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ABSTRACT 

This paper explained the dynamic linearization data models of a nonlinear SISO object class linearized in 

compact form CFDL. It proposed the model-free adaptive control algorithm CFDL-MFAC based on the pseudo 

partial derivative parameter estimation. From the solution of the objective function optimization problem by the 

extended differential tool, the modified CFDL-MFAC control law was synthesized and guaranteed 

mathematically. 
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I. INTRODUCTION 

Model-Free Adaptive Control (MFAC) is a 

data-driven control technique that uses system 

input/output data to design the controller. MFAC 

was first introduced for a class of nonlinear objects 

in 1994 [1]. Since then, MFAC has continuously 

developed and been continuously improved [2-6], 

forming a framework system of MFAC methods [7], 

[8]. 

For MFAC, only the measured input/output 

data of the closed-loop control system are used for 

controller design without knowing explicit 

information about the object model. Because there is 

no need for a dynamic model or training process, 

MFAC hasa simple structure and low computational 

cost. Therefore, recently, quite a few adaptive 

control problems for a nonlinear system with time-

varying parameters and structures can be 

implemented using this method [9], [10]. 

The starting idea of the MFAC design is to build 

a purely mathematical model based on data, also 

known as a dynamic linearization model for the 

nonlinear system at each sampling time. The 

dynamic linearization model couldbe divided into 

three forms [11]: Compact Form Dynamic 

Linearization (CFDL), CPDL Partial Form Dynamic 

Linearization, and Full Form Dynamic Linearization 

(FFDL). CFDL compression is most commonly used 

to synthesize MFAC algorithms. Since the purely 

mathematical model deals with data, when data loss 

occurs due to sensor or network connection errors, 

the stability and sustainability of the system will be 

affected. In [12], MFAC was built using the swarm 

optimization method. Research [13] proposed using 

RBF neural network and evolutionary optimization 

algorithm to improve the robustness and 

convergence time for MFAC. Some studies have 

shown that applying MFAC ensures convergence 

bias [12], [13]. In addition, the stability and 

robustness of the system can be guaranteed by 

certain assumptions and statistical methods [14]. 

This paper studies and describes the dynamics 

of a class of dynamically linearized SISO nonlinear 

objects in compressed form and proposes a modified 

CFDL-MFAC control law, which is strictly 

mathematically guaranteed based on the solution of 

The optimization problem minimizes the objective 

function using an extended differential tool, helping 

to overcome the effects of data shortages due to 

network or sensor errors. The article also clarifies 

some essential assumptions and theorems as a 

premise for estimating parameters and synthesizing 

the proposed CFDL-MFAC control law. The 

parameters of the dynamic linearization model are 

estimated online using PPD (Pseudo Partial 

Derivative) theory. 
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II. COMPACT FORM DYNAMIC 

LINEARIZTON MODEL (CFDL) 

Let us consider a class of SISO discrete-time 

nonlinear systems with its input/output information. 

The data model of the system is represented as 

equation (0): 

𝑦𝑘+1 =

𝑓 (𝑦𝑘 , 𝑦𝑘−1, … , 𝑦𝑘−𝑛𝑦
, 𝑢𝑘 , 𝑢𝑘−1, … , 𝑢𝑘−𝑛𝑢

)(0) 

Where: 

𝑢𝑘 ∈ 𝑅, 𝑦𝑘 ∈ 𝑅 are the input and output of the 

system at time step 𝑘. 

𝑛𝑢, 𝑛𝑦 ∈ 𝑁 arepositive integers representing the 

unknown orders of the input and output. 

𝑓(∗) ∈ 𝑅𝑛𝑢+𝑛𝑦+2is an unknown nonlinear 

function. 

𝑘 represents time; the interval from step 𝑘 to 

𝑘 + 1 corresponds to one sampling period. 

Assumption 123: Assumption 123 consists of 3 

sub-assumptions as follows: 

1) The inputs and outputs of the system (0) can 

be observed and controlled. 

2) The partial derivatives of 𝑓(∗) with respect to 

the control input 𝑢𝑘 are continuous or smooth. 

