
K. L. V. R. Saraswathi, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 10, October 2023, pp 08-13

www.ijera.com DOI: 10.9790/9622-13100813 8 | Page

ARCore Geospatial API

K. L. V. R. Saraswathi*, G. Laakshini**, K.Shivani***, Dr Shaik Subhani****
*(Department of Information Technology, Sreenidhi Institute of Science and Technology, Ghatkesar

Email: ramyakummari786@gmail.com)

**(Department of Information Technology, Sreenidhi Institute of Science and Technology, Ghatkesar

Email: gaddameedhilaakshini@gmail.com)

***(Department of Information Technology, Sreenidhi Institute of Science and Technology, Ghatkesar

Email: shivanikomma2020@gmail.com)

****(Department of Information Technology, Sreenidhi Institute of Science and Technology, Ghatkesar

Email: shaiksubhani@sreenidhi.edu.in)

ABSTRACT
This project focuses on creating an augmented reality (AR) application using the latest ARCore Geospatial API

for Android devices, with the objective of seamlessly integrating virtual objects into the real world based on

geospatial data. Key components encompass managing the AR session, rendering realistic visuals, and designing

user-friendly controls, all facilitated by the Geospatial API for precise positioning and alignment with real-world

locations. Through this app, users can explore their surroundings, accurately place virtual markers, and interact

with geospatial information overlaid on a map, providing an immersive AR experience enriched with geospatial

context. Considerations are made for device compatibility, performance optimization, and seamless integration

with external geolocation services, while future enhancements may include features such as geospatial data

visualization and geolocation-driven interactions. In summary, this project serves as a foundation for developing

geospatially aware AR applications, offering users an immersive and geospatially accurate AR experience.

Keywords - ARCore Geospatial API, Augmented Reality (AR), Geospatial Integration, Immersive AR

Experience, Precise Positioning
--- ----------

Date of Submission: 22-09-2023 Date of acceptance: 05-10-2023

--- ----------

I. INTRODUCTION
The ARCore Geospatial API, developed by

Google, represents a groundbreaking advancement

in the realm of augmented reality (AR) applications.

Its primary mission is to empower developers to

craft immersive AR experiences that seamlessly

intertwine digital content with the physical world.

This innovative tool leverages geospatial

information, including GPS coordinates and

mapping data, to anchor virtual objects and

annotations to precise locations on Earth's surface. In

doing so, it overcomes the traditional limitations of

AR, which were primarily confined to indoor

environments or marker-based tracking systems. By

offering accurate positioning and alignment of

virtual objects in outdoor settings, the ARCore

Geospatial API opens up a wealth of possibilities for

location-based AR experiences.

The scope of this API encompasses a wide

range of features, including outdoor AR experiences,

geospatial annotation, real-time collaboration,

geolocation integration, environmental

understanding, and cross-platform compatibility.

This comprehensive approach empowers developers

to create AR applications that not only place virtual

content seamlessly in outdoor environments but also

support real-time collaboration and integrate

seamlessly with maps and geolocation services.

The proposed system builds upon the

ARCore Geospatial API to create an AR app that

enhances users' real-world experiences. It allows for

the overlay of virtual objects and annotations in

outdoor settings, providing geospatially-aware

features such as geospatial annotation, map

integration, real-time rendering, AR session lifecycle

management, interactive capabilities, and the

potential for real-time collaboration. This system

offers an engaging and immersive way for users to

explore and interact with their outdoor surroundings,

making it a versatile platform for outdoor

navigation, tourism, gaming, education, and more.

The merits of this system are significant. It

enhances users' real-world experiences by

seamlessly blending digital and physical elements.

Users can place geospatial markers at specific

locations to provide context or information, all while

interacting with the virtual content through real-time

RESEARCH ARTICLE OPEN ACCESS

K. L. V. R. Saraswathi, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 10, October 2023, pp 08-13

www.ijera.com DOI: 10.9790/9622-13100813 9 | Page

rendering. The AR session lifecycle management

ensures smooth operation, and visually appealing

visualizations enhance realism. This system

promotes exploration and learning, encouraging

users to discover and engage with their outdoor

environment. Furthermore, its modularized code

structure allows for customization and future

enhancements, making it adaptable to various use

cases and ensuring its longevity in the ever-evolving

world of AR applications.

II. LITERATURE REVIEW
The evolution of Augmented Reality (AR)

has deep roots in computer vision and computer

graphics, dating back to the 1960s. Early AR

applications explored overlaying digital information

onto the real world through head-mounted displays

and marker-based systems.

The introduction of ARCore and ARKit

transformed mobile AR by providing frameworks

for indoor and marker-based AR experiences.

However, these platforms set the stage for the

ARCore Geospatial API's emergence, which extends

AR capabilities into geospatially-aware outdoor

environments.

