
Shinq-Jen Wu, et. al. International Journal of Engineering Research and Applications 
www.ijera.com 
ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 158-182 
 

 
www.ijera.com                                  DOI: 10.9790/9622-1210158183                             158 | P a g e  
               
 
 
 

 
 

 

Visualize Dynamic Sensitivity of Biological Systems 
 
Shinq-Jen Wu1,* and Sing-Yu Lu 2  
1,2 Department of Electrical Engineering Da-Yeh University, 168 University Rd., Dacun 
Changhua 51591, Taiwan, R.O.C 
 
Abstract 

Dynamic Sensitivity analysis is important for us to realize the instantaneous response of systems to perturbation 
on system parameters or independent variables (modellable environmental conditions). Sensitivity analysis in 

or norm additionally gives people a guideline to choose critical parameters for the transient behavior of 
underlying systems. In this study, the Simulink (a visualization toolbox in Matlab software) is used to visualize 
both nonlinear differential equations of sensitivity and system in block diagrams and then to achieve model-
based sensitivity analysis. The dynamic sensitivity of each dependent variable is denoted as a single subsystem 
block. In this way a large-scale system with n dependent variables (called state variables or states) is expressed 
as n subsystem blocks. A reversible Michaelis-Menten kinetics module is to describe the proposed Simulink-
based resolution clearly. The instantons effect of parametric perturbation on system behaviors observed and the 
ensemble parametric influence ranking on system transient behavior is obtained. Additionally, the static 
sensitivity for various independent variable sets is sufficiently discussed to realize the tendency of steady states 
to parametric perturbations and get the limiting influence strength.  
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I. INTRODUCTION 
Modelling, analysis and control are a 

trilogy for solving practical problems from a 
viewpoint of quantity. Voit took a deep review of 
752 papers in various nonlinear models, model 
designs, parameter estimations and diagnostics of 
biological system theory [1]. Sriyudthsak and 
coworkers reviewed various biological system 
models and their limitations [2]. Modelling is 
extensively used in biochemical studies nowadays. 
Bartocci and Lio reviewed various computational 
modeling and analysis technologies and brought 
forward that ordinary differential equations will get 
more attention [3].We proposed that fuzzy models 
have the potential to be a suitable model candidate 
because biological systems are always subject to 
uncertainty and noise [4]. S-systems (power-low-
based structure) and Michaelis-Menten systems are 
two popular differential equation-based biological 
models. Michaelis-Menten systems describe 
individual fluxes as nonlinear hill kinetics (for 
example, the reversible Michaelis-Menten kinetics 

where are dependent 

variables, and are, respectively, the 
maximum reaction rate at saturating substrate 

concentration, the Michaelis constants of the 
forward and backward reactions.) Liu and 
coworkers used the S-system to describe p53 
signaling pathway mechanism [5]. Tyson and 
coworkers successfully developed Michaelis-
Menten kinetics to capture the dynamic movement 
of a mammalian cell from autophagy to apoptosis [6] 
and the interactions of sense and antisense 
transcription on mammalian circadian rhythms [7], 
and to describe eukaryotic cell cycles [8] and cell 
volume growth and size control via inhibitor 
dilution and titration of nuclear sites [9]. We 
integrated Michaelis-Menten modules and petri-net 
modules to predict the dynamic behavior of the 
antigrowth signal-induced cell cycle and multi-
stream growth and apoptotic signal transduction 
mechanisms [10].  