3) The system (0) satisfies a general Lipschitz 

condition, meaning that for any 𝑘 and Δ𝑢𝑘 ≠  0, it 

holds that: 

|𝛥𝑦𝑘+1| ≤ 𝑏|Δ𝑢𝑘|;  𝑏 > 0   (1) 

Where: Δ𝑦𝑘+1 = 𝑦𝑘+1 − 𝑦𝑘;  Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 

Remarks: 

From a practical perspective, Assumptions 123 

for system (0) is reasonable and acceptable. The 

second sub-assumption represents a specific 

condition for designing a control system for a 

general nonlinear system. The third sub-assumption 

limits the rate of output change allowed by the 

system before applying the control law [10]. It 

defines an upper bound to restrict the rate of output 

change based on the tracking error. From an energy 

perspective, the rate of energy change within a 

system cannot go to infinity if the rate of input 

energy change is finite. 

 

 

Theorem 1: 

If the SISO nonlinear system (0) satisfies 

Assumption 123, then there exists a PPD 𝜙𝑘. 

Moreover, if 𝛥𝑢𝑘 ≠  0, the system (0) can be 

described by the compressed linearized model (2): 

𝛥𝑦𝑘+1 = 𝜙𝑘𝛥𝑢𝑘;  𝜙𝑘 ≤ 𝑏, 𝑏 > 0  (2) 

Proof:  

According to the third sub-assumption, the 

difference equation (2) can be written as: 

𝑦𝑘+1 = 𝑦𝑘 + 𝜙𝑘𝛥𝑢𝑘    (3) 

In that case, the output differential of the system 

is given by (4): 

Δ𝑦𝑘+1 = 𝑓 (𝑦𝑘 , … , 𝑦𝑘−𝑛𝑦
, 𝑢𝑘, … , 𝑢𝑘−𝑛𝑢

) 

              −𝑓 (𝑦𝑘 , … , 𝑦𝑘−𝑛𝑦
, 𝑢𝑘−1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛𝑢

) 

             +𝑓 (𝑦𝑘 , … , 𝑦𝑘−𝑛𝑦
, 𝑢𝑘−1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛𝑢

) 

             −𝑓 (𝑦𝑘−1, … , 𝑦𝑘−𝑛𝑦−1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛𝑢−1) (4) 

According to the second assumption and the 

Cauchy mean value theorem [15], Eq. (4) can be 

written in the form of (5): 

𝛥𝑦𝑘+1 =
𝛿𝑓

𝛿𝑢𝑘

Δ𝑢𝑘 + Υ𝑘 (5) 

Where 
𝛿𝑓

𝛿𝑢𝑘
 is the partial derivative of the 

function 𝑓(∗)to the variable 𝑛𝑦 + 2 at a certain point 

lying 

between(𝑦𝑘 , … , 𝑦𝑘−𝑛𝑦
, 𝑢𝑘−1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛𝑢

)
𝑇

and 

(𝑦𝑘 , … , 𝑦𝑘−𝑛𝑦
, 𝑢𝑘, 𝑢𝑘−1, … , 𝑢𝑘−𝑛𝑢

)
𝑇

. 

And Υ𝑘 is determined as follows:  

Υ𝑘 = 𝑓 (𝑦𝑘 , … , 𝑦𝑘−𝑛𝑦
, 𝑢𝑘−1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛𝑢

) 

            −𝑓 (𝑦𝑘−1, … , 𝑦𝑘−𝑛𝑦−1, 𝑢𝑘−1, … , 𝑢𝑘−𝑛𝑢−1) (6) 

At each specific time step 𝑘, we have: 

Υ𝑘 = Γ𝑘Δ𝑢𝑘     (7) 

When Δ𝑢𝑘 ≠ 0, the equation (8) has a solution 

Γ𝑘 =
Υ𝑘

Δ𝑢𝑘
, thus (7) always exists. By combining (5) 

and (7), we obtain: 
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𝛥𝑦𝑘+1 =
𝛿𝑓

