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ABSTRACT

One of the most famous equations inZ? is that of Diophantine. In this paper, we contribute the resolution of the
quadratic Diophantine equation of the typeD: x% — p(t)y? — (8p'(t) + 4)x + 16p(t)y = 0. Our method
consists in carryng out the transformation of the initial equation in order to obtain an auxiliary simple equation.
The resolution of the auxiliary equation that we have between established finally allows us to find all the
solutions of D. We also establish recurrence relation of these solutions. Our research results generalize some

works of Amara Chandoulet al in 2011.
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I. INTRODUCTION.

A Diophante  equationis a  polynomial
equationwithinteger coefficients to besolvedin Z* .
It was Diophante Alexandre who made the first
study of such an equation. There are different types
of Diophantineequations in particular,
quadraticDiophantineequationswithinteger
coefficients of the form:

ax> + bxy+cy*+dx+ey+f=0. (1)
Without a doubt, one of the
mostfamousDiophantineequationsisthat of Pell:
x2—dy?* =1 2)

Where, the integer d is not a perfect square. The first
study of Pell'sequationwas made by the
IndianmathematiciancalledBrahmagupta (598-670).
Hisworkwasthentaken over by Baskharall(1114-
1185).Ten centuries later, Europeanmathematicians
have contributed to the study of the
sameequationswhose objective is to respond to the
challenge launched by Fermat in january 1657.
Atthat time, Frénicle, Wallis, Brounker(1620-1684)

and Euler (1707-1783) hadparticipated in
solvingPell'sequation. It was Lagrange
whoformailized the completetheory of

solvingPell'sequationthrough the use of continued
fractions [4, 5, 6].

Lately, somme researchers are interested in solving
Diophante equation of type (1) thanks to the
theoreticalresultsestablished by Lagrange. In
[8,10,11], D. Sarath Sen Reddy et al and M.
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Somanath et al are interested in integer solutions of
the quadraticDiophantineequation of type :

x> +my?+nx+py+q=0(03)

Where, m, n, p et q are relatives integers.

Research has evolved, otherresearcherswanted to go
further. Instead of solving the quadraticequationwith
coefficients in Z, they are rather interested in the
equations with polynomial coefficients in Z[t] —
{0,1}. In 2010, Amet Tekcanet alsolved the
Diophantine equations: x? — (t2 £ t)y? —
(4t +2)x+ (4t2+4t)y=0 [47]. In [1, 3],
Amara Chandoul had found the solutions in
Z[t] x Z[t] of equation x%— (P?—P)y*—
(4P — 2)x + (4P% — 4P)y = 0 and also equation:
x% — (t? —t)y? — (16t — 4)x + (16t% — 16t)y =
0 4)

In 2019, Amara Chandoulet altook over the work
of the Amet Tekcan team by studying the general
case [2]. A new resultappeared in litteraturein 2021
on solving the quadraticdiophantineequationX? —
p()Y? + 2K()X + 2p(t)L(t)Y = 0, where P, K
and L arepolynomials, thanks to Hasan Sankari et al

[al.

Inspired by theseworks, we propose in thispaper the
resolution in Z[t] x Z[t]of the quadratic
diophantine equation of type:

D:x% —p(t)y? —(8p' (t) + 4)x + 16p(t)y = 0
(5)

Where, p is non-square polynomial in Z[t] — {0,1} .
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The resultsthatwewill propose in order to obtain an auxiliaryequationD associated.In
thispaperwillgeneralize the study of equation (4) the last section, we propose the resolution of
made by Amara Chandoul et al in 2011 [2]. equationsD and D and wefind the resultsestablished
First, in the first section, by Amara Chandoul et al in [2].

werecallsometheoriesrelated to the solving of
Pell'sequation.In the next section, wetransform D in

I1. PRELIMINARIES.
In this part, wereminder the theory on the resolution of the Pell equation, using of concept on the continued
fraction. Wealsodescribe in this part, the methodweused to obtainequation (5) from (4).
2.1. Resolution of the Pell’sequation.
Let d be a positive integerwhichis not aperfect square.
Let us notice byvd = [ay, aj, az, ..., @y, 2a,], the continued fraction expansion of +dwhichisperiodic. Le £ be
the length of this period. The k¢ convergent of vd for k > 0 is given by:

P
e = i = [ag; ag; az; ... ai] (6)

With, ap = Vd, a, = E(a;) et ay,; = ﬁ,k =012, ..