Sensitivity analysis is a systematic 
investigation of system response to perturbation on 
system inputs or system parameters. Time-varying 
parametric sensitivity analysis (dynamic parametric 
sensitivity) gives us quantitively information for 
structural uncertainty (parameter perturbation), 
which improves our understanding in dynamic 
behavior of underlying systems, and is useful to 
identify bottleneck enzymes (critical parameter-
related enzymes or reaction steps). Chen et al. 
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observed that parameter sensitivity ranking in 
bifurcation point location variation (deterministic 
models) is closely correlated to energy barrier of a 
cell from alive to death (stochastic models) [11]. 
There are two kinds of approaches for sensitivity 
analysis (global sensitivity and local sensitivity). Zi 
reviewed various approaches of both sensitivity 
analysis [12]. Borgonovo and Pllischke emphasized 
that sensitivity analysis is a crucial step of 
modelling and result analysis in communication 
processes [13]. They took an overview for various 
available methods in both sensitivities, and 
discussed Tornado diagrams for local sensitivity, 
screening methods, variance-based, moment-
independent and information-based methods for 
global sensitivity. Global sensitivity analysis 
discusses system response to simultaneous 
parameter variations or input variation in a large 
range. Sumner et al. introduced functional principal 
component analysis into current global sensitivity 
methods to identify a number of interesting features 
of insulin signallingpathways [14].Wong et al. used 
global sensitivity analysis for debris flow energy 
dissipation process to reduce hazards [15]. Local 
sensitivity analysis is for system response to 
infinitesimal perturbation of single parameter or 
input.Hu and Yuan used local dynamic sensitivity to 
analyze coupled MAPK and P13K signal 
transduction pathways and demonstrated that local 
dynamic analysis is a good way for analyzing 
complex biological systems [16]. Local sensitivity 
analysis needs to solve sensitivity differential 
equations and system differential equations. 
Therefore, it is impossible to find out an exact 

solution. Wu et al. used modification collocation 
methods, wherein Lagrange polynomials were used 
as shape functions, to transform differential 
equations to algebraic equations and developed a 
corresponding algorithm to solve this issue [17]. 
Shiraishi et al. developed a software for calculation 
of dynamic sensitivity (SoftCADs) to 
simultaneously solve nonlinear ordinary differential 
equations wherein variable-order and variable-step 
Taylor series were used [18]. Shiraishi et al. further 
improved SoftCADs in accuracy and speed [19]. 
Perumal and Gunawan proposed dynamical 
pathway-based sensitivity analysis which perturbed 
pathway kinetics and considered persistent 
perturbation and impulse perturbations at different 
time points to find out dominant pathways and 
transient shifts in rating-controlled mechanisms [20]. 
Sriyudthsak and Shiraishi used dynamic logarithmic 
gain (normalized sensitivity) to identify bottleneck 
enzymes in ethanol fermentation systems [21] and 
believed that normalized sensitivity was the best 
bottleneck ranking indicator [22]. Sriyudthsaket al. 
further analyzed dynamic logarithmic gain of a 
biosynthetic pathway with three aromatic amino 
acids and concluded that dynamic logarithmic gain 
could give additional insights on transient behavior 
[23]. In this study, we visualize both system and 
sensitivity differential equations in block diagrams 
to get the local dynamic parametric sensitivity. 
Ensemble influence of parameter perturbation to 
system transient behavior is further discussed. We 
also discuss the response in steady state. For clarity, 
a small reversible Michaelis-Menten kinetics 
module is used as our case. 

 
II. METHODS 

Perturbation theorem [24] 
For a system described as with where the state 
variable , denotes the time and is the nominal values of real parameter vectors 

.The nominal solution denoted as is a time function parametrized by and We now 
slightly perturb parameters from to . The solution for the perturbed system 

becomes .We then obtain the following Taylor expansion [24], 
=  

,  (1) 
where  denotes the derivative of with respect to the th argument ( for state variables 

and for parameters ) and “ denotes the higher-order terms in  and The equation is 
approximately as  

.      (2) 

We further use a vector  to denote parametric dynamic sensitivity and obtain 

             (3) 
where  is the Jacobian matrix and  

If a system possesses n dependent variables with m parameters, then there are elements in the 
sensitivity matrix  However, most of elements in the matrix are zero. For example, a branchpoints metabolic 
pathway in Eq. (1) [25]:(there are four dependent variables and eight parameters.) 
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           (4) 

The sensitivity matrix  has 32 elements, but 16 elements are zero. We observe that for the state variable only 
the sensitivity of to the parameters , is not zero. The same is that for the state variable only 
the sensitivity of  to the parameters is not zero, for the state variable only the sensitivity of  

to the parameters , , is nonzero and for the state variable only the sensitivity of  to the 
parameters , is nonzero. 
 
