a

search on Google Scholar for papers related to the
design smell detection tool. We discovered 10
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papers, and after reading them, it was concluded that
JDeodorant, PMD, iPlasma, InFusion and DECOR
were the most effective tools according to the
researchers.

JDeodorant is a software tool that operates
within the Eclipse environment and aims to improve
software design. It accomplishes this by detecting
common design issues, referred to as "code smells",
and offering recommended solutions through
appropriate refactoring techniques. The tool uses
unique and innovative methods to identify these
code smells and suggest the right course of action.
PMD analyzes Java source code to identify potential
issues, including potential bugs like dead code,
empty control structures, unused variables, and
duplicated code. It also detects code smells and
allows for customization of metric threshold values.
iPlasma is a comprehensive platform for evaluating
the quality of object-oriented systems, covering all
phases of analysis, from model extraction to high-
level metric-based analysis and duplication
detection. It can detect various code smells known as
"disharmonies,” including identity disharmonies,
collaboration  disharmonies, and classification
disharmonies.  Further information on these
disharmonies can be found. InFusion is a
comprehensive solution for assessing and improving
the quality of systems at both the architectural and
code levels. It covers all phases of the analysis
process and is capable of detecting over 20 design
weaknesses and coding inefficiencies, including
code duplication, breaches in encapsulation,
excessive coupling, and suboptimal class hierarchy
design. InFusion is a product of the expansion of
iPlasma, featuring additional  functionalities.
DECOR is a method for specifying and
automatically detecting code and design weaknesses,
commonly referred to as anti-patterns. This approach
specifically defines six code smells and creates
detection algorithms using templates. The precision
and recall of these algorithms were then evaluated.
The term DECOR refers to the component created
for detecting these weaknesses [18].

WE found that PMD, iPlasma, and
JDeodorant are the most prevalent tools in this area.
As reported in [18] and [19], a comparison of these
tools was conducted. JDeodorant was dismissed
from the comparison due to its utilization of a
custom specification language. The comparison was
narrowed down to PMD and iPlasma. However,
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iPlasma was eventually excluded from the
comparison because the threshold values that use it.
It was concluded that PMD was the preferred tool
for smells detection, given its superior performance
in terms of threshold value utilization

3.2 Select Type of Design Smells
The answer of RQ1 helps us address RQ2.

And based on that, we conducted a literature review
to gain a thorough understanding of the predominant
design smells. This will assist us in concentrating
our attention on the most critical design smell. Table
1 categorizes the bad smells detected by the tool
[18].

Table 1: Information about bad smells detection tools

Supp.
Tool | Type Lang. Code smell
(=
g tm . Feature Envy, God Class, Long
S & 5 g Method, Type Checking, and
8 58 o Duplicate code
Cyclic  Dependencies, Brain
® 0 (e} Method Data Class, Feature Envy,
= B8 Q God Class, Intensive Coupling,
= S8 + Missing ~ Template, ~ Method,
S 29 s Refused Parent, Bequest,
=@ s Significant,  Duplication, and
Shotgun Surgery
Brain Class, Brain Method, Data
Class, Dispersed Coupling, Feature
- - o Envy, God Class, Intensive
= ';—) 3 I Coupling,  Shotgun  Surgery,
3 8= s Refused Parent, Bequest, Tradition
» S 3 s Breaker By custom rules, Long
Method, Long Parameter List,
Speculative, and Generality
[
ge | _ %
237 zZ % | Data Class, God Class. Lon
T |28 | €8¢ ' - tong
< ST £ X < | Method, and Long Parameter List
o = 25
=} 326
8= 2=
S =2
w o % 5.‘? Large Class, Lazy Class, Long
?’73_ m =3 5 Method, Long Parameter List,
w O 2= S Refused Parent, Bequest, and
£ S 3 Speculative Generality

After examining the researchers’
recommendations, we found that God Class and
Data Class are the most prominent design smells that
have a negative impact on open source software
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[14]. A God Class is a software design anti-pattern
that occurs when a single class takes on too many
responsibilities. This type of class is often
characterized by having an excessive number of
methods, attributes, and dependencies. It can also be
identified by its lack of cohesion, as the methods and
attributes are unrelated to each other. A God Class
can lead to code that is difficult to maintain and
debug, as it is often difficult to understand the
purpose of the class and how its various components
interact with each other. On the other hand, Data
Class Smell is an anti-pattern in software design
where a class contains only data fields and no
methods or behaviour. This type of class can lead to
code that is difficult to maintain and debug, as it
does not provide any context for understanding how
the data fields are used or related to each other.
Additionally, Data Class Smell can lead to code
duplication if multiple classes contain similar data
fields but no behaviour [20].