Geospatial data, including GPS coordinates

and mapping information, plays a crucial role in

anchoring virtual objects to specific real-world

locations. The integration of geospatial data and AR

technology opened the door to outdoor navigation

and location-based AR. Early outdoor AR

applications, such as tourism apps offering historical

information at landmarks or educational apps for

geological exploration, demonstrated the potential of

geospatially-aware AR.

Challenges like device compatibility and

performance optimization existed, but the industry

anticipated specialized geospatial AR tools to realize

outdoor AR's full potential.

The ARCore Geospatial API builds upon a

history of AR development, incorporating geospatial

data for precise outdoor positioning. This evolution

reflects a growing demand for geospatially-aware

AR applications, marking a significant milestone in

AR's convergence with geospatial data.

III. METHODOLOGY

III.1. Technology Stack

III.1.1. ARCore: The application relies

heavily on Google's ARCore platform. ARCore

provides the foundation for augmented reality

experiences, offering features such as motion

tracking, environmental understanding, and light

estimation.

III.1.2. OpenGLES: For rendering 3D

graphics, utilizes OpenGL ES (Embedded Systems),

which is a cross-platform API for mobile and

embedded devices. This technology allows for

efficient rendering of virtual objects within the real-

world camera feed.

III.1.3. Google Maps API: The integration

with the Google Maps API enables the app to

display maps, geolocation data, and interact with

Google Maps services. It leverages Google Maps'

vast database of geographic information.

III.1.4. Android Studio: The development

environment is Android Studio, the official

integrated development environment (IDE) for

Android app development. It provides tools for

coding, debugging, and testing Android applications.

III.2. Algorithms and Techniques
3.2.1. Geospatial Tracking: The app leverages

multiple sensor inputs, including GPS and

accelerometer data, to perform geospatial tracking.

These sensors provide information about the device's

movement and location. ARCore's geospatial mode

further enhances tracking accuracy by fusing sensor

data with visual data from the device's camera. The

combination of sensor fusion and ARCore's tracking

capabilities enables the app to determine the precise

geographical location (latitude and longitude) and

altitude of the device.

3.2.2. Pose Estimation: Pose estimation algorithms

are crucial for determining the device's orientation

and position in 3D space. These algorithms work by

analyzing the visual data from the device's camera

and identifying key features in the environment. By

tracking the movement of these features over time,

the app can accurately estimate the device's pose

(position and orientation) relative to the real world.

This information is essential for aligning virtual

objects with the physical environment and ensuring

they appear anchored in the correct locations.

3.2.3. Map Rendering: The rendering of maps on the

device's screen involves a series of sophisticated

algorithms:

• Map Projection: The app uses map projection

algorithms to convert geographic coordinates

(latitude and longitude) into screen coordinates.

This allows the app to accurately position and

render map elements on the screen based on the

user's location.

• Tile Fetching: To display detailed maps, the app

fetches map data in the form of tiles from online

map services. Tile fetching algorithms manage

the retrieval and caching of these tiles

efficiently.

• Rendering Engine: The app employs a rendering

engine to draw map elements, including roads,

landmarks, and geographical features. This

engine handles the rendering of map layers and

ensures a smooth and responsive user

K. L. V. R. Saraswathi, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 10, October 2023, pp 08-13

www.ijera.com DOI: 10.9790/9622-13100813 10 | Page

experience, even during map interactions like

panning and zooming.

3.2.4. 3D Object Rendering: To render 3D objects in

the AR view, the app utilizes a combination of

technologies and algorithms:

• Shaders: Shaders are used to define how virtual

objects are lit, textured, and shaded. They

determine the appearance of 3D objects in the

AR scene, taking into account lighting

conditions and material properties.

• Mesh Rendering: Mesh rendering techniques

construct the 3D geometry of virtual objects.

This involves defining the vertices, faces, and

textures that make up a 3D model. The app uses

pre-defined 3D models or dynamically

generated meshes to represent AR objects.

3.2.5. Interaction Algorithms: The app implements

algorithms to facilitate user interaction with AR

objects and the map:

• Gesture Recognition: Gesture recognition

algorithms identify user gestures, such as

tapping on the screen to place AR anchors.

These algorithms interpret user input and trigger

corresponding actions, enabling users to interact

with virtual content seamlessly.

• Touch Input Handling: Algorithms for touch

input handling process user touches and

gestures on the screen. This includes detecting

swipe, pinch-to-zoom, and drag interactions,

ensuring a responsive and intuitive user

interface.

Overall, the app's methodology combines

sensor data, ARCore's tracking capabilities,

advanced rendering techniques, and user interaction

algorithms to create an immersive geospatial AR

experience. It seamlessly integrates virtual content

with the real world while providing precise

geospatial information and interactive map

functionality. The result is an engaging and

informative augmented reality application.