Block diagram-based visualization [26] 

Simulink is a toolbox of Matlab (MATrix LABoratory, a software developed by The MathWorks 
Company). The toolbox provides an environment to build up block diagrams of underlying systems for model-
based testing, analysis and design. Block diagrams are a kind of systems models in which the principal parts or 
functions are shown as blocks connected to each other by directed lines, showing the flow of signals. 
Researchers are able to draw block diagrams in the Simulink environment to achieve modelling, simulating and 
analyzing multi-domain dynamic systems. 

 
III. RESULTS AND DISCUSSION 

Voit and coworkers noted that “Most large systems in biology are modular and exhibit possibly generic 
design features at different levels... so that a true understanding of ever smaller functional modules greatly 
enhances the understanding of the system as a whole” [1]. In this study, a reversible MM kinetics module is 
used to describe the proposed method clearly. 
 
 Visualize Parametric Dynamic Sensitivity  

Amphibolic pathways possess metabolism in both degradative and biosynthesis phases; for example, 
Embeden-Meyerhof pathways, Krebs cycles, pentose phosphate pathways, Entner-Doudoroff pathways and 
citric acid cycles. We here consider an in silico reversible pathway in Fig. 1. The dynamic behavior of the 
amphibolic pathway is described as reversible Michaelis-Menten kinetics in Eq. (5) [27, 28]. The  are 
independent variables which remain constant during the entire experiment. The are dependent variables. 
The concentration change of  is the net influx minus the net efflux  and the change in  is the net 
flux minus the net efflux . 

 
Figure 1: A reversible pathway [23, 24]. 

 
 

    (5) 
where , , , 

, and . The nominal values of rate parameters 
are the nominal values of Michaelis parameters 
are for forward reactions and 

for reverse reactions. The equation and the values of the 
associated parameters are cited from Sorribas and Savageau’s paper [27] and Liu and Wang’s paper [28]. (See 
the supplemental file of our previously paper [29].) 

 This system possesses two dependent variables (state variables or states) and eighteen parameters. So, the 
parametric sensitivity matrix has thirty-six elements, but twelve elements are zero. Additionally, the value of 
associate parameters for forward and reverse equations are always the same. (See the supplemental file of our 
previously paper [29] in a comparison of the papers [27], [28] and [29] in symbols, equations and the values of 
the associated parameters.) So, we rewrite Eq. (5) as  
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The twenty-four nonzero elements in sensitivity matrix  is further reduced to twelve elements. For the state 
variable only the sensitivity of to the parameters is nonzero, and for the  
state variable only the sensitivity of to the parameters is nonzero. The 
vector is used to denote the parametric sensitivity of and is the 
corresponding normalized sensitivity for example,  denotes the sensitivity of to perturbation 

and the associate normalized sensitivity  .  The is further visualized as a single subsystem 
block in Simulink environment to perform various perturbation response analysis (see the right-upper and right-
down blocks in Fig. 2). In the case of infinitesimal perturbation, we have the following dynamic sensitivity 
equation of the reversible system, wherein denote the normalized sensitivity of to the 
parameters respectively. 

, 

, 

, 

, 

, 

,                   (7) 
where 

and

 Let denote the sensitivity of to the parameters 
. 

, 

, 

, 

, 

, 

,                  (8) 
 

