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ABSTRACT 
Crop disease detection using CNN algorithms is an innovative approach that harnesses the power of convolutional 

neural networks (CNNs) to distinguish between healthy and diseased crops. This method offers a rapid and 

accurate means of identifying crop ailments, facilitating timely interventions. 

The methodology involves training a CNN model using a dataset comprising images of both healthy and diseased 

crops. Within this framework, the CNN model extract features from the input images and learns to classify them 

into distinct categories.  

In conclusion, CNN-based crop disease detection holds significant promise for the early and precise identification 

of crop maladies. Its potential impact extends to improving crop yields and reducing economic losses stemming 

from diseases. Notably, this technique has been implemented in MATLAB, complemented by a mobile app for 

user-friendly disease detection. 
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I. INTRODUCTION 
Remote sensing is an alternative approach 

for fast and unbiased disease scouting and 

measurement. Here, the common information carrier 

is electromagnetic (EM) radiation. The range of all 

types of EM radiation is known as the EM spectrum, 

which consists of a range of spectra from shorter 

wavelengths (e.g., gamma-rays) to longer 

wavelengths (e.g., radio waves). Various sensors 

such as RGB (or visible), multispectral and 

hyperspectral sensors are used to capture the different 

portions of the EM spectrum is referred in [1]. 

Today, convolutional neural networks 

(CNNs) are more capable than standard feature 

extraction methods. CNN is a deep learning network 

that performs at a high level and employs an end-to-

end architecture and abandons the complicated 

procedures of image preprocessing and feature 

extraction, simplifying the identification process 

compared with its learning model counterparts [8]. 

Precision agriculture has emerged as a 

promising strategy to revolutionize traditional 

farming methods by leveraging technology and data-

driven techniques. Its primary goals are to enhance 

crop productivity, reduce resource wastage, and 

encourage sustainable farming practices. A critical 

component of precision agriculture is the monitoring 

and management of crop health, which directly 

impacts yield and quality. 

Deep Convolutional Neural Network is 

utilized in this study to identify infected and healthy 

leaves, as well as to detect illness in afflicted plants. 

The CNN model is designed to suit both healthy and 

sick leaves; photos are used to train the model, and 

the output is determined by the input leaf [2]. 

The development of this system involves 

several stages, including image acquisition, 

preprocessing, feature extraction, and analysis. 

Advanced computer vision algorithms and machine 

learning models are employed to extract meaningful 

information from images, enabling accurate crop 

health assessments. Training the system on a diverse 

dataset of healthy and diseased plants allows it to 

classify and diagnose various health conditions. 

The implications of this system for precision 

agriculture are substantial. By providing real-time, 

objective, and actionable information about crop 

health, it empowers farmers to implement targeted 

interventions and optimize resource allocation. This 

can lead to improved crop yields, reduced use of 

fertilizers and pesticides, and ultimately, a more 

sustainable and economically viable farming 

practice. 
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II. CONVOLUTIONAL NEURAL 

NETWORK 
Convolutional Neural Networks (CNNs) 

have emerged as a transformative breakthrough in the 

realm of deep learning, reshaping various fields such 

as speech recognition, computer vision, and natural 

language processing. Their remarkable ability to 

extract intricate patterns and features from complex 

input data, with a particular emphasis on images, has 

catapulted CNNs into the spotlight of machine 

learning in recent years. CNNs have proved to be not 

just proficient but revolutionary in a plethora of tasks 

including image segmentation, object detection, and 

image classification. 

Let's delve deeper into the architecture of 

CNNs, unpacking their constituent elements and 

elucidating their roles. At the heart of CNNs are 

convolutional layers, pooling layers, and fully 

connected layers. Convolutional layers engage in the 

core operation of convolutions using filters, which 

are small matrices designed to detect specific features 

such as edges, corners, or textures. The result of these 

convolutions is a set of feature maps, each one 

highlighting the presence of a particular feature in the 

input data. To ensure that spatial information is 

retained during convolutions, techniques like 

padding and strides are employed. Padding adds extra 

pixels around the input data, while strides determine 

how much the filter moves across the data, 

influencing the size of the resulting feature maps. 

Pooling layers, another integral component, 

step in to downsample the feature maps from 

convolutional layers. This downsampling process 

reduces spatial dimensions while preserving critical 

features. Common pooling techniques encompass 

max pooling, which selects the maximum value 

within a predefined window, and average pooling, 

which calculates the average value within a window, 

offering a smoothed representation of the feature 

maps. Strided pooling serves as an alternative to 

standard pooling with a larger stride, directly 

diminishing feature map dimensions. 

Activation functions infuse non-linearity 

into the network, allowing it to learn intricate 

relationships between inputs and outputs. Frequently 

employed activation functions in CNNs include 

Rectified Linear Unit (ReLU), known for setting all 

negative values to zero, which accelerates 

convergence and mitigates the vanishing gradient 

problem. Sigmoid activation maps inputs to a range 

between 0 and 1, commonly suitable for binary 

classification tasks, while Tanh activation maps 

inputs to a range between -1 and 1, presenting a 

centered activation function symmetric around zero. 