3.3. Implementation Details
3.3.1. ARCore Session Management: The

ARCoreSessionLifecycleHelper is a crucial

component responsible for managing the lifecycle of

the ARCore session. It performs the following tasks:

• Initialization: It initializes the ARCore session,

ensuring that the session is ready for augmented

reality experiences.

• Configuration Handling: The helper class

manages the configuration of the ARCore

session. This includes setting options specific to

geospatial tracking, such as enabling Geospatial

Mode. Configuring the session correctly is

essential for precise AR tracking and rendering.

• Exception Handling: The

ARCoreSessionLifecycleHelper gracefully

handles exceptions that may occur during

session initialization or resume. It provides

informative error messages to users, helping

them understand and resolve issues. This is

crucial for a user-friendly experience.

3.3.2. AR Rendering and Tracking: The app relies

on the HelloGeoRenderer class to render AR content

within the device's camera feed. This class is

responsible for:

• AR Object Rendering: It renders AR objects, such as

geospatial markers, in the camera view. This

involves using shaders and mesh rendering

techniques to create realistic virtual objects.

• Tracking Integration: HelloGeoRenderer

incorporates ARCore's tracking data to position

virtual objects accurately in the real world. This

integration ensures that AR content aligns correctly

with the physical environment.

3.3.3. Geospatial Mode Configuration: The app

leverages Geospatial Mode within ARCore. This

mode enhances geospatial awareness by allowing for

precise placement of AR content based on

geographical coordinates. Configuring Geospatial

Mode is essential for location-based augmented

reality experiences.

3.3.4. Permission Handling: GeoPermissionsHelper

is responsible for requesting and managing

permissions for essential device resources:

• Camera Permission: The app requests camera

permissions to access the device's camera for AR

experiences.

• Location Permission: Location permissions are

necessary to access GPS and other location services,

enabling geospatial tracking and map functionalities.

• Proper permission handling ensures that the app can

access the required resources without interruptions.

3.3.5. Google Maps Integration: The app integrates

with the Google Maps API to provide map-related

features:

• API Key Configuration: It includes the setup of API

keys for both ARCore and Google Maps, enabling

access to these services.

• Map Display: The app displays maps on the device's

screen, allowing users to view geographical

information.

• Map Position Update: Based on the device's

geospatial pose, the app updates the map's

position, ensuring that the displayed map aligns

with the real-world location.

• Interactive Map Features: Users can interact

with the map, including placing anchors and

exploring geographical data. This interactive

map functionality enhances the user experience.

K. L. V. R. Saraswathi, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 10, October 2023, pp 08-13

www.ijera.com DOI: 10.9790/9622-13100813 11 | Page

3.3.6. Anchor Placement: Users can place anchors

on the map by tapping specific locations. The app

calculates the altitude relative to the device's

geospatial pose, ensuring that the anchors are

positioned accurately. These anchors serve as

reference points for rendering AR content.

3.3.7. Error Handling: The app implements robust

error handling to address potential issues:

• Camera Unavailability: If the device's camera is

not available, the app handles this gracefully

and provides a user-friendly error message.

• Outdated ARCore Versions: If ARCore is

outdated, the app guides users on how to update

it, ensuring compatibility and optimal

performance.

By meticulously combining these technologies,

algorithms, and detailed implementation strategies,

The ARCore geospatial app provides users with a

rich and immersive augmented reality experience,

seamlessly merging digital content with the physical

world while offering robust performance and precise

geospatial accuracy.

IV. RESULTS AND ANALYSIS

IV.1. Features
IV.1.1. 3D Object Rendering: The app

renders a 3D object in the real world using ARCore.

This 3D object is accurately placed in the user's

physical environment, aligning with real-world

objects and surfaces.

IV.1.2. Interactive 3D Object: Users can

interact with the 3D object. It's possible to change

the position or orientation of the 3D object,

providing an engaging and interactive AR

experience.

IV.1.3. Map Display: The app features an

integrated map view that displays a map of the user's

surroundings. This map allows users to explore their

environment and interact with geographic features.

IV.1.4. User Location Tracking: The app

tracks the user's current location in real-time using

GPS or other location services. The user's location is

displayed on the map as a marker or symbol,

indicating their precise position.

IV.1.5. AR Anchors on Map: When users

interact with the AR component by placing an

anchor or marker in the real world, this action is

reflected on the map. An anchor symbol on the map

corresponds to the physical location where the user

placed the AR anchor.

IV.1.6. Geospatial Data: The app provides

additional geospatial information, including latitude,

longitude, and altitude. This data is displayed on the

map, allowing users to see their exact geographic

coordinates.

IV.2. Output
When a user launches the app and grants the

necessary permissions, they can expect the

following output:

4.2.1. The app's camera view will activate, and

ARCore will initialize, allowing the user to view

their physical surroundings through the device's

camera.

