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ABSTRACT 
Microstructure evolution during thermo-mechanical treatment of steel is of significant importance to obtain the 

desired mechanical properties in the final product for various applications. Cellular Automata model in 

mesoscale is one of the most important simulation methodologies for studying the recrystallization and grain 

growth processes in materials. In the present work, temporal evolution of microstructure in austenitic light 

weight steel has been simulated using probabilistic Cellular Automata technique. Two dimensional 
microstructural maps have been generated to visualize growth kinetics at various temperatures. The simulation 

time step has been calibrated to the physical time of the process in order to compare the model prediction with 

experimental data of grain growth kinetics for austenitic Fe-Mn-Al-C steel and have been found in good 

agreement. It has been found that the average grain size increases with time and the number of grains decreases 

resulting grain coarsening at a fixed isothermal holding temperature. The predicted grain growth exponent is 

corroborated well with the published literature data. The grain size distribution has been found to be self-similar, 

indicating that the average grain size has shifted to larger grain size which closely resembles experimental 

results.  
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I. INTRODUCTION 
Low density steels have become a 

paramount consideration for automobile applications 

to reduce environmental burden and fuel 

consumption [1-3].  The properties of these steels are 

highly influenced by the evolution of microstructures 

which may be austenitic, ferritic or duplex based, 

according to the phase constituents of the matrix. The 
austenitic alloys are very promising for their high 

strength, high formability and good toughness. 

Therefore, controlling the evolution of 

microstructures through processing is very crucial to 

optimize the performance of these materials. The 

material properties, specifically the mechanical 

behavior significantly depend on grain size and thus, 

the grain growth phenomenon has tremendous 

technological importance for materials application 

point of view. For example, in structural applications 

at low temperatures, generally a smaller grain size is 
required to optimize strength as well as toughness, 

whereas for high temperature creep resistance 

requirements, a large grain size is preferable. Further, 

in steels, the kinetics of austenite transformation 

during cooling is sensitive to the prior austenite grain 

size. Therefore, a sound understanding of grain 

growth phenomenon is required to control the 

microstructures and properties of materials during its 

processing. This also necessitates to control a large 

number of variables associated with microstructure 

evolution which makes the problem challenging. 

Grain growth predominantly occurs when a 

material is exposed to a high temperature. The 

driving force for grain growth comes from the 
reduction of free energy of the total area of the 

system. Over the last few decades, a number of 

analytical and numerical approaches have been 

developed to describe the evolution of grain growth 

process [4-6]. Mesoscale modelling is an emerging 

computation tool to simulate the evolution of 

microstructure and extensively used in the area of 

physical phenomena such as solidification, grain 

growth, recrystallization and phase transformation.  

This modelling technique includes methodologies 

such as Potts Monte Carlo (MC) models, cellular 

automata (CA), Ginzburg-Landau-type phase field 
kinetic model etc [7-10]. In both the Monte Carlo and 
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Cellular Automata methods, the microstructure is 

discretized on a regular grid and both are successfully 

applied to simulate the recrystallization and grain 

growth processes. The Monte Carlo model is 

successful due to its flexibility and computational 

simplicity [7,9]. But, an important shortcoming of 

MC model is the absence of temperature dependence 

of average grain size as well as correspondence 
between Monte Carlo steps and real time. This 

inability makes this method inappropriate when 

comparing characteristics of simulated grain growth 

data with experimental investigation.  In contrast to 

the MC method, the dynamics governed by the CA 

method are deterministic and variables like 

temperature are better defined [10-13]. Further, the 

CA method use only local rules and avoid the need to 

generate high quality random numbers for the 

simulation of microstructure evolution. In current 

times, the phase-field modeling is very promising for 
simulating various processes at the mesoscale level. 

The gamut of applicability of phase field method is 

growing rapidly because of high performance 

computing technique. The phase field model has been 

applied successfully in the areas of solidification, 

solid-state phase transformations, grain growth etc 

[14-15]. However, the computational effort involved 

in simulating an evolving microstructure using phase 

field method is time consuming.  