where and  The differential equations in Eqs. (5), (7) and (8) are 
further visualized as three individual subsystems (shown in blocks) in Simulink environment. In Fig. 2, the left 
down subsystem (denoted as is the reversible system in Eq. (5), the right upper subsystem (denoted as ) 
describes the dynamic normalized sensitivity of in Eq. (7) and the right down subsystem ( ) describes the 
dynamic normalized sensitivity of in Eq. (8). We use the Mux block in Simulink to combine inputs with the 
same data type and complexity into a vector output (a composite signal), and use deMux block to extract and 
output elements of the composite signal.(See Fig. 3 for the operation of Mux block and Fig. 4 for the operation 
of deMux block.) The rb41 denotes a composite signal of the flux and the signal , The rb12 denotes a 
composite signal of the flux and the signal The rb23 denotes a composite signal of the flux and the 
signal and the A12 denotes a composite signal of two signals and . The system shares two 
composite signals rb41and rb12 with  sensitivity subsystem (denoted as , and shares two composite signals 
rb12 and rb23 with  sensitivity subsystem (denoted as  ). Two sensitivity subsystems share the information 
of  because the flux possesses three parameters  that 
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directly effects the dynamic behavior of both and . The detailed block diagrams for system  and sensitivity 
and are shown in Figs. 3, 4 and 5.  

 
Figure 2: Visualize dynamic behavior and time-varying sensitivity in Simulink environment. The 
left down block runs the simulation of the reversible system ( ). The right upper block and the 

right down block are for normalized dynamic sensitivity of  and , respectively. 
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Figure 3: Detailed block diagram for the reversible system  
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Figure 4: Detailed block diagrams for the dynamic sensitivity of  (right upper block ) 
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Figure 5: Detailed block diagrams for the dynamic sensitivity of  (right upper block ). 
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Dry lab experiments are conducted at an initial condition )= (4, 3) and the independent variable are set 
at )= (9,15). Figure 6 is the simulation results.  The system approaches steady state )= (12.7126, 
10.3047).  At this dry-lab experimental situation and are always positive for except in the 
time period of wherein (Negative sensitivity means that state variables and 
parameters go in oppositive direction.) The always shows positive responds to perturbation on the parameters 

The always shows positive responds to the parameters  
but the response of  to the parameters } is changed from negative to positive at around 0.43 
seconds. For parameter perturbation, the influence to is changed from 

to  as time goes on (the 
notation denotes stronger). The response of to the perturbations of  or is very small. The has 
great response to perturbation on at the beginning and on after a period of time 
(around 0.68 second in this case). The influence of parameter perturbation to is changed from 

to  as time goes on. The 
response of to the perturbations of  or is very small. The has great response to perturbation on 

at the beginning and on after a period of time (around 0.47 second in this case). 
Perturbations on the parameters of reversal reactions have little influence in both and . At first the 
flux dominates  and the flux dominates , and later dominates both and . 

   

 

 

 
Figure 6: )= (4,3,9,15)) Simulation results of system dynamic behavior (upper figure), 
sensitivity of (middle figure) and sensitivity of (down figure). denote the normalized 
sensitivity of to the parameters and denote the sensitivity of 

to the parameters  
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We further conduct an experiment that parameters are perturbed at equilibrium states (a general case 
for doing sensitivity research.) Simulation results are shown in Fig. 7. We observe 

and which is consistence with the 
results in the final stage for perturbation starting at arbitrary initial conditions. Additionally, we conduct 
experiments at different independent variables )=(2,4.8)and perturbation starts at (a) an initial condition 

)= (14,10) and (b) the steady state. The results are shown in Figs. S1 and S2 of the supplement file. At 
first the results are different from those mentioned above, but later the ranking results are the same.  

 

 

 
Figure 7: )= (9,15)) Perturbation at equilibrium states )= (12.7109,10.3036). Simulation 
results of sensitivity of (upper figure) and sensitivity of (down figure). denote the 
normalized sensitivity of to the parameters and denote 
the sensitivity of to the parameters  
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 Discussion on perturbation response intransient behavior 

------ norm and norm 
Through the above visualization method, we can get time-varying sensitivity for the underlying system 
being perturbed at any values of state variables. We also observe that the parametric influence ranking 
near the setting time (the time that takes system transient behavior to decay to a small value) is 
consistent with that of system being perturbed at equilibrium states. We now further introduce two metrics 
( norm and norm) to get ensemble influence of parameter perturbation to system transient behavior. 
The norm and norm for normalized sensitivity in the period of transient state ( are, 
respectively, defined as in Eq. (9) and in Eq. (10). The is visualized as the upper 
figure of Fig. 8 and as the down figure of Fig. 8. 