Fully connected layers typically appear at 

the end of the CNN architecture. These layers 

establish connections between every neuron from the 

previous layer to the subsequent one, ultimately 

enabling classification or regression tasks. They 

utilize activation functions and weight matrices to 

transform extracted features into the desired output 

format. 

Training a CNN entails two pivotal steps: 

forward propagation and backpropagation. Forward 

propagation orchestrates the flow of input data 

through the network, layer by layer, yielding 

predicted outputs. Backpropagation, on the other 

hand, calculates the gradient of the loss function with 

respect to the network's weights. This gradient is then 

harnessed to update the weights through optimization 

algorithms such as stochastic gradient descent (SGD) 

and its variants. 

Loss functions occupy a critical role in 

quantifying the dissimilarity between predicted 

outputs and actual labels. The choice of loss function 

hinges on the specific task, encompassing categorical 

cross-entropy for multi-class classification or mean 

squared error for regression. 

Notwithstanding their remarkable 

successes, CNNs grapple with a set of challenges. 

These encompass issues related to interpretability, 

dataset biases, vulnerabilities to adversarial attacks, 

and the substantial demand for copious labeled data 

for effective training. In a forward-looking 

perspective, the future of CNN research holds 

promising prospects. Researchers are increasingly 

exploring the integration of CNNs with other 

architectural paradigms to further enhance their 

capabilities. Ethical considerations surrounding the 

use of CNNs are also emerging as a significant area 

of focus. 

In conclusion, the evolution and profound 

impact of Convolutional Neural Networks on the 

landscape of deep learning and machine learning are 

undeniable. Their architecture, encompassing 

convolutional layers, pooling layers, activation 

functions, and fully connected layers, forms the 

backbone of their success. Training CNNs involves 

forward and backward propagation, with loss 

functions guiding the learning process. 

Regularization techniques combat overfitting, while 

ongoing research is dedicated to addressing 

challenges such as interpretability and dataset biases. 

The future of CNNs holds exciting possibilities, with 

their continued integration into other architectural 

frameworks and increased attention to ethical 

considerations. In the realm of image recognition and 

detection, CNNs have emerged as indispensable 

tools, driving progress across numerous applications 

and leveraging benchmark datasets to enhance 

performance and expand their utility. 
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III. DETECTION PART 
3.1 CONVOLUTION: 

 The convolutional layer is a central 

component of a CNN, responsible for the majority of 

computation. When processing a color image as 

input, it is represented as a 3D pixel matrix with 

dimensions of height, width, and depth, analogous to 

the RGB channels of the image. 

 In this layer, a feature detector, often 

referred to as a kernel or filter, moves across 

receptive fields of the image to identify relevant 

features. This process is known as convolution. A 

feature detector is represented by a two-dimensional 

(2D) array of weights, capturing a portion of the 

image. The filter size, which determines the receptive 

field size, is typically a 3x3 matrix, but it can vary. 

 During convolution, the filter is applied to a 

portion of the image, and the dot product between the 

input pixels and the filter is calculated. The resulting 

dot product is then fed into an output array. This 

process is repeated as the filter sweeps across the 

entire image, shifting by a specified stride. 

 The output of this series of dot products 

between the input and the filter is referred to as a 

feature map, activation map, or convolved feature. It 

represents the learned features extracted from the 

input image by the convolutional layer. 

 

 
FIGURE 1. Convolution layer [2] 

 

 

3.2 POLLING: 

 Convolutional neural networks' building 

blocks include pooling layers. Pooling layers 

combine the features discovered by CNNs, whereas 

convolutional layers retrieve features from images. 

Its goal is to gradually reduce the spatial dimension 

of the representation in order to reduce the quantity 

of parameters and calculations in the network. The 

filters of the convolutional layers provide a location-

dependent feature map.  

 In certain cases, the Convolutional layer 

may struggle to identify an object in an image if it has 

undergone slight movements or translations. This 

limitation arises because the feature map produced by 

the Convolutional layer encodes the precise locations 

of features in the input image. 

 To address this issue, pooling layers provide 

a property known as "Translational Invariance." This 

means that even if the input image is translated or 

shifted, the CNN remains capable of recognizing the 

inherent characteristics within the image. Pooling 

layers help achieve this by reducing the spatial 

dimensionality of the feature maps, effectively 

capturing the essential features while discarding 

precise positional information. As a result, the CNN 

can still recognize and distinguish features even when 

they have been translated or slightly shifted within 

the image. 

 
FIGURE 2. Pooling layer [2] 

 

 Only a small percentage of the outputs from 

the preceding layer are sent to each neuron in the 

convolutional layer after they have been convolved 

with a "kernel." The "receptive field" of a neuron 
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refers to the set of output values that neuron may 

perceive. The "pooling layer" is the second primary 

structure. It creates a single neuron from each group 

of the outputs from the preceding layer. The average 

pooling and max pooling versions of pooling 

techniques are frequently used. An average pooling 

layer takes the mean of its input data and averages it. 