In this investigation, a Cellular Automata 

modelling framework has been developed to 

understand the grain growth behavior of austenitic 
steel during annealing. The grain growth models 

incorporate some of the thermodynamic parameters 

like grain boundary energy, activation energy of 

grain boundary diffusion etc. These parameters are 

not always easily obtainable from open literature for 

different alloy systems. In spite of the intensive 

studies in the simulation of microstructure evolution, 

spatial and temporal evolution of complex 

microstructure in materials still remains a challenging 

problem. In cellular automata, the system evolves by 

applying a set of deterministic rules which depend on 
some of the specific variable as well as neighboring 

cells of a lattice system. In spite of such simplicity of 

CA, it shows a significant complexity in their 

behavior that emerges from simple rules and hence, 

fascinated materials researchers. In materials 

modelling, people often faced with very complex 

behavior based on physical mechanisms that cannot 

be modelled directly. With cellular automata, such 

complex behavior can be modelled with very simple 

rules and computations, which can yield behavior 

that is very similar to known materials phenomena. In 

traditional CA modeling, a time step is determined by 
the previous time step. In probabilistic CA, 

deterministic rules are replaced by stochastic rules 

that depend on randomly changing a state from one 

configuration to other. Probabilistic Cellular 

automata have been applied successfully to simulate 

the evolution of grain growth in polycrystals. 

However, this modelling technique has no real time 

of physical system owing to its probabilistic nature. 

Therefore, difficulties arise during conversion of 

simulated time (CA step) to real time and thus 

verifying that the model correctly captures the 
underlying physio-chemical processes is not straight 

forward. 

 Although, CA model has been developed 

long ago, however, it found wide applications in the 

diverse areas of science and engineering in the last 

few decades [16-21]. The model has been used 

extensively to simulate mesoscopic behaviour of 

materials, such as solidification [18-19], grain 

growth, recrystallisation [10-13, 16,17], texture 

evolution [20] and phase transformation [21]. In 

particular, it was very successful in describing grain 
growth kinetics in polycrystalline materials. Initially, 

Hesselbarth et al. [10] proposed CA method to 

simulate recrystallization behavior in 2-dimensions. 

Thereafter, the method has been applied in many 

material behavior processes such as static and 

dynamic recrystallization and the influences of 

texture and precipitates on grain growth process. 

Although this methodology has been applied widely 

in materials science, however, some of the critical 

issues have not yet been taken into consideration in 

depth using CA technique. Except very few [22], in 

most of the simulations the spatial dimensions and 
time interval employed are not calibrated by a 

characteristic physical length or time scale but 

investigated in a generic manner and the literature 

information in this domain is rather scanty. 

 

In this paper, grain growth kinetics of low 

density steel during annealing has been studied using 

Cellular Automata simulation framework. Temporal 

evolution of microstructure in two dimensions has 

been simulated at different temperatures to study the 

effect of temperature on grain growth kinetics. In the 
simulation, the anisotropy of the grain boundary 

energy and mobilities of grain boundaries have been 

incorporated in the model. The conversion of Cellular 

Automata step to real time is attempted based on 

curvature-driven grain growth mechanism and the 

simulation results have been calibrated to real time of 

the grain growth process in order to compare with the 

experimental data. The simulation results have been 

analyzed and validated in the light of experimental 

data obtained from literature [23].  

 

1.1   THE CELLULAR AUTOMATA METHOD 
In Cellular automata, system can be divided 

into regular finite number of cells (square, triangular 

or hexagonal) where each cell may have a definite 
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number of states. During the evolution of the system 

a set of homogeneous local rules are obeyed through 

discrete time steps which represent the dynamics of 

the systems. These local rules are defined so that the 

required governing laws are fulfilled. The updated 

state of each cell is determined using these states 

switching rules which depend on the previous 

configuration of the selected site as well as 
configuration of the neighboring sites. Fig. 1(a, b) 

shows a two dimensional square cellular automata 

grid, the neighborhood is typically defined to be the 

four (Von Neumann) or eight (Moore) adjacent 

neighboring cells [11].  

 In this method, the microstructure is mapped 

onto a discrete two dimensional square lattice system. 