                        (9) 

                            (10) 

 
Figure 8: Visualize in Eq. (9) (upper figure) and in Eq. (10) (down figure) in Simulink. 
 

Figure 9 is the block diagram for the ensemble sensitivity and Fig. 10 is for the ensemble sensitivity 
.Figure 11 shows the detailed block diagrams for the ensemble sensitivity of subsystem ,the right 

upper block of Fig.9). An experiment is set at an initial condition )= (4, 3) and the independent variable 
)= (9,15). The system stabilizes to steady state  at around 2.7730 (the 

setting time ). Figs. 12 and 13 shows the influence of system parameters’ perturbation to system transient 
behavior for these two ensemble sensitivity when the system is conducted at a time period of [0, ]. We observe 
that the response of to parameter perturbation is in the order of  
and the response of to parameter perturbation is in the order of   

 . The shows stronger response to variation of the flux  than to 
that of the flux , and the shows stronger response to variation of the flux  than to that of the flux 

.For both  and , the influence is We further conducted experiments at various 
independent variable sets and initial conditions. Tables 1 and 2 show the ensemble sensitivity for various 
experimental conditions. The influence order is the same as the results mentioned above, except in the case of 
the initial condition )= (14,10) and independent variables )= (2,4.8)wherein the influence order 
for is instead of (denoted by pink color in Tables 1 and 2).Looking at the evolution 
of for all of the experiments, as shown in the supplement file, we observe that in this case at the 
beginning of the experiment there exists an overshoot for (the sensitivity of  to ) which cannot be 
offset by the subsequent change. Not such a kind of overshoot exists in other sensitivity .Further, 
in the later experimental process the influence order is the same for all of the experiments. So, the foregoing 
conclusion is appropriate.  
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) [4, 3] [14, 10] 
) [9,15] [2,4.8] [9,15] [2,4.8] 

 [12.7126,10.3047] [3.6383,2.5112] [12.7126,10.3047] [3.6383 , 
2.5112] 

 2.7730  3 4 0.7350 2.4490 1.0500 
 0.0847 0.0794 0.0632 0.1406 0.0494 0.1186 
 0.0067 0.0064 0.0053 0.0135 0.0053 0.0193 
 0.0968 0.0908 0.0725 0.1833 0.0579 0.1606 
 0.1230 0.1208 0.1113 0.4301 0.1310 0.3545 
 0.0168 0.0165 0.0151 0.0495 0.0176 0.0406 
 0.1502 0.1473 0.1355 0.5962 0.1589 0.4867 
 0.0853 0.0834 0.0760 0.2802 0.0935 0.2345 
 0.0116 0.0114 0.0103 0.0322 0.0126 0.0269 
 0.1039 0.1016 0.0925 0.3885 0.1134 0.3208 
 0.0492 0.0471 0.0402 0.1446 0.0482 0.2222 
 0.0065 0.0061 0.0049 0.0113 0.0042 0.0113 
 0.0586 0.0559 0.0473 0.1841 0.0547 0.2590 

 

Table 1: ( norm) the influence of system parameters’ perturbation to the transient behavior.  
denote the ensemble sensitivity of to the parameters 

and denote the ensemble sensitivity of to the parameters 
 

 
 

) [4, 3] [14, 10] 
) [9,15] [2,4.8] [9,15] [2,4.8] 

 [12.7126,10.3047] [3.6383,2.5112] [12.7126,10.3047] [3.6383 , 
2.5112] 