𝛿𝑢𝑘

Δ𝑢𝑘 + Γ𝑘Δ𝑢𝑘 

           = (
𝛿𝑓

𝛿𝑢𝑘

+ Γ𝑘) Δ𝑢𝑘 
(8) 

Let: 
𝛿𝑓

𝛿𝑢𝑘
+ Γ𝑘 = 𝜙𝑘, we obtain: 

𝛥𝑦𝑘+1 = 𝜙𝑘Δ𝑢𝑘    (9) 

According to Assumption 123, we have 

|𝛥𝑦𝑘+1| ≤ 𝑏|Δ𝑢𝑘|, 𝑏 > 0, from which we can 

conclude 𝜙𝑘 ≤ 𝑏.  

The theorem has been proven.  ∎ 

 

Fig. 1: Illustration of the concept of PPD 

Fig. 1 showsthat the Pseudo Partial Derivative 

(PPD) is determined at three points: (𝑢𝑘−2, 𝑦𝑘−1), 

(𝑢𝑘−2, 𝑦𝑘−1) and  (𝑢𝑘−2, 𝑦𝑘−1).Accordingly, the 

SISO nonlinear system is dynamically linearized in 

the compact form with the gradients 𝜙𝑘−1 and 𝜙𝑘. 

III. MODEL-FREE ADAPTIVE 

CONTROL BASED ON COMPACT FORM 

DYNAMIC LINEARIZATION (MFAC-

CFDL) 

To synthesize the control law, commonly, a cost 

function 𝐽(∗) representing the squared difference 

between the system output and the model output is 

used. However, the parameters estimated using the 

derivatives of this type of cost function often exhibit 

high sensitivity to inaccurate data sources caused by 

noise or sensor errors. Studies [11] have employed 

the cost function 𝐽(𝑢𝑘), but for mathematical 

convenience, the proposed paper introduces and 

interprets the cost function 𝐽(Δ𝑢𝑘) as the differential 

function of the control signal Δ𝑢𝑘 and the tracking 

error 𝑒𝑘+1.  

𝐽(Δ𝑢𝑘) = 𝑒𝑘+1
2 + 𝛾Δ𝑢𝑘

2   (10) 

Where:  𝑒𝑘+1 = 𝑦𝑘+1
∗ − 𝑦𝑘+1 

𝑦𝑘+1
∗  is the desired output signal. 

𝛾 is a hyperparameter, 𝛾 > 0. 

Moreover, according to Theorem 1 and 

Assumption123, we have:  

𝑦𝑘+1 = 𝑦𝑘 + 𝜙𝑘𝛥𝑢𝑘    (11) 

Combining (10) and (11), we obtain:  

𝐽(Δ𝑢𝑘) = (𝑦𝑘+1
∗ − 𝑦𝑘 − 𝜙𝑘𝛥𝑢𝑘)2 + 𝛾Δ𝑢𝑘

2 (12) 

To minimize the objective function (11), we 

take the derivative of 𝐽(Δ𝑢𝑘) to Δ𝑢𝑘, which leads to 

the equation (13): 

𝜕𝐽(Δ𝑢𝑘)

𝜕Δ𝑢𝑘

= 2𝜙𝑘
2Δ𝑢𝑘 − 2(𝑦𝑘+1

∗ − 𝑦𝑘) + 2𝛾Δ𝑢𝑘

= 0 

(13) 

Solving equation (13) results in: 

Δ𝑢𝑘 =
𝜙𝑘

𝛾 + 𝜙𝑘
2

(𝑦𝑘+1
∗ − 𝑦𝑘) 

⇒  𝑢𝑘 = 𝑢𝑘−1 +
𝜙𝑘

𝛾 + 𝜙𝑘
2

(𝑦𝑘+1
∗ − 𝑦𝑘) (14) 

Therefore, the control signal 𝑢𝑘 at time 𝑘 

depends on the sum of the control signal 𝑢𝑘−1 at 

time 𝑘 − 1and an additional control term that 

depends on the measured data and the unknown 

parameter 𝜙𝑘. To adjust the amount of the additional 

control term (related to the speed of the control 

signal), we introduce a parameter 𝜌 > 0 in Eq. (14), 

representing the step size of the control signal 𝑢𝑘. 