3.3 Select Design Smells Detection Strategies

After answering RQ1, RQ2, and RQ3, we
decided to delve into the God and scent detection
strategies used by the selector. We ran the tool and
examined its results, as well as browsed through the
tool's documentation and help. The metrics proposed
by Lanza and Marinescu [20] for detection strategies
were applied, as indicated in Table 2. The rules for
identifying God Classes and Data Classes were
formulated as presented in Equationsl and 2,
respectively.

IF(WMC = High N TCC << ONETHIRD nATFD > FEW) .... (1)

IF(WMC < High n [NOAM + NOPA] > FEW)
U (WMC < VeryHighn [NOAM + NOPA] > MANY))
N (WOC < ONETHIRD) ... (2)

Table 2: Metrics used for design smells detection

Short Name Long Name
ATFD Access To Foreign Data
WMC Weighted Methods Count
TCC Tight Class Cohesion
NOAM Number Of Accessor Methods
NOPA Number Of Public Attributes
wocC Weight Of Class
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4.2 Analysis the Software Systems
Figure 1 presents the smells distribution

among God Class (GC) and Data Class (DC). The
data consists of a total of 651 smell instances, with
426 instances belonging to GC and 225 instances

O

[a)]

33 1.3 4511 4.4.12 1-6 345 =
(=)

=

(=)

httpcomponent m

commons commons HTTP components-client pcomponents XML Graphics zookeeper >
collections configuration -core 8

International Journal of Engineering Research and Applications

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

Ebtehal Alnaihom. et. al.
www.ijera.com

(eo]
N~
—
({o]
({o]
—
(o))
o
™
T
N
(9]
©
(o]
—
o
o
~
o
o
—
(@)
)

IV. CONDUCT ACASE STUDY

m.vmh..w_.n_nu nh %anu W %W_ 5 % M.W W;M o % m.m m mm,.m m..rm.m :zum“\\mcaﬁw.%mo:m.o
= b= o)) o = . = =] r
MH.IW,M ,lqnawﬂ wmmmmmwww.usmass.,l .W, X :o:om“._.m_mva_.mﬁ
=5 < =] E_ >0 ..WJ 7] m .mv.m m.m 7] .W. 228 c 5 M =) W = has retired. For details http://beam.apache.org/ http://cocoon.apa
: O L O c © o = ~l .
.w.n_l.,.mw o.=¢c s m.w S>3 S o SO = <22 B.n_OIu.ﬂa = Y please refer to che.org/
223+ 5 E oo S cowel22>282 =] S https://attic.apache.or
n = 0T «= O LS Rt = S o= o ps: .ap .org
epMdommnsoowmwa.locmspem ER= [%) [oroiects/aurora html _
Hnh e85 o= 25 Q=T =D v > o cQ = ) Apache Beam is an open- | Apache Cocoon
S ST ® %) c C = . o o [2 o) = c e = a service scheduler i N .
o L W o > —
Sg= < x828EL=SY8=E S v <s8SG5=2kF =5 = that runs on top of | SOUrce. unified programming | is an open-source
© Ee L9 o= 28 .>5c22 TS S © .= G2 = P model for defining and | web development
(%) = CEO =T ZToX—moOoGon 22cvgas - 8o gl Apache Mesos, .
EBQ2LT 8- 2 82 sgaY < SEcS < 8 Sc o 3 5 enabling you to run executing batch and | framework  that
[ =, m M .w o=, . C Neo O wd © = S % w m. long-running_ services streaming data processing | provides a
W.m ©o 7 T ) = 8 -9 g . @ 2,273 S =5 .m o = cron iobs. and mg.:om pipelines, enabling parallel | component-based
h QO S DPLEQF- gL ES oD CF O & > S @ 2 cron Jobs, processing of large scale | model for
2°32O0RECEL ToBEEIESSe w22 < g | obs that o take | processing across a | building and
g2 c 2 3 m g - e 3 ..n_nb .nna - = w.m_ S =] m =8 s 2 e advantage of Apache variety of runners includin deployin
= o
@ 25 2% oSS Noowus=Sacc wo .8 ° Mesos'  scalability, Y ! 9 ploying
ST 288 0 CQE S S SERe =5 8¢ = c Apache  Flink,  Apache | dynamic, XML-
53025528 2SETESsNEQPERS S < S o fault-tolerance, and | gpan ™ Google  Cloud | based web
nmuu.:mndrg mW.mmvo..nNMdﬂ SS%b%O.ﬂmln_ﬂuﬁ m resource isolation park, 9 =
D S - < 2] O—»n B o 2L =] =
o © O = = QO T8 vwgpg SO — o c © = K] @
2825355855885 Hg8Fr2 88°78 & |12 S
< 2 . 2
~e 3880wz get oo Sc S _-gEE£EECSTE o = 0.12.0 27.0 2-1-8 <
== - 8 -£8QE S, 2F 250 Q8lS5 ¥ o D
= Ng2L=s+=388 k=] T O < S =sc o= G O I
3 =908 T SESE-2Ts eS8 Es S3gL 2 <
S Z2ES5338EES STEE25SE84FE2 _£8°>¢5 3§ |23
o .= =92 oc=2No 85 & c 9 O xS c .2
— eWweOmWﬂmhﬁmempﬁwpmw.ﬂmm%uM = =5 Aurora Beam Cocoon
 ScosIcostcoonconndollasaoc2022&Ea <4