 2.7730  3 4 0.7350 2.4490 1.0500 
 0.1231 0.1202 0.1112 0.1168 0.0750 0.1146 
 0.0108 0.0106 0.0102 0.0112 0.0080 0.0160 
 0.1421 0.1388 0.1289 0.1523 0.0880 0.1544 
 0.1919 0.1967 0.2121 0.3394 0.1960 0.3189 
 0.0263 0.0269 0.0289 0.0391 0.0263 0.0366 
 0.2348 0.2405 0.2588 0.4702 0.2375 0.4350 
 0.1338 0.1366 0.1457 0.2291 0.1428 0.2255 
 0.0183 0.0187 0.0199 0.0264 0.0191 0.0260 
 0.1634 0.1668 0.1776 0.3174 0.1730 0.3064 
 0.0744 0.0746 0.0752 0.1229 0.0744 0.1953 
 0.0079 0.0078 0.0075 0.0096 0.0065 0.0110 
 0.0866 0.0867 0.0869 0.1565 0.0845 0.2338 

 

Table 2: ( norm) the influence of system parameters’ perturbation to the transient 
behavior. denote the ensemble sensitivity of to the parameters 

and denote the ensemble sensitivity of to the 
parameters  



Shinq-Jen Wu, et. al. International Journal of Engineering Research and Applications 
www.ijera.com 
ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 158-182 
 

 
www.ijera.com                                  DOI: 10.9790/9622-1210158183                             170 | P a g e  
               
 
 
 

 
Figure 9: Visualize dynamic behavior and ensemble sensitivity in Simulink environment. The left down 

block runs the simulation of the reversible system ( ). The right upper block and the right down block 
are for normalized ensemble sensitivity of  and , respectively. 
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Figure 10: Visualize dynamic behavior and ensemble sensitivity in Simulink environment. The left down 

block runs the simulation of the reversible system ( ). The right upper block and the right down block are 
for normalizedensemble sensitivity of  and , respectively. 
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Figure 11: Detailed block diagrams for the ensemble sensitivity of  (right upper block ). 
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Figure 12: ( norm) the influence of system parameters’ perturbation to system transient behaviorfor initial 

condition )= (4, 3) and independent variable )= (9,15).  
 

  
Figure 13:( norm) the influence of system parameters’ perturbation to system transient behavior for initial 

condition )= (4, 3) and independent variable )= (9,15). 
 

 Results and discussion on the perturbation response in steady states 
------- independent variable perturbation and parametric perturbation 

When the three net fluxes of the system are equal (  the system reaches equilibrium and the 

steady states are and ,where is the constant net flux at equilibrium, 

.Both steady states, and , response to only three parametric perturbations. The static 
sensitivity of to the parameters are denoted as  

 

 
. 
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The static sensitivity of  to the parameters are denoted as  

 

 

 
The normalized static sensitivities are 

.We now set an experiment that is conducted at a fixed independent variable and let another independent 
variable vary from 0 to infinity. An infinity  (or denotes that the quantity of  is extremely large 
compared to that of other constituents, instead of the concentration of  being infinity. The infinity value is to 
find out the limiting influence strength. Tables 3 and 4, respectively, show the static sensitivity for the cases of 
the fixed independent variable and . (The values for time-varying independent variables are cited 
from our previously paper using the rlocus command in Matlab toolbox [29].)Tables 5 and 6, respectively, are 
the static sensitivity for the cases of the fixed independent variable and .  

For the case of the reversible pathway is in a favorable direction of when the gain is  
in which the net flux is negative. For the case of the reversible pathway is in a favorable direction of 

when the gain is . The reversal point of netflux direction locates exactly at the experimental 
condition that the value of varying independent variable equals to that of the fixed independent variable 
( for fixed in Table 3 and for fixed in Table 4, and for fixed in 
Table 5 and for fixed in Table 6.) For clarity, we denote the results for the case of by 
olive green. We observe that(a) when is fixed the net flux has the same sign with  but 
oppositive sign with and 

The is always negative except some points which are noted 
with pink color. (b)When is fixed the net flux  has the same sign with  but oppositive sign 
with except two points in ( denoted that decreases as  increases.) 
At the case of fixed ,when the system is in the favorable direction ( the always shows 
negative response to perturbation, but positive response to and . The shows negative response 
to perturbations of .At the case of fixed , when the system is in the favorable direction 
( the shows negative response to perturbations and . The shows positive 
response to perturbations of . 