Then, Eq. (14) becomes:  

𝑢𝑘 = 𝑢𝑘−1 +
𝜌𝜙𝑘

𝛾 + 𝜙𝑘
2

(𝑦𝑘+1
∗ − 𝑦𝑘) (15) 

In order to make 𝑢𝑘 explicit, the unknown 

parameter 𝜙𝑘 needs to be estimated. With a similar 

structure as (10), the paper uses the objective 

function 𝐽(�̂�𝑘)to estimate the PPD for 𝜙𝑘, which 

takes the form of (16). 

𝑦𝑘+1 

  𝑦 

𝑦𝑘  

𝑦𝑘−1 

𝑢 𝑢𝑘 𝑢𝑘−1 𝑢𝑘−2 

𝜙𝑘 

𝜙𝑘−1 
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𝐽(�̂�𝑘) = (𝑦𝑘 − 𝑦𝑘−1 − �̂�𝑘Δ𝑢𝑘−1)
2
 

+𝜇(�̂�𝑘 − �̂�𝑘−1)
2
 

(16) 

Where �̂�𝑘 is the estimation of 𝜙𝑘 at step 𝑘, and 

𝜇 is a hyperparameter, 𝜇 > 0. 

Taking the derivative of 𝐽(�̂�𝑘)to �̂�𝑘in (12), get 

equation (17): 

𝜕𝐽(�̂�𝑘)

𝜕�̂�𝑘

= 2(Δ𝑢𝑘−1
2 + 𝜇)�̂�𝑘 − 2𝜇�̂�𝑘−1 

             −2Δ𝑢𝑘−1(𝑦𝑘 − 𝑦𝑘−1) (17) 

𝜕𝐽(�̂�𝑘)

𝜕�̂�𝑘

= 0                                           (18) 

(Δ𝑢𝑘−1
2 + 𝜇)�̂�𝑘 − 𝜇�̂�𝑘−1   

− Δ𝑢𝑘−1(𝑦𝑘 − 𝑦𝑘−1) = 0  (19) 

From (19), �̂�𝑘 is computed: 

�̂�𝑘 = �̂�𝑘−1 +
Δ𝑢𝑘−1(Δ𝑦𝑘 − �̂�𝑘−1Δ𝑢𝑘−1)

𝜇 + Δ𝑢𝑘−1
2  (20) 

To adjust the estimation step size for the 

parameter (the rate of parameter adaptation), we 

introduce a parameter 𝜂 > 0, representing the 

magnitude of the estimation step �̂�𝑘. In this case, 

Eq. (20) becomes: 

�̂�𝑘 = �̂�𝑘−1 +
𝜂Δ𝑢𝑘−1(Δ𝑦𝑘 − �̂�𝑘−1Δ𝑢𝑘−1)

𝜇 + Δ𝑢𝑘−1
2  (21) 

The estimated PPD �̂�𝑘 is obtained from the 

recursive formula (21), where the hyperparameter 

𝜇prevents singularity when the denominator of (21) 

becomes zero. The PPD parameter is updated at each 

time step 𝑘 using the measured input/output data 

during the operation of the control system. 

The sufficient condition for �̂�𝑘: If |𝜙𝑘| ≤ 𝜖 or 

|Δ𝑢𝑘−1| ≤ 𝜖, with 𝜖 > 0 then �̂�𝑘 = �̂�1. Here, �̂�1is 

an initial value. 

Remarks: 

- The parameter estimation �̂�𝑘 at time 𝑘 is 

wholly determined as it only depends on the data 

(Δ𝑦𝑘), the control signal (Δ𝑢𝑘−1), and its value at the 

previous time 𝑘 − 1. 

- The reset mechanism �̂�𝑘 = �̂�1 to provide the 

parameter estimation algorithm (21) with a reference 

parameter closely following the parameter changes 

over time. 