In two dimensions, the cell neighbourhood is defined 

using either the Von Neumann or Moore method. To 

produce the initial microstructure, the orientation of 

lattice sites is initialized randomly by assigning an 
integer number, Si between 1 and Q to each lattice 

site, where Si is the number of a grain orientation and 

Q is the maximum number of possible grain 

orientations in the system. All sites within a grain 

have the same orientation number Si, and the grain 

boundaries are interfaces between two neighboring 

sites with different orientation numbers. Periodic 

boundary conditions are used to avoid the finite size 

effects. In this boundary condition, a site on the edge 

of the domain is connected to sites on the opposite 

edges. The simulation steps are as follows: 

(i) A lattice site is selected which takes the orientation of 
one of its neighborhood following a given transition 

rule. 

(ii) A cell must overcome the energy barrier, which is a 

function of temperature, to attain its new state. The 

probability (P) of successful transition of the state in 

a cell is given by a simple equation (Equation 1) [24]: 

)/exp( RTEP    ----------

------ (1) 

where E is the energy barrier, T is temperature in 
absolute scale and R is the universal gas constant. 

(iii)  The transition of atoms depends on the free energy 

difference (GA) of atoms as well as on the energy 
barrier before and after jumping. 

(iv)  The energy of a cell is given by the sum of thermal 

energy (GT) and grain boundary energy (GB). The 

thermal energy of the cells is assumed to follow the 

Maxwell–Boltzmann distribution. According to 

Maxwell-boltzmann statistics, the thermal 

energy
T

G can be defined as [25]: 

())ln( RANDRTG
T

  ----------

------ (2) 

where RAND() is any random number between 0-1. 

The grain boundary energy is given by the 

Hamiltonian, as represented in Equation 3: 

)1()(
,


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GG   ----------
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where )1(
,


sjsi

 is the count of non-similar 

neighbour sites of the selected site. From the Read-

Shockley equation (Equation 4) the grain boundary 

energies are calculated. 

)]log(sin1[sin)(
0

  GG
B

 
---------------- (4) 

where, GB() is the boundary energy as a function of 

the misorientation angle, , the
0

G is the maximum 

grain-boundary energy seen at a high angle. The 

misorientation angle is calculated based on Equation 

5: 













 


Q

Q

2


                 --------------- (5) 

where Q  is the difference between the orientation 

numbers of two adjacent grains. 

(v) In the CA model [24], the energies are compared 

directly. If the thermal energy is greater than the 

difference between the activation free energy and the 
total boundary energy of the cell then the grain 

boundary moves.   

    

 
i

BAT
GGG                           ----------

------- (6) 

Equation 6 represents the transition rule. If Equation 

6 is satisfied, the boundary passes through the cell 
and the selected site is replaced with the random 

neighbour site.  

(vi)  The unit of time is defined as one Cellular Automata 

Steps (CAS) per site, which corresponds to N re-

orientation attempts where N is the total number of 

sites. 

1.2 SIMULATION METHODOLOGY 

The microstructure of polycrystalline 

material consists of grains of different sizes and is 

depicted by an average grain size and a grain size 

distribution. The average grain size under normal 
isothermal grain growth conditions obeys power law 

growth kinetics of the form [23]:   

   ktdd
mm


0
  

 --------------(7) 
where d and d0 are the final and initial average grain 

size, respectively, m is the growth exponent and 

depends on many parameters including alloy 
composition and annealing temperature, t is the 

annealing time and k is a constant which exhibits 

Arrhenius temperature dependence. In the case of d 

 d0, the kinetics is reduced to 

     

 ------------(8) 
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where the grain growth exponent, n, is equal to 1/m.   

To obtain one-to-one correspondence 

between CA technique and real parameters of grain 

size and time, it has been assumed that the real grain 

size is related to the CA grain size as 

 

      --------------(9) 

where dR is the real grain size, dCA is the simulated 

grain size, and the constant, k1 is a scaling factor. The 

relationship between real time and CAS is defined 

[26] as  

 

   ----------

---(10) 

The quantity, k2, in the Equation 10 represents 

temperature-dependent boundary mobility given by 

           

 --------------(11) 

where k0 is the pre-exponential factor, QA is the grain 

growth activation energy, T is the temperature on 

absolute scale, and R is the universal gas constant. 