4.2.2. A 3D object will be rendered in the real world,

accurately aligned with the user's environment. The

user can interact with this 3D object, such as moving

it to different locations.

4.2.3. The app's map view will display a map of the

user's current surroundings. The user's precise

location (latitude, longitude) will be marked on the

map with a symbol, indicating where they are in the

real world.(fig 1.1)

4.2.4. If the user interacts with the AR component by

tapping on the screen to place an anchor, an anchor

symbol will appear on the map at the corresponding

location.(fig 1.2)

4.2.5. Additionally, the app will display the user's

current altitude, providing a comprehensive set of

geospatial information.

Overall, the output is an immersive AR experience

that seamlessly combines the real world with virtual

3D objects, all while providing users with detailed

geospatial data and an interactive map interface.

This combination of features offers a rich and

engaging augmented reality experience with real-

world context.

fig 1.1

K. L. V. R. Saraswathi, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 10, October 2023, pp 08-13

www.ijera.com DOI: 10.9790/9622-13100813 12 | Page

fig 1.2

V. CONCLUSION AND FUTURESCOPE
V.1. Conclusion

The geospatial app based on the provided

code allows users to experience augmented reality

(AR) using the ARCore framework. The app

leverages the new ARCore Geospatial API to enable

the placement of virtual objects in real-world

locations based on geospatial data.

The app's core features include rendering

virtual objects, such as geospatial markers, in the AR

scene, integrating with a map for user interaction

and anchor placement, and providing a seamless AR

experience through the use of shaders, textures, and

meshes.

The code is organized and modularized,

with components such as the HelloGeoRenderer and

SampleRender classes responsible for rendering and

managing the ARCore session. The code

demonstrates the utilization of ARCore, Android

platform APIs, and external resources for AR

functionality. The app has certain hardware and

software requirements, including ARCore

compatibility, a supported Android version, and

sufficient device specifications. While implementing

the code, certain limitations and challenges may

arise, and performance or usability issues should be

considered.

In conclusion, the geospatial app built using the

provided code offers an engaging AR experience by

combining real-world geospatial data with virtual

objects. It showcases the capabilities of the ARCore

Geospatial API and provides a foundation for further

enhancements and customizations in AR

applications.

V.2. Future scope

5.2.1. Enhanced Geospatial

Interactions: Support geofencing geolocation-

based notifications, and real-time collaboration.

5.2.2. Additional AR Features: Explore markerless

object recognition, surface detection, and advanced

visual effects.

5.2.3. Integration with External APIs: Integrate

mapping services, weather data providers, and

geospatial databases.

5.2.4. Customization and Personalization: Allow

users to customize virtual objects and share their

own markers.

5.2.5. Performance Optimization: Optimize

rendering, reduce battery consumption, and

improve tracking accuracy.

5.2.6. Integration with Other Technologies: Explore

integration with machine learning, computer vision,

and IoT devices.

5.2.7. Cross-Platform Support: Adapt the app for

iOS and other platforms for wider accessibility.

The future scope of the geospatial app includes

expanding geospatial interactions, incorporating

advanced AR features, integrating with external

APIs, offering customization options, optimizing

performance, exploring new technologies, and

supporting multiple platforms.

REFERENCES
[1] https://developers.google.com/ar

[2] https://developer.android.com/docs

[3] https://developers.google.com/maps/documen

tation

[4] https://docs.opencv.org/

[5] https://developers.google.com/ar

[6] https://github.com/google-ar/arcore-android-

sdk

[7] https://developers.google.com/ar/develop/java

/geospatial

[8] https://developers.google.com/ar/develop/unit

y

[9] https://developers.google.com/ar/develop/c

[10] https://github.com/google-ar/arcore-unity-sdk

[11] https://developers.google.com/ar/develop/java

/augmented-images

[12] https://developers.google.com/ar/develop/java

/quickstart

[13] https://github.com/google-ar/arcore-unity-

extensions

[14] https://developers.google.com/ar/develop/java

/augmented-reality

K. L. V. R. Saraswathi, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 10, October 2023, pp 08-13

www.ijera.com DOI: 10.9790/9622-13100813 13 | Page

[15] https://developers.google.com/ar/develop/java

/augmented-faces

[16] https://developers.google.com/ar/develop/java

/augmented-image

[17] https://github.com/google-ar/arcore-android-

sdk/tree/main/samples

[18] https://developers.google.com/ar/develop/java

/augmented-reality/cloud- anchors/overview-

android

[19] https://developers.google.com/ar/develop/java

/sceneform

[20] https://developers.google.com/ar/develop/java

/gestures

[21] https://developers.google.com/ar/develop/java

/scene-viewer

[22] https://developers.google.com/ar/develop/java

/occlusion

[23] https://developers.google.com/ar/develop/java

/scene-viewer/android-quickstart

[24] https://developers.google.com/ar/develop/java

/image-tracking