- According to the separation principle [15], by 

combining a stable observer with a stable controller, 

we obtain a stable dynamical system that includes 

both the observer and thecontroller. Therefore, it is 

possible to replace �̂�𝑘 with 𝜙𝑘 in equation (15), 

resulting in the synthesized control signal: 

𝑢𝑘 = 𝑢𝑘−1 +
𝜌�̂�𝑘

𝛾 + �̂�𝑘
2

(𝑦𝑘+1
∗ − 𝑦𝑘) (22) 

Theorem 2: 

Suppose the system (0) satisfies Assumption 

123. If the CFDL-MFAC control law (15) is 

designed with 𝛾 > 𝛾𝑚𝑖𝑛 > 0, then the closed-loop 

control system is asymptotically stable. 

Proof: According to the assumption, if one of 

the conditions |𝜙𝑘| ≤ 𝜖 or |Δ𝑢𝑘| ≤ 𝜖 is satisfied, 

then �̂�𝑘 is bounded. Using the error in estimating the 

PPD, denoted by �̃�𝑘 = �̂�𝑘 − 𝜙𝑘, and the parameter 

estimation algorithm (21), the error in estimating the 

PPD �̃�𝑘 is obtained. 

�̃�𝑘 = (1 −
𝜂Δ𝑢𝑘−1

2

𝜇 + Δ𝑢𝑘−1
2 ) �̃�𝑘−1 + 𝜙𝑘−1 − 𝜙𝑘 (23) 

Taking the absolute value of both sides of (23), 

we obtain the inequality (24). 

|�̃�𝑘| ≤ |(1 −
𝜂Δ𝑢𝑘−1

2

𝜇 + Δ𝑢𝑘−1
2 )| |�̃�𝑘−1| 

+|𝜙𝑘−1 − 𝜙𝑘| 

(24) 

Therefore, the term 
𝜂Δ𝑢𝑘−1

2

𝜇+Δ𝑢𝑘−1
2  is monotonically 

increasing to Δ𝑢𝑘−1
2 , and its minimum value is given 

by (25): 

𝜂𝜖2

𝜇 + 𝜖2
 (25) 

We can choose 𝜂 suitably. For example, if we 

consider 0 < 𝜂 ≤ 2 and 𝜇 > 0, then there exists a 

number 𝛼 such that: 

0 ≤ |(1 −
𝜂Δ𝑢𝑘−1

2

𝜇 + Δ𝑢𝑘−1
2 )| 

      ≤ 1 −
𝜂𝜖2

𝜇 + 𝜖2
= 𝛼 < 1 

 

(26) 
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Suppose |𝜙𝑘| ≤ 𝑏; in the proof of Theorem 1, 

we have already established: 

|𝜙𝑘−1 − 𝜙𝑘| ≤ 2𝑏   (27) 

Combining (24), (26), and (27), we obtain: 

|�̃�𝑘| ≤ 𝛼|�̃�𝑘−1| + 2𝑏 =  𝛼|�̃�𝑘−1| +
2𝑏(1 − 𝛼)

1 − 𝛼
 

≤ 𝛼2|�̃�𝑘−2| + 2𝑏(𝛼 + 1) 

= 𝛼2|�̃�𝑘−2| +
2𝑏(1 − 𝛼2)

1 − 𝛼
 

        ≤ 𝛼3|�̃�𝑘−3| + 2𝑏(𝛼2 + 𝛼 + 1) 

 = 𝛼3|�̃�𝑘−3| +
2𝑏(1 − 𝛼3)

1 − 𝛼
 

      ≤ ⋯                                                                 

    ≤ 𝛼𝑘−1|�̃�1| + 2𝑏(𝛼𝑘−2 + ⋯ + 𝛼 + 1) 

 = 𝛼𝑘−1|�̃�1| +
2𝑏(1 − 𝛼𝑘−1)

1 − 𝛼
 

 

 

 

 

 

 

 

 

 

 

(28) 

The formula (28) shows that: 

|�̃�𝑘| ≤ 𝛼𝑘−1|�̃�1| +
2𝑏(1 − 𝛼𝑘−1)

1 − 𝛼
 

So, �̃�𝑘 is bounded. 