For a given independent variable set ( ), the shows great response to than to and the 
ranking for the response of to parameter perturbation is  The reaction reverse point 

( is a branch point. Except the sensitivity , the absolutely normalized sensitivity 
becomes larger and larger as the varying independent variable gets bigger and bigger or smaller and 

smaller (the minimum  exists at At fixed the maximum 
sensitivity (1.4527,0.0924, 4.5005, 2.5000, 0.0500, 2.8000) 

for (8.3766, 0.0925, 4.5088, 2.5000 0.0645 2.5968) for At fixed the maximum 
sensitivity ( 13.4632, 1.6667, 2.5247, 0.8080, 0.7264, 1.5343) 

for (15.1310, 1.6667, 2.5088, 0.8080, 0.7263, 1.5343) for These maximal values are 
marked in bold letters. 
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0 0 -0.03382909 -1.03382909 0.183260294 0.025928773 0.33883293 
0.057602429 -0.02914142 -0.030622 -0.8442013 0.169256155 0.023211525 0.308525306 
0.180882237 -0.06008395 -0.02458778 -0.58080321 0.141303541 0.018258292 0.250853295 
0.568003538 -0.05762235 -1.06E-02 -0.19822479 0.066925407 0.007495123 0.111896147 
1.783635726 0.15444959 0.012595316 0.202025435 -0.09585389 -0.00831079 -0.14571865 
5.600944689 1.452711341 0.038229349 0.637630511 -0.37469148 -0.02342544 -0.51524414 
17.58799791 -128.527304 0.059318084 1.201339913 -0.76180974 -0.03433283 -0.96780674 
55.22955279 -7.06694553 0.074184109 1.952987715 -1.21951745 -0.04132237 -1.46745169 
173.430968 -6.52662454 0.083808021 2.871886642 -1.68278019 -0.04557356 -1.95622155 
544.605182 -7.10674674 0.089498739 3.802319728 -2.06777184 -0.04799357 -2.35573327 

882.0079451 -7.38701015 0.091001404 4.136453661 -2.18959218 -0.04862144 -2.48132079 
1219.410708 -7.55795882 0.091776441 4.329213249 -2.25645581 -0.04894348 -2.55011672 
1220.63134 -7.55845682 0.091778575 4.329765647 -2.25664402 -0.04894437 -2.55031024 

1221.851971 -7.55895412 0.091780706 4.330317224 -2.25683192 -0.04894525 -2.55050344 
1710.160577 -7.71439262 0.092416577 4.500542032 -2.3139236 -0.04920857 -2.60917501 

inf - - - -2.5000000 -0.05000000 -2.80000000 
 

Table 3: ( )Static sensitivity for perturbation from independent variables and parameters. 
 

        

      

0.0000 0.0000 -0.1436 -1.1436 0.4627 0.0989 0.6110 
0.1542 -0.0363 -0.1304 -1.0040 0.4417 0.0898 0.5763 
0.5391 -0.0857 -0.1065 -0.7937 0.3975 0.0732 0.5074 
1.8849 -0.1327 -0.0634 -0.4855 0.2903 0.0436 0.3556 
6.5903 -0.0815 -0.0146 -0.1318 0.0899 0.0100 0.1049 

23.0421 0.4614 0.0252 0.3004 -0.2155 -0.0173 -0.2414 
80.5636 8.3766 0.0531 0.8840 -0.6240 -0.0363 -0.6785 

281.6799 -7.5390 0.0713 1.6800 -1.1128 -0.0488 -1.1860 
984.8555 -6.3925 0.0827 2.6838 -1.6212 -0.0566 -1.7061 
3443.4138 -7.0285 0.0893 3.7295 -2.0509 -0.0611 -2.1425 
6050.4829 -7.3695 0.0911 4.1294 -2.1939 -0.0623 -2.2874 
8657.5520 -7.5625 0.0919 4.3430 -2.2662 -0.0628 -2.3605 
8666.2182 -7.5630 0.0919 4.3436 -2.2664 -0.0628 -2.3606 
8674.8844 -7.5635 0.0919 4.3441 -2.2666 -0.0628 -2.3608 

12039.4303 -7.7163 0.0925 4.5088 -2.3204 -0.0633 -2.4153 
inf - - - -2.5000 -0.0645 -2.5968 

Table 4: ( )Static sensitivity for perturbation from independent variables and parameters. 
 