WhereE (ay,)is the integer part of ay.
Let (x;,y,), is the fundamental solution of x2 — dy? = 1.
Théoréme 2.1. (See[12])
The fundamental solution of x? — dy? =1 is:
(Pe-1,9¢-1) if £ even;
X1, = ; 7
(x1,71) {(Pze—l,ﬁhe—l). if £ ood. )

Ahmet Tekcanshowed in thisworkin 2011 [6], the continued fraction expansion of VtZ — ¢, as well as the
fundamental solution of de x? — (t? — t)y? = 1 by the followingtheorem.
Théoréme 2.2.(A.Tekcan [See 6])
(i) The continued fraction expansion of Vt2 — ¢ is:
[1;2],sit=2

t-t= {[t— 17— 2 sit>2 O
(ii) The fundamental solution of x? — (t? — t)y? = 1is (2t — 1,2).
2.2.Goingfrom Equation (4) to Equation (5).
Now, weconsider the equation (4): x2 — (t2 — t)y? — (16t — 4)x + (16t% — 16t)y = 0.
We have: x2 — (t2 —t)y? — (8 x (t2 —t) +4)x + 16(t* —t)y = 0.
Fort > 2, we putp(t) = t? — t.
Then (4) isequivalentto x% — p(t)y? — (8 x p(t)’ + 4)x + 16p(t)y = 0.
Weget the mostgeneralform of (4).
In the next section, wewillsolvethis last equation.

I1. Description of Method.
Weconsider the equationD: x% — p(t)y? — (8p'(t) + 4)x + 16p(t)y = 0.
Solvingthisequationdirectlyseems to beverydifficult. It is for thisreasonthatwetransformit by the transformation
T defined by:
x=u+ta
T: {y =v+p ©)
By applying the transformation T to D, weget:
(u+a)? —p®@+p)* - (Bp () +Hu+a)+16p(O)(v+p) =0  (10)
u? —p®v? + Qa—8p (t) —4d)u + (=2Bp(@®) + 16p(t))v + a® — p()B* — @' ) +4a+16p(t)B =0
We are going to make the terms in u and v disappear.
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Weget : 2a — 8p (t) —4 = 0 and — 28p(t) + 16p(t) = 0.

Let, @ = 2+ 4p (t)and B = 8.

Afterhavingsubstituteda and £ in D, we obtain an auxiliary equation which we have by D defined by :
D:u? — p(v? = 16(p ()" + 16p' (t) — 64p(t) + 4 (10)

We note by (a(t); b(t)) the fundamental solution of u? — p(t)v? = 1.

I11. The Main Results of The quadraticequationx? — p(t)y% — (8 X p(t) + 4)x + 16p(t)y = 0.
3.1. Resolution of the Quadratic Equation D.

Proposal 3.1.

(i) The fundamental solution of Dis : (uj;v;) = (2 + 4p (t); 8).

(ii) Definethe sequence(u,) et (v,) by :

()=o)

{ ] 8 15
() = (a(t) b(c)p@)"‘l () (15)
Un b(t) a(t) %]

Then(u,,; v,) is a solution of D.
(iii) For n = 2, the solution (u,; v, )satisfy the recurrence relations :

{un = a(t)un—l + b(t)p(t)vn—l (16)

Up = b(t)un—l + a(t)vn—l
(iv) For n = 4, the solution (u,;v,):
{un = (Za(t) - 1)(un—1 + un—Z) —Up-3 (17)
v, = a(t) — D(Wwy—1 +vp—2) —Vy3

Proof (i).
Indeed, u? — p(£)v? = (2 +4p' (1) — p(t)(8)?
=4+2x2x4' (D) + (4p )" — 64p(t)
=16(p'(®))" + 16p (t) — 64p(t) + 4

Thus, (ug; v;) = (2 + 4p (¢); 8) is the fundamental solution of D.
Proof (ii).