https://aurora.apache.org/
https://aurora.apache.org/
https://attic.apache.org/projects/aurora.html
https://attic.apache.org/projects/aurora.html
http://beam.apache.org/
http://cocoon.apache.org/
http://cocoon.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://hc.apache.org/
http://hc.apache.org/
http://hc.apache.org/
http://xml.apache.org/batik/
http://xml.apache.org/batik/

Ebtehal Alnaihom. et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 9, September 2023, pp 166-178

Number of smells
5 8 B

=

-— I |‘ I_ | M Il II ‘I i.
mmo

commans-
commons- httpcompon httpcompon xmigraphics- zookeeper-

aurora beam £0c0on configuratio
collections ) ents-dient  entscore | batik release

=

BGC 6 45 155 30 1 35 40 86 17
mDC 3 23 8 2 7 12 20 69 6

Figure 1. The distribution of God Class and Data Class on
the selected Apache project

In the Aurora Release 0.12.0 project, there were
6 God Class (GC) smell and Data class (DC) smell
occurrences, making up 0.92% and 0.46% of the
total GC and DC smell respectively, which was the
lowest percentage of smells. The Beam Release
2.7.0 project had 46 GC and 23 DC smell, with
percentages of 7% and 3.5%. The Cocoon Release 2-
1-8 project had the highest number of GC and DC
smells with 155 GC and 83 DC smells, accounting
for 23% and 12%. The Commons-Collections
Release 3.3 project had 30 GC and 2 DC smell, with
rates of 4% and 0.3%. Lastly, the Commons-
Configuration Release 1.3 project had 11 GC and 7
DC smell, with rates of 1.6% and 1%. The
Httpcomponents-Client Release 4.5.11 project had
35 GC smells and 12 DC smells, with a rate of 5.3%
for GC and 1.8% for DC. The Httpcomponents-Core
Release 4.4.12 project had 40 GC smells and 20 DC
smells, with a rate of 7.1% for GC and 3% for DC.
The XML Graphics Release 1-6 project had 86 GC
smells and 69 DC smells, with a rate of 13% for GC
and 10.5% for DC. Lastly, the Zookeeper Release
3.4.5 project had 17 GC smells and 6 DC smells,
with a rate of 2.6% for GC and 0.92% for DC
respectively.