Denoting the output error as: 

𝑒𝑘+1 = 𝑦𝑘+1
∗ − 𝑦𝑘+1   (29) 

Substituting the output value of the compact 

model (11) into (29), we have: 

|𝑒𝑘+1| = |𝑦𝑘+1
∗ − 𝑦𝑘+1| 

          = |𝑦𝑘+1
∗ − 𝑦𝑘 − 𝜙𝑘Δ𝑢𝑘| 

        ≤ |1 −
𝜌𝜙𝑘�̂�𝑘

𝛾 + �̂�𝑘
2

| × |𝑒𝑘| 
(30) 

Suppose 𝛾𝑚𝑖𝑛 =
𝑏2

4
. Since �̂�𝑘 is bounded (as 

inferred from the assumption of the sufficient 

condition), there exists a constant 0 < 𝑀 < 1 such 

that: 

0 < 𝑀 ≤
𝜙𝑘�̂�𝑘

𝛾 + �̂�𝑘
2
 

          ≤
𝑏�̂�𝑘

𝛾 + �̂�𝑘
2

≤
𝑏�̂�𝑘

2�̂�𝑘√𝛾
<

𝑏

2√𝛾𝑚𝑖𝑛

= 1 
(31) 

Based on (31) and the condition 𝛾 > 𝛾𝑚𝑖𝑛, then 

there exists a number 𝛽 such that: 

|1 −
𝜌𝜙𝑘�̂�𝑘

𝛾 + �̂�𝑘
2

| = 1 −
𝜌𝜙𝑘�̂�𝑘

𝛾 + �̂�𝑘
2
 

≤ 1 − 𝜌𝑀 = 𝛽 < 1 (32) 

Combining (30) and (32), the tracking error 

converges to 0, and the bound on the error satisfies 

the condition: 

|𝑒𝑘+1| ≤ 𝛽|𝑒𝑘| ≤ 𝛽2|𝑒𝑘−1| ≤ ⋯ ≤ 𝛽𝑘|𝑒1| (33) 

The theorem has been proven.     ∎ 

 

Fig.2: Block Diagram of a Closed-loop Nonlinear 

SISO System 

Remarks: 

Figure 2 illustrates the simple structure of the 

CFDL-MFAC controller. The unknown dynamic 

model parameters �̂� are estimated using input/output 

data. The data is also used to synthesize the control 

input u. Figure 3a presents the detailed structure of 

the control structure diagram in Figure 2, 

highlighting the estimation algorithm based on the 

optimization results of the objective function. Figure 

3b demonstrates the input/output data flow diagram 

of the system. 

Object 

(un-modelled) 

Estimator 

Controller 𝑦 𝑦𝑘
∗  

�̂� 

 

 
u 
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a) Structure diagram of CFDL-MFAC 

 

b) Data stream Diagram of CFDL-MFAC 

Fig. 3: Flowchart of the Model-free Adaptive 

Control Algorithm for the CFDL-MFAC 

IV. MODIFIED CFDL-MFAC METHOD 

In practice, the difference between 

consecutive sampling instances is usually minimal 

and does not significantly impact. Furthermore, in 

cases where there is a lack of data due to network 

errors or sensor malfunctions, the difference 

between consecutive sampling instances can be zero. 

Therefore, an extended derivative is proposed to 

synthesize the improved MFAC controller. 

The extended derivative of the tracking error is 

given by: 

Δ𝑒𝑘+1 = 𝑒𝑘+1 − 𝑒𝑘 

  = (𝑦𝑘+1
∗ − 𝑦𝑘+1) − (𝑦𝑘

∗ − 𝑦𝑘) 

           = Δ𝑦𝑘+1
∗ − Δ𝑦𝑘+1  (34) 

The proposed objective function is as (35): 

𝐽(𝑢𝑘) = [
𝑒𝑘+1

Δ𝑒𝑘+1
]

𝑇

𝑆 [
𝑒𝑘+1

Δ𝑒𝑘+1
] + 𝛾(𝑢𝑘 − 𝑢𝑘−1)2 (35) 