We prouve itusing the method of mathematical induction.

Let n=2, weget :

()= G et )G

_ (4O +bOROm)
b(u, + a(t)v,

So, uj —p(t)v = (a(®uy + b(®)p(H)vy)* — p()(b(B)uy + a(t)v,)?
= ((a®)’ = pOG®Y?)w? = pO)((a®)’ = PO BE))v;?
=1xu?—p(t)x1xwv,?
= uf — p(t)v{
=16(p'(®))" + 16p (t) — 64p(t) + 4
Therefore(uy; v,) = (a(t)u; + b()p(t)vy; b()u; + a(t)v;) is the solution of D.
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Now, for n > 2, we assume that (u,; v, )is solution of Dthenwe show that(u,,,1; v,41) is the solution of D.

Uy i1 a(t) b)p(t nt- o,
Indeed, (vn+1) - (bgtg a(IZ)( )) (171)
- (a(t) b(t)p(t)) (a(t) b(t)p(t))"‘1 (™)
b(t) a(t) b(t) a(t) 41
:(a(t) b(t)p(t)) (un)
b(t) a(t) Un
_ (al®u, +bOp(E)v,
B ( b(t)u, + a(t)v, )
Henceweget, u.i — ()i, = (a(®Ou, + bOp(O)v,)* — p(O) (B[O, + a(t)v,)?
= ((a®)" = PO G©)?) w2 = p(O(al®)” = pEOYBE)?)v,?
=1Xu,?—p(t)x1xuv,?
=u; —p(Ovi
=16(p'(®))" + 16p (t) — 64p(t) + 4
This, for n > 2, (Up41; Vps1) = (@(®u, + b(®)p(t)v,; b(H)u, + a(t)v,) is the solution of D.
Therefore, (u,,v,) is the solution of D.
Proof (iii).
This is a direct consequence of proposal 3.1 (ii).
So, for n > 2 we get:
{un = a(O)up—1 + bOp(O) v,y (18)
v = b(Ouy—q + a(®)vy—
Proof (iv).
Westill use the method of mathematical induction.
To simplify the demonstration, wewillconsider the case where the polynomial p is constant that’s to say,
p (t) = 0. In this case, the fundamental solution of D is (u;; v;) = (2; 8).
Using the recurrence relation (iii) of the proposal 3.1, weobtain:
u = 2.
u, = 2a + 8pb
us = 2a® + 16abp + 2b%*p
And then, uy = 2a® + 24a%bp + 6ab?p + 8(a(t))? — 8bp. (19)
According to the recurrence relation (iv) of proposal 3.1, weget :
u = QCa—-1Duz +u) —wy
= (2a — 1)(2a? + 16abp + 2b*p + 2a + 8pb) — 2
= 4a® + 2a% + 32a°b + 4ab?*p — 2b%*p — 8bp — 2a — 2
From (19), weget:
u, = 2a® + 24a*bp + 6ab?p + 8(a(t))? — 8bp
= 4a® + 2a% + 32a®bp + 4ab?*p — 2b*p — 8bp — 2(a® — bp?) — 2a(a? — bp?)
= 4a® + 2a? + 32a’bp + 4ab’p — 2b*p — 8bp — 2a — 2
= a(t) — D(uz + uy) — uy.
Now, we assume thatn > 2, u,, = (2a — 1)(u,,—1 + U,_») — u,_3. Then we show that
Upp1 = 2a— D (up + uyq) — Upz.
Fromproposal (iii) weget:
Uptq = AU, + bp(t)vn
= a[(2a — 1) (Up-1 + Up—2) —Up-3] + bp[(2a — (W1 + vy 2) — V3]
= (2a - Dla(up—1 + up—2) + bp(vy—1 + v, )] — auy_3 — bpv, 3
= (2a - Dlau, -1 + bpvy_1 + avy_ + bpv, ;| — (aup—3 + bpv,_3)
=2a—-D(uy +up1) —Unp
Therefore, forn > 4,u, 1 = 2a — D (u, +up_1) — Up_s.
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So, forn > 4u, = 2a — 1) (U1 + Up_3) — U,_3.
In similaryway, itisdemonstrationthat, v, = (2a — 1) (v, + V) — Vp_3.
Now, we have all the necessaryingredients to solveequation D.