4.3 Apply Machine Learning
Weka 3.8.6 will be used to develop our

machine learning models. Weka is a powerful open
source machine learning tool developed by the
University of Waikato in New Zealand. It is widely
used for data mining, predictive analytics, and other
machine learning tasks. WEKA provides a graphical
user interface (GUI) that allows users to interact
with the software and perform various tasks such as
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data pre-processing, classification, clustering,
regression,  association  rule  mining, and
visualization. WEKA also supports a wide range of
algorithms for each task. WEKA is written in Java
and can be run on any platform that supports Java. It
can be used to analyze large datasets from various
sources such as CSV files, databases, or even Excel
spreadsheets. WEKA also provides an APl which
allows users to develop their own algorithms or
integrate existing ones into their applications.
Additionally, WEKA includes a variety of tools for
evaluating the performance of different machine-
learning algorithms on datasets. These tools include
cross-validation techniques and statistical tests for
comparing different models [24] [25].

The main focus of this research paper was
to apply supervised machine learning techniques for
design smell detection. We used three internal
structure metrics to identify God Classes and we
used four internal structure metrics to identify Data
Classes. In addition, nine Apache open-source
system projects were chosen from the Apache
website. Equation 1 and 2 were used to detect GC
and DC respectively, while Table 3 provides
information about the nine projects.

l ATFD> FEW —
e -\ ﬁ
WMC>=VERY HIGH AND

God class

\

PN
p \

TCC<ONE THIRD —

J

Figure 2. Rules to detect God Class

As we mention above, we used three
internal structure metrics to identify God Classes
(Figure 2). If Access To Foreign Data (ATFD)
metric is greater than FEW, it implies that the
classes heavily access data of other simpler classes,
either directly or by using accessor methods. The
higher the ATFD value, the more likely it is that the
class is a God Class. If Weighted Methods Count
(WMC) metric is equal to or higher than VERY
HIGH, it indicates that the classes are large and
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complex. Lastly, if Tight Class Cohesion (TCC)
metric is less than one-third, it suggests that the class
has a lot of non-communicative behaviour (low
cohesion between the methods belonging to that
class). This means that the Class carries out multiple
distinct tasks with separate sets of attributes, which
has a detrimental effect on its cohesion. The lower

the TCC value, the more likely it is that the class is a

God Class.

As shown in Figure 3, a specific strategy is
used to identify Data Classes based on four metrics
which are Weight Of Class, (WOC), Number of
Accessor Methods (NOAM), Number of Public
Attributes (NOPA), and Weighted Method Count
(WMC). The class is a Data Class if (1) WOC is
less than one-third that means it suggests that
interface of the class reveals data rather than offering
services AND (2) the class reveals many attributes
and is not complex. To find if (2) the class reveals
many attributes and is not complex by checking if:

1. It has more than a few public data members
(NOAP + NOAM > FEW) AND its complexity
is not HIGH. This would indicate that the class
is relatively small, has minimal functionality,
and only provides some data and accessors to
that data.

2. It has many public data (NOAP + NOAM >
MANY) AND class complexity is not VERY
HIGH. That means this class provides MANY
public data but the complexity of the class
(WMC) to be considerably not VERY HIGH.
We just look at the class less that very high
complexity because it does not conceptually fit
the Data Class term [20].

NOPA+NOAM> FEWJ
——
| WMC< HIGH
\ )
Y
NOPA+NOAM>
MANY
G
—_—
l WMC<VERY HIGH

Figure 3. Rules to detect Data Class

WOC<ONE THIRD

Data class

A 10-fold cross-validation techniques was
used to estimate the performance of each predictive.
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According to Kohavi [26] it has less bias because it
divides the data into 10 segments (folds), where and
the first segment was tested while the other nine
were used as training data. This process was
repeated for all segments. We measured the accuracy
and performance of each machine learning models to
evaluate them. By looking at the Accuracy, Receiver
Operating Characteristics Curve (ROC), F-measure,
and Matthews Correlation Coefficient (MCC) values
we can determine whether the ML model is a good
model. However, before that, we will give a short
explanation of each measurement.

Accuracy is a measure of how accurately a
machine learning model can predict the correct
outcome. It is calculated by dividing the number of
correct predictions by the total number of
predictions. A higher accuracy indicates that the
model is better at predicting the correct outcome. To
interpret the results, a higher accuracy indicates that
the model is more accurate in its predictions.