In the present work, the Cellular Automata 

technique has been used to simulate the grain growth 

kinetics in austenitic steel (Fe-30.8Mn-9.2Al-0.7Si-

1.0C-0.5Mo, wt%) under isothermal conditions.  In 

this simulation, the initial grain structure was 

generated randomly using a 2-D square lattice system 

of size 200200 with grid size of 2 m. In order to 
avoid frequent impingement of grain of similar 

orientation, a large value has been assigned to Q (Q = 
256) [12]. The value of activation energy has been 

taken as 467 kJ/mol [23], which is the activation 

energy for grain growth in the lightweight steel 

considered in this paper. In this simulation, average 

grain size has been computed over a time range, 

which is fixed at 1800 s. In order to verify the 

predictive capability of the present model and to 

validate the simulation results with experimental 

data, the Celllular Automata Steps have been 

calculated using Equation 10 and the CA simulation 

were run for predetermined CAS for different 
temperatures and the corresponding grain size have 

been considered. The mobility values for the steel at 

varying annealing temperatures have been obtained 

from literature and are shown in Table 1 [23]. The 

atomic mobility values can be calculated from the 

change in grain diameter squared [26]. Table 2 lists 

the values of the parameters used in the developed 

code used to implement the grain growth model 

based on CA algorithm.  

 

II. RESULTS AND DISCUSSION 
In the present work, input parameters are 

initialized on the basis of experimental data to define 

the starting microstructure (Table II). The average 

grain size as a function of CAS for different values of 

Q is shown in Fig.2. It may be observed that grain 

size variation shows a dependence on Q values of 4, 

8 and 16. However, for higher Q values (Q >= 32) 

this dependence sharply diminishes as Q value 

increases. The low Q configurations consist of 

irregular and asymmetric grains and the irregularity is 

enhanced with reduced Q values. On the other hand, 
the grains in the high Q configurations are 

considerably compact and equiaxed. These 

predictions and their trend are validated and are in 

agreement with the data published in literature [12]. 

Fig. 3 depicts the variation of number of grains as a 

function of CAS which shows that grain numbers in 

the simulation system reduced progressively. This is 

in accordance with the published literature [25]. 
In Figures 4 and 5 the computed 

microstructural evolution maps are shown at different 

CAS considering both Von Neumann and Moore 
neighborhood for different temperatures, 400 °C and 

600°C, respectively. In these maps, multiple colours 

represent various crystallographic orientation of the 

lattice. Temporal evolution of grain growth has been 

clearly elucidated in Figures 4 and 5 as a function 

Cellular Automata time. It has been found that Moore 

neighborhood consideration gives better resolution, 

kinetics of grain growth remaining the same. Hence, 

throughout the simulation we have considered Moore 

neighborhood.  Coarsening of large grains by 

absorption of small grains can be observed during the 

grain growth process with the advancement of CA 
time. It has been observed by experimentally that the 

distribution of grain size on normalizing by average 

grain size remains more or less constant during the 

growth phenomenon. This definitely implies that 

during the process some grains grow, while others 

shrink, the grain ensemble remains self-similar.  

Fig. 6 shows the grain size distribution at temperature 

600 °C for different CAS. The result indicates the 

time invariance of the grain size distribution when 

plotted as a function of the normalized grain size, 

which is in agreement with the published literature 
[23]. Fig. 7 shows temporal evolution of grain size as 

a function of CAS over the temperature range 1000, 

1050 and 1075°C. The simulation has been run for 

duration up to 1800 s and the corresponding CAS has 

been computed using Equation 10. The data 

represented in the figure is the average value of at 

least five simulation runs. The relationship of CAS 

and real time depends on number of factors such as 

grain growth activation energy and temperature.  It 

may be observed (Fig. 7) that the evolution process 

follows power law growth kinetics [12] and grain 

growth is faster at elevated temperatures. The grain 
size of the product phase also depends on the relative 

rates of nucleation and growth. The value of grain 

growth exponent (n) has been extracted from the 
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slope of the plot of logarithm of grain size versus 

Cellular Automata time and obtained as 0.367, 0.394 

and 0.390, respectively (refer Fig. 7). Fig. 8 shows 

temporal evolution of grain size as a function of CAS 

at different temperatures, namely, 900, 950, 975, 

1000, 1050 and 1075 °C. The plot is obtained based 

on Equation 8 after estimating the values for ‘n’ and 

‘k’. Hillert [26] predicted the value of n to be 0.5 
using an analytical model for pure metals. The 

present CA simulation estimated the value of n in the 

range 0.37-0.41 over the temperature range of 900 – 

1075 °C, which is in agreement with the Hillert 

model. 