Max pooling, however, captures the greatest benefit. 

3.3 FLATTERING: 

 The flattening stage is an essential step in 

building a convolutional neural network (CNN) and 

is remarkably straightforward. Its purpose is to 

transform the pooled feature map, generated during 

the pooling process, into a one-dimensional vector. 

This can be visualized as follows: 

 

  
FIGURE 3. Flattering process 

 

 We convert the pooled feature map into a one-dimensional vector because an artificial neural network 

will now use this vector as input. To put it another way, the convolutional neural network we've been developing 

throughout this course will now be chained onto this vector, which will serve as the input layer of an artificial 

neural network. 

 
FIGURE 4. Diagram of convolution and pooling layer 

 

3.4 FULLY CONNECTED: 

 The fully connected stage involves 

integrating an artificial neural network with our 

existing convolutional neural network, as indicated in 

the previous section. In this stage, the hidden layer of 

the artificial neural network is substituted with a 

specific type of hidden layer called a fully connected 

layer. 

In a convolutional neural network, the primary task 

of the fully connected layer is to recognize specific 

features within an image. Each neuron in the fully 

connected layer is associated with a particular feature 

that could potentially be present in the image. The 

value transmitted by each neuron to the subsequent 

layer represents the probability or confidence that the 

associated feature is indeed present in the image. 

 

3.5 OUTPUT LAYER: 

We would require the result in the form of a 

class following numerous layers of convolution and 

padding. Only features and fewer parameters could 

be extracted from the source images by the 
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convolution and pooling layers. However, in order to 

get the required number of classes, we must apply a 

completely linked layer to the final output. Reaching 

that number using only the convolution layers gets 

challenging. While we only require the output to 

indicate whether or not a picture belongs to a specific 

class, convolution layers produce 3D activation 

maps. To calculate the error in prediction, the output 

layer uses a loss function similar to categorical cross-

entropy. 

Here we can see the final process of how the 

following procedures proceed in the form of image of 

the leaf (FIGURE 5) 

 

 
FIGURE 5. Illustration of a typical convolutional neural network (CNN)[1]. 

 

IV. METHODOLOGY 

 

 
FIGURE 6. Flow chart of disease classification systems [4]. 

 

The plant disease detection process begins 

with data collection and preprocessing, involving 

gathering a diverse dataset of plant images, 

standardizing their dimensions, and normalizing 

pixel values. The dataset is then split into training, 

validation, and testing sets. A Convolutional Neural 

Network (CNN) architecture is designed with 

multiple convolutional and pooling layers, and 

hyperparameters are fine-tuned during training using 

backpropagation and SGD. Model performance is 

assessed with metrics like accuracy and F1 score, 

followed by hyperparameter adjustments if needed. 

Finally, the well-trained model can be deployed with 

a user-friendly interface for practical use in 

diagnosing plant diseases. 

 

Further split the images for 

TRAINING: 80% 

TESTING: 20% 

VALIDATION: 10%        

 

V. RESULTS AND DISCUSSION 
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In our assessment of works focused on the 

automated categorization of healthy and unhealthy 

crop leaves using Convolutional Neural Networks 

(CNNs), we identified several critical challenges and 

shortcomings. Furthermore, we offered practical 

recommendations and guidelines to harness the full 

potential of CNNs in real-world applications. It has 

come to our attention that many previously published 

CNN-based solutions may not be readily deployable 

in agricultural settings due to their failure to adhere 

to fundamental machine learning principles. 

One of the primary concerns stemming from 

this non-compliance is the potential weakness in the 

generalization skills of these models when faced with 

unknown data samples or different imaging 

conditions. This limitation significantly restricts the 

practical utility of these trained models. 

Nevertheless, our research underscores the 

significant promise held by deep learning techniques 

in the domain of crop disease identification. While 

there are now more advanced solutions for disease 

detection and categorization, these innovations have 

notably improved accuracy levels. Our efforts have 

yielded predictions with accuracies ranging from 

85% to 95%, which establishes a solid foundation for 

crop leaf assessment. 

While our work represents a promising 

starting point for predicting crop leaf health, there 

remains ample room for further development and 

refinement. By enhancing the model's predictive 

capabilities to accurately identify the specific type of 

disease afflicting the plant, we can provide farmers 

with invaluable insights to maximize crop 

production. This timely and precise diagnostic tool 

has the potential to positively impact agricultural 

productivity, ensuring that farmers receive the correct 

solution at the right moment, minimizing disruptions 

to their operations. 

The encouraging outcomes of our research 

underscore the potential for the creation of innovative 

agricultural technologies that can enhance crop 

management practices and contribute to the 

sustainable growth of the agricultural sector. 

 

This implementation spans both MATLAB and 

python platforms, ensuring accuracy surpassing 80% 

with IoT integration, we create a farmer-friendly 

application, enabling easy disease detection. This 

fusion of technologies enhances agricultural 

practices by delivering effective crop disease 

management solutions.   

 

 
FIGURE 7. Chart representation of accuracy for MATLAB and python 
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