Receiver Operating Characteristic (ROC) is
a measure of how well a machine learning model
can distinguish between two classes. It is calculated
by plotting the true positive rate against the false
positive rate for different thresholds. A higher ROC
indicates that the model is better at distinguishing
between two classes. To interpret the results, a
higher ROC indicates that the model has better
discrimination power between two classes.

F-measure is a measure of how well a
machine learning model can classify data points into
different classes. It combines precision and recall
into one metric and is calculated by taking the
harmonic mean of precision and recall scores. A
higher F-measure indicates that the model has better
classification performance. To interpret the results, a
higher F-measure indicates that the model has better
classification performance across different classes.

Matthews Correlation Coefficient (MCC) is
a measure of how well a machine learning model
can classify data points into different classes while
taking into account true positives, false positives,
true negatives, and false negatives. It ranges from -1
to 1 where 1 indicates perfect prediction and -1
indicates perfect misclassification. To interpret the
results, a higher MCC score indicates that the model
has better classification performance across different
classes while taking into account all four types of
outcomes (true positives, false positives, true
negatives, and false negatives) [27].
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V. RESULTS

This paper utilized thirty different machine
learning algorithms to create models that can
identify two types of design smells, specifically God
and Data Class. The machine learning inputs were
obtained from the internal metrics extracted from the
source code of Apache projects. The ML algorithm
accuracies for the God Class ranged from 99% to
92%, while for the Data Class they ranged from 99%
to 86%. However, it is important to note that our
observations may be biased due to the imbalance in
our dataset, which can affect our machine learning
models. To address this, we decided to evaluate our
models using MCC and F-measure, as they are better
suited for imbalanced datasets. MCC considers all
values in the Confusion Matrix, providing a more
accurate evaluation of the dataset.

SFESESS A._\\K?’\v“%xv‘«m« 4,» & #od P
\i’ev‘é’\'d* e
f “"‘&{“Tf

s balanced  sminbal anced

\;\s‘u_ﬁ
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wmbalinced  s=—nnbalanced

Figure 4. God Class: The MCC and F-measure values for
balanced and imbalanced dataset
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Figure 4 illustrates the performance of
different machine learning models in detecting God
Class using F-measure and MCC. When working
with an imbalanced dataset, Trees LMT, Trees
Random Forest, and Meta Logit Boost showed the
highest MCC values, while Bayes Navie Bayes,
Bayes Navie Bayes Multinomial, and Functions
SMO had the lowest MCC values. After balancing
the dataset, Trees LMT, Meta Logit Boost, Rules
PART, Rules JRip, and Trees J48 exhibited the
highest MCC values, while Bayes Navie Bayes
Multinomial had the lowest. In terms of F-measure
when working with an imbalanced dataset, Rules
PART, Meta Bagging, Meta Randomizable Filtered
Classifier, Meta Classification Via Regression,
Rules Decision Table, Meta Filtered Classifier, and
Meta Attribute Selected Classifier demonstrated the
highest values. Conversely, Bayes Navie Bayes
Multinomial had the lowest F-measure value. After
balancing the dataset, Trees J48, Meta Bagging,
Lazy IBk, Meta Filtered Classifier, and Meta
Attribute Selected Classifier showed the highest F-
measure values while Functions SMO had the
lowest.

Figure 5 displays the results of various
machine learning models in detecting Data Class,
measured by F-measure and MCC. When using an
imbalanced dataset, Trees LMT, Trees J48, and
Rules PART exhibit the highest MCC values, while
Functions SGD, Meta Multi Class Classifier
Updateable, and Functions SMO show the lowest
MCC values. However, after balancing the dataset,
Meta Random Committee, Trees Random Forest,
and Trees Random Tree demonstrate the highest
MCC values, while Meta Multi Class Classifier,
Functions Voted Perceptron, and Bayes Navie Bayes
Multinomial exhibit the lowest MCC values. In
terms of F-measure with an imbalanced dataset,
Trees LMT, Trees J48, and Meta Random
Committee have the highest values. Conversely,
Functions SGD, Meta Multi Class Classifier
Updateable, and Functions SMO have the lowest F-
measure values. After balancing the dataset, Meta
Random Committee, Trees Random Forest, and
Trees Random Tree display the highest F-measure
values. On the other hand,Trees Hoeffding Tree ,
Functions Voted Perceptron ,and Bayes Navie Bayes
Multinomial have the lowest F-measure values.
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Figure 5. Data Class: The MCC and F-measure values for
balanced and imbalanced dataset