3.2. Resolution of Qudratic Equation D.
Proposal 3.2.
(i) The fundamental solution of Dis: (x1;y1) = (2uy; 2v1).
(ii) Define by sequence(u,,)and (v,,) by:
{xn =u, +2+4p'(t)
YV, =u, +8

Then, {(u,; v,)}n>1is solution of D. So it has infinitymany solution in Z[t] x Z[t].
(iii) For n > 2, the solutions (u,; v, )satisfy the followingrecurrence relations :

{xn = a(t)%,—1 + b(OP(O)yn_1 — 4p () (a(t) — 1) — 8b(O)p(t) — 2(a — 1)

Yo =b(O)xy_1 + a(©)yn_1 — 2b()(1 +2p' (1)) —8(a— 1)
(iv) For n = 4, the solution (u,; v, )satisfy the followingrecurrence relation :
{xn = (2a(t) = D (-1 + X 2) = Xp3 — 4(a(®) = DA +2p (1) + 4 +8p' (1)
Yo = 2a) = DYn-1+ Yn—2) = Yn-3 — 16(2a(t) — 1) + 16

(20)

(21)

(22)

Proof (i)
Let us put:
H=x%—py?—(8p +4)x + 16py (23)
Let x; = 2uyand y; = 2v;. We will substitute x; and y, in (23).
Weget:
H = (2u;)* — p(2v;)* — (8p" + 4)2uy) + 16p(2vy)
=4} — pv}) — 16u,p’ — 8uy + 32v;p
=4(16p? +16p —64p+4) —16(2+4p )p —8(2 +4p ) +32x8xp
=4(16p"? +16p — 64p +4) — 4[42 +4p )p +2(2 + 4p) — 8 x 8p]
= 4(16p% + 16p' — 64p + 4) — 4(16p"% + 16p — 64p + 4)
=0
Then, (2u;)? — p(t)(2v,)? — (8p (t) + 4)2uy) + 16p(t)(2v,) = 0.
Thus, (x1;v1) = (2uy; 2v4) is the fundamental solution of D.
Proof (ii).
According to proposal 3.2(i), for n =1, then (x1;y,) = (2uy; 2v) is the fundamental solution of D. For
n > 1, we assume that (x,,; »,) is the solution of D then we show that (x,,,1; y,,+1) is solution of D.

Let x, .1 = Upyq +wand y, 1 = v, 41 + v;. We will substitute x, ., and y,,4 in (23).
Weget:
H = (a1 +u1)? = pWya1 + )% — 8P + 4) (Uns1 + 1) + 16p (041 + 11)
= U1 — PURyr +uf—pvf — (8p +4)(2+4p) + 16p x 8
= u; —pv; +ui—pvi — 2(uf—pvi)
= 2(uf—pv{) - 2(uf —pvi)
=0.
S0, (Un 41 + u1)? = p(E) (Wn i1 + v1)? = (8P (£) + 4) (yy1 + u) + 16p(£) (Vnyy +v1) = 0.

So then, (uy41 + 2 + 4p'(t), V41 + 8) is the solution of D: x2 — p(t)y? — (8p' (t) + 4)x + 16p(t)y = 0.
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Therefore, for n > 1, (x,,; y,)is the solution of D in Z[t] x Z][t].
Proof (iii).