Fig. 9 shows the variation of average grain 

size as a function of temperature. For comparison 

purpose, the experimental data obtained from 

literature is also included in the figure superimposed 

on it. The solid line represents the best fit to the 

simulated data and the broken line represents the best 
fit to the experimental data. To verify the predictive 

capability of the present model, all the pertinent 

parameters used in the simulation has been kept 

similar to the experimental data and shown in Table 

1. Fig. 9 clearly demonstrates that present Cellular 

Automata computations are in good agreement with 

the experimental data for austenitic steel. Fig. 10 

depicts variation of grain growth exponent as a 

function of temperature, which is nearly constant 

with respect to the temperature. The model constant k 

as a function of temperature has been shown in Fig. 

11. It may be observed that k increases with the 
increase in temperature, which is consistent with 

respect to Arrhenius temperature dependence 

functionality.  

 

III. CONCLUSIONS 
The temporal evolution of grain growth has 

been simulated using Cellular Automata method. 

Two dimensional microstructural maps have been 

generated to visualize the growth kinetics at various 
temperature levels which captures the grain 

coarsening phenomena. The average grain size 

variation with CAS for different values of grain 

orientation (Q-value) has been found to be less 

sensitive to higher Q-values (>= 32). However, the 

average grain size variation shows a dependence on 

lower Q-values. The average grain size variation as a 

function of CAS has been computed. It has been 

found that grain size increases with the increase in 

temperatures and steady state grain size distribution 

is self-similar and follows log-normal distribution. 
The grain growth exponent ‘n’ has been determined 

by constructing a graph of the logarithm of average 

grain size against time for each temperature and have 

been found as 0.4±0.04, which is in reasonable 

agreement with the literature data. It has been found 

that grain size increases at elevated temperature. 

Understanding the evolution of microstructure as 

well as grain size distribution and morphology of 

microstructure during annealing is very important. 

The grain size obtained using CA simulation has 

been validated with the experimental data for light 

weight steel and has been found in good agreement. 
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Table 1: Mobility values for the lightweight steel at varying annealing temperatures. 

  Annealing Temperature Mobility( m4/ J.hr) 

1173 K (900°C)  0.194x102 

1223 K (950°C)  0.350x103 

1248 K (975°C)  1.95x103 

1273 K (1000°C)  5.63x103 

1323 K (1050°C)  8.01x103 

1348 K (1075°C)  10.9x103 
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Table 2: Input parameters for simulation [23] 

Parameters Values 

GA = QA 467 kJ/mol 

G0 25 kJ/mol 

Q 256 

R 8.314 J/mol.K 

  

 
Figure 1: Two types of neighborhood (a) Von Neumann, (b) Moore neighborhood in CA 

 

 
Figure 2: Average grain size as a function of CAS for different values of Q at 600°C 

 

 
Figure 3: Number of grains as a function of CAS at 600 °C 
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Figure 4: Temporal evolution of microstructure for 200200 square lattice at temperature 400 °C for different 

CAS (Von Neumann neighborhood) 

 

      
Figure 5: Temporal evolution of microstructure for 200200 square lattice at temperature 600 °C for different 

CAS (Moore neighborhood) 
 

 
Figure 6: Grain size distribution at temperature 600 °C for different CAS on 200200 square lattice. 
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Figure7: Average grain size as a function of CAS for different temperatures 

                             

 
Figure 8: Average grain size as a function of CAS for different temperatures 
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Figure 9:  Average grain size as a function of time for different temperatures 

 

 
Figure 10: Variation of grain growth exponent, n as a function of temperature 

               

 
Figure 11: Variation of model constant, k as a function of temperature 