Figure 6, 7, 8 and 9 compare our ML
models with the related work based on their type of
algorithms that have been used to detect bad smells
in the related work. The comparison was based on
three evaluation metrics: Accuracy, F-Measure, and
ROC Area. Figure 6 compares the results of the
imbalanced GC dataset with [11] and [12]. In terms
of accuracy, study [11] achieved a score of 0.973 for
Random Forest and Rule JRip, while study [12]
achieved 0.9755 for Bayes Naive Bayes. Our
Random Forest and Rule JRip models achieved an
accuracy of 0.99. For F-Measure, study [11] scored
0.974 for Random Forest and Rule JRip, while study
[12] achieved 0.9927 for Random Forest. Our
Random Forest and Rule JRip models had a value of
0.99 as well. In terms of ROC measures, Study [11]
and [12] achieved the highest scores of 0.989 and
0.981 for Random and Bayes Naive Bayes
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respectively. Our work saw ROC equal one for the
Random Forest model.

God class ( unbalanced dataset)

s
§ e |
0 01 02 03 04 05 06 07 08 09 1
Accuracy
Ours BRefNo[12] HRefNo[11]
God class (unbalanced dataset)
wnr
g meresnrs |
3
0 01 02 03 04 05 06 07 08 09 1
F-Measure
Ours BRefNo[12] BRefNo[l1]
God class ( unbalanced dataset)
e
|
0 0L 02 03 04 05 06 0O 08 09 1
ROC Area

Ours mRefNo[12] mRefNo[11]

Figure 6. Compare our results with related works — God
Class (imbalanced dataset)

We compared the results of our balanced
GC dataset to those shown in Figure 7. Paper [11]
had an accuracy of 0.973 for Random Forest and
Rule JRip, while paper [12] achieved the highest
accuracy (0.9755) for Bayes Naive Bayes. Our Rule
JRip model had the highest accuracy at 0.999. In
terms of F-Measure, paper [11] had the highest value
(0.974) for Random Forest and Rule JRip, while
paper [12] achieved a value of 0.9927 for Random
Forest. Our models Bayes Naive Bayes and Random
Forest both achieved 1 in this measurement. Lastly,
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paper [11]'s ROC value was 0.989 for Random
Forest and 0.981 for Bayes Naive Bayes in paper
[12], while our Rule JRip model's ROC value was
equal to 0.998.

God class ( balanced dataset)

Rule Rip

Tree Random Forest

ML models

ML models

Bayes Navie Bayes

01 02 03 04 05 06 07 08 09

=

Accuracy

HOus  WRefNo[12]  HWRefNo[ll]

God class ( balanced dataset)

Rule IRip

Tree Random Forest

ML models

ML models

Bayes Navie Bayes

=Y

01 02 03 04 05 06 07 08 09

F-Measure

" Ouss BRefNo[12] RefNo[11]

God class ( balanced dataset)

Rule JRip

Tree Random Forest

ML models

Bayes Navie Bayes

ML models

=

01 02 03 04 05 06 07 08 09
ROC Area

1 Ours BRefNo[12] ERefNo[11]

Figure 7. Compare our results with related works — God
Class (balanced dataset)

In Figure 8, the results of the imbalanced
DC dataset are shown. In terms of accuracy, study
[11] and [12] achieved the highest accuracy of 0.99
for Random Forest while our models Random Forest
and Rule JRip model achieved an accuracy of 0.999.
For F-Measure, study [11] achieved the highest
value of 1 for Random Forest while study [12]
achieved a value of 0.992 for Random Forest and
our model Random Forest achieved a value of 0.994.
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Lastly, in terms of ROC measures, study [11]
achieved a highest value of 0.994 for Random Forest
and study [12] achieved a highest value of 0.999 for
Random Forest with our model achieving the highest
value at 1.