X, = U, + 2+ 4p'(t)

According to proposal 3.2 (ii), for n > 1, we have, {yn —u, +8

u, = a(t)un—l + b(t)p(t)vn—l
Un = b(t)un—l + a(t)vn—l .

According to proposal 3.2 (iii), we have: {
So then,
X, = U, + 2 +4p' (1)
=a(®)u,_1 +b®Opt)v,_1 +2 +4p'(t)
= a(®) (X1 =2 =49 (©) + bOP(O (o1 —8) + 2 +4p' (1)
= a(t)xy—1 + b(OPp(Oyn—1 +a®)(=2 — 4p (1)) = 8b(DP(E) + 2 + 4p'(¢)
= a(t)xy—1 + b(O)p(O)yn—1 — 4p () (a(t) — 1) = 8b(t)p(t) — 2(a(t) — 1)
Then, x, = a(t)x,_1 + b(O)P(E)yn_1 — 4p (t)(a(t) — 1) — 8b()p(t) — 2(a(t) — D).
In similaryway, thenwe show that:
v, = Qa(t) = 1)W1 + Vn—2) — Yn—3 — 16(2a(t) — 1) + 16, forn = 2.
Proof (iv).
According to proposal 3.2 (iv), we have: u, = (2a(t) — 1)(up—q + Up—y) — u,_3,forn > 4.
So,
Xy, = U, +2+4p’
= (2a = 1) (Up-1 + Up—3) —Uy_3 + 2+ 4p’
=Qa-D((tn1 —2—4p + (2 —2—4p) — (X3 —2—4p) + 2+ 4p'

=Qa-1D( 1+ % 3) —Xy3 —4a—1)(1+2p) +4+8p
So that, (2a(t) — 1)(X,_1 + Xy_2) — X,_3 — 4(a(t) — 1)1 +2p (t)) + 4 + 8p'(t),n = 4.
Now, let’sseesomeexample.
For t > 2, letp(t) = t? —t.
So,D:x? — (t? —t)y? — (16t — 4)x + (16t> — 16t)y = 0 (24)
Wefind the equationstudied by Amara Chandoul et al in 2011 in [2].

Itsauxiliaryequation:

D:x?—(t? —t)y? =32t +4 (25)
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According to theorem 2.2, the fundamental solution of x2 — (t? — t)y? = 1is (a(t); b(t)) = (2t — 1;2).
This, wefind the holes first points of the theoremannounced by Amara Chandoul in [2].

For the auxiliaryequationD, we have the following results:

According to proposal 3.1 (i), (uy; v;) = (8t — 2; 8)is the fundamental solution of D.

According to proposal 3.1 (ii), for n > 2, we get:

(- (5)

_ 26
(un) _ (Zt —1 2(t2— t))" ! (ul) (26)
Vn 2 2t—1 "
Next, for n > 2, we get:
{un = (2t — Du,_q + 2(t*2 — v, @7
v, =2u,_1+ (2t —Dv,_4
And, for n > 2, we get:
{un = (Zt - 3)(un—1 + un—Z) —Up_3 (28)
Un = (Zt - 3)(vn—1 + vn—Z) —VUp—3
For the D equation, we have the followingresults:
According to proposal 3.2 (i), the fundamental solution of D is(x;;y,) = (16t — 4; 16).
Next, thisinfinitymany solutions is:
S ={(x,,y,) € Z[t] X Z[t], x, =u, +8t—2, y, = v, + 8} (29)

According to proposal 3.2, weobtain the followingrecurrence relation:

X, = 2t — Dxp_q + 2(t% — )y, — 32t> + 36t — 4

i) F > 2, t: { 30
() For m=2,WeQet: | _ ox 4 (2t —1)y,_, — 32t + 20 (30)
. x, = (4t —3)(x,_q + X,_3) — X,_3 — 64t> + 80t — 16
i) For n > 4, we et:{” " n n 31
) 9 Uy = (4 = 3) s + Yoz) — Yuos — 64L + 64 3D
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