With 𝑆 = [
1 0
0 𝑠

] is the weighting matrix, and 𝑠is a 

selected constant parameter during design. Substitute 

the output of the compression model (11) into (35): 

𝐽(𝑢𝑘) = 𝐴0Δ𝑢𝑘
2 − 2𝐵0Δ𝑢𝑘 

                   +(𝑦𝑘+1
∗ − 𝑦𝑘)2 + 𝑠(Δ𝑦𝑘+1

∗ )2 (36) 

Where: 

𝐴0 = 𝛾 + (1 + 𝑠)𝜙𝑘
2 

𝐵0 = 𝜙𝑘(𝑦𝑘+1
∗ − 𝑦𝑘 + 𝑠Δ𝑦𝑘+1

∗ ) 
(37) 

Consider the expanded differential quantity 

according to (38) with 𝑁 as the sampling interval. 

Δ𝑒𝑘+1 = (𝑦𝑘+1
∗ − 𝑦𝑘−𝑁+1

∗ ) − (𝑦𝑘+1 − 𝑦𝑘−𝑁) 

     = Δ𝑦𝑘+1
∗ − Δ𝑦𝑘−𝑁 (38) 

By applying the expanded differential (38) and 

solving the minimizing problem for the objective 

function (36), we obtain the control law (39) and the 

estimated value of 𝜙𝑘 as given by (40): 

𝑢𝑘 = 𝑢𝑘−1 +
𝜌�̂�𝑘(𝑦𝑘+1

∗ − 𝑦𝑘)

𝛾 + (1 + 𝑠)�̂�𝑘
2

 

    +
𝑠[𝑦𝑘+1

∗ − 𝑦𝑘−𝑁+1
∗ − (𝑦𝑘 − 𝑦𝑘−𝑁)]

𝛾 + (1 + 𝑠)�̂�𝑘
2

 
(39) 

Where: 𝛾 > 0, 𝜌 ∈ (0,1]. 

�̂�𝑘 = �̂�𝑘−1 +
𝜂Δ𝑢𝑘−1(Δ𝑦𝑘 − �̂�𝑘−1Δ𝑢𝑘−1)

𝜇 + Δ𝑢𝑘−1
2  (40) 

Where: 𝜇 > 0, 𝜂 ∈ (0,1]. 

V. CONCLUSION 

The paper has presented the compact form 

dynamic linearization model for a nonlinear system 

and synthesized an adaptive control law based on the 

    Out:  𝑢𝑘−2, 𝑢𝑘−1 

    In:    𝑦𝑘 , 𝑦𝑘−1 

Δ𝑢𝑘−1 = 𝑢𝑘−1 − 𝑢𝑘−2 
Δ𝑦𝑘−1 = 𝑦𝑘 − 𝑦𝑘−1 

Setpoint: 𝑦𝑘
∗  

𝜙𝑘−1 

PPD: 𝜙𝑘 

Out: 𝑢𝑘 

𝑢𝑘 𝑦𝑘 

Δ𝑢𝑘 
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∗ 

𝑒𝑘 
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Differentiation 
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estimated partial derivative parameter (PPD) for a 

class of SISO nonlinear objects. To synthesize the 

CFDL-MFAC control law, the article proposed a 

new representation of the objective function for the 

optimization problem of minimizing the objective 

function, applying extended differential theory to 

solve the problem of loss and lack of data due to 

network connection or sensor error. 

Mastering the data has brought the 

conventional model based on physical and chemical 

laws to a purely mathematical model thanks to the 

dynamic linearization tool. The simple structure of 

the MFAC algorithm and dynamic linearized data 

model provide adaptive control solutions for many 

complex systems. As long as data is available, 

systems with strong nonlinearities, non-minimum 

phases, and time-varying delays become apparent 

with explicit mathematical representations. In the 

following studies, the authors apply CFDL-MFAC 

to an optical control system with measurement 

delay, adding visual simulation as a basis for further 

algorithm comparison and evaluation. 
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