Data class ( unbalanced dataset)

Rule JRip
Tree Random Forest

Bayes Navie Bayes

0 01 02 03 04 05 06 07 08 09 1
Accuracy

uOurs mRefNo[12] B RefNo[11]

Data class ( unbalanced dataset)
Rule JRip
Tree Random Forest

Bayes Navie Bayes

0 01 02 03 04 05 06 07 08 09 1
F-Measure

¥ Qurs B RefNo[12] B RefNo[11]

Data class ( unbalanced dataset)

Rule IRip
Tree Random Forest

Bayes Navie Bayes

0 01 02 03 04 05 06 07 08 05 1
F-Measure

u Qurs mRefNo[12] mRefNo[11]

Figure 8. Compare our results with related works — Data
class (imbalanced dataset)

In Figures 9, the findings of the balanced
DC dataset are presented. The accuracy of study
[11] and [12] was highest for Random Forest at 0.99
and 0.999 respectively. For F-Measure, study [11]
achieved a highest value of one for Random Forest
while study [12] achieved a highest value of 0.992
for Random Forest; our Random Forest model had
the highest value at 0.999. Lastly, in ROC measures,
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study [11] achieved a highest value of 0994 for
Random Forest while study [12] achieved a highest
value of 0.999; our Random Forest model had the
highest value at 0.995

Data class ( balanced dataset)

Rule IRip

ML models

Bayes Navie Bayes

0 01 02 03 04 05 06 07 08 09 1

Accuracy

Qurs B RefNo[12] mRefNa[11]

Data class ( balanced dataset)

Rule JRip

Tree Random Forest

ML models

Bayes Navie Bayes

0 01 02 03 04 05 06 07 08 08 1
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Ours B RefNo[12] B RefNo [11]

Data class ( balanced dataset)

Rule JRip

Tree Random Forest

ML models

Bayes Navie Bayes

0 01 02 03 04 05 06 07 08 089 1
ROC Area

QOurs mRefNo[12] mRefNa[11]

Figure 9. Compare our results with related works — Data
class (balanced dataset)

VI. THREATSTO VALIDITY

Threats to construct validity concern the
relationship between theory and observation. In our
study, we used PMD to detect design smells, as it
was the best option for the smells we were looking
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for. However, this could be biased by our
imbalanced dataset, so we tested our models using
both balanced and imbalanced datasets. To create a
ground truth for machine learning, we developed
criteria based on related work and PMD. We then
used three metrics to detect God Classes and four
metrics to detect Data Classes. PMD has a good
performance, thus allowing us to effectively extract
the metrics we used to detect design code smell.

The potential for our results to be impacted by
external factors is a concern when it comes to
internal validity. The rules used to detect God Class
and Data Class smells may not be seen as such by a
human expert or other tools. However, the rules we
used were based on a rule-based PMD tool which
has been proven to have good performance. To
ensure accuracy, we employed 10-fold cross-
validation which is known to have less bias in its
estimation.

Threats to conclusion validity is linked to our
ability to draw the right ones. One risk to the
accuracy of these conclusions is connected to the
datasets. The datasets were imbalanced, so F-
measure and MCC values were used to evaluate our
machine learning model. F-measure and MCC are
known for being used with asymmetric datasets. To
compare the results of the two models created from
balanced and imbalanced datasets, we balanced our
datasets and then compared the machine learning
results.

External validity refers to the generalization of
the results. We conducted a case study to analyze
nine Apache projects written in Java, and the
machine learning input was based on these projects.
However, due to the limited scope of the study, we
cannot extrapolate the results to other contexts.

VIl. CONCLUSIONS AND FUTURE
WORK

In this study, we conducted a case study to
create a dataset which was then used to train our
machine-learning models to detect design smells.
The accuracy, Receiver Operating Characteristics
Curve (ROC), F-measure, and Matthews Correlation
Coefficient (MCC) values of the models were
reported in order to demonstrate their performance.
We conduct a case study using a balanced and
imbalanced dataset to show how machine learning
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classifiers could be affected while detecting God and
Data Class smell. Ultimately, the level of prediction
was comparable with other related studies, making
many of our models suitable for prediction. Our
future work will center on the development of a
machine-learning model for the identification of
additional design smells in software systems. To this
end, we will be collecting a larger set of design
smells by analyzing at least one hundred Apache
projects (10 releases for each). Our objectives are to
detect more type of design smells and make the

extensive

dataset available to the research

community as a valuable resource.
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