 
 

      
      

0.0000 13.4632 0.0543 1.3023 -0.6496 0.0000 -1.6496 
0.2057 5.0236 0.0491 1.0477 -0.5490 -0.0187 -1.0219 
0.9935 1.1065 0.0350 0.5758 -0.3315 -0.0216 -0.4620 
4.7999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

23.1891 -0.1462 -0.0671 -0.4451 0.3013 0.0455 0.3566 
67.6093 -0.1333 -0.1387 -0.6795 0.4552 0.0918 0.5537 

112.0296 -0.1209 -0.1822 -0.7805 0.5138 0.1188 0.6379 
219.3294 -0.1035 -0.2516 -0.9118 0.5796 0.1605 0.7437 
326.6292 -0.0937 -0.2999 -0.9903 0.6127 0.1885 0.8040 
433.9290 -0.0871 -0.3378 -1.0472 0.6339 0.2099 0.8463 
541.2288 -0.0821 -0.3695 -1.0924 0.6492 0.2275 0.8788 
800.4182 -0.0740 -0.4306 -1.1748 0.6736 0.2605 0.9357 
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1059.6076 -0.0687 -0.4783 -1.2361 0.6893 0.2855 0.9762 
1318.7970 -0.0648 -0.5179 -1.2853 0.7006 0.3058 1.0075 
1577.9864 -0.0617 -0.5520 -1.3267 0.7092 0.3229 1.0331 
2096.3651 -0.0573 -0.6087 -1.3940 0.7218 0.3507 1.0733 
2614.7439 -0.0540 -0.6553 -1.4481 0.7308 0.3729 1.1044 
3240.8321 -0.0511 -0.7023 -1.5019 0.7388 0.3948 1.1342 
3866.9202 -0.0489 -0.7424 -1.5470 0.7450 0.4130 1.1585 
5119.0965 -0.0456 -0.8083 -1.6203 0.7540 0.4422 1.1966 
6371.2728 -0.0432 -0.8612 -1.6785 0.7604 0.4649 1.2257 
7623.4491 -0.0415 -0.9055 -1.7268 0.7652 0.4835 1.2490 

12632.1543 -0.0371 -1.0324 -1.8632 0.7769 0.5346 1.3118 
15656.8643 -0.0355 -1.0864 -1.9207 0.7812 0.5554 1.3368 
18681.5744 -0.0343 -1.1303 -1.9672 0.7844 0.5720 1.3566 
24730.9944 -0.0325 -1.1984 -2.0389 0.7889 0.5970 1.3861 
36829.8346 -0.0305 -1.2897 -2.1345 0.7943 0.6293 1.4238 
61027.5148 -0.0285 -1.3919 -2.2409 0.7996 0.6640 1.4637 

136811.2948 -0.0264 -1.5154 -2.3688 0.8051 0.7039 1.5090 
212595.0747 -0.0257 -1.5618 -2.4167 0.8070 0.7184 1.5253 
212807.8826 -0.0257 -1.5619 -2.4168 0.8070 0.7184 1.5254 
213020.6905 -0.0257 -1.5620 -2.4169 0.8070 0.7184 1.5254 
294831.5447 -0.0253 -1.5879 -2.4436 0.8080 0.7264 1.5343 

inf -0.0242 -1.6667 -2.5247 - - - 
Table 5: ( )Static sensitivity for perturbation from independent variables and parameters. 

 
 

 
      

      
0.0000 -8.6610 0.0705 1.9061 -1.0841 0.0000 -2.0841 
0.4011 -15.1310 0.0639 1.4597 -0.8803 -0.0287 -1.2669 
2.0167 3.8085 0.0479 0.8008 -0.5271 -0.0308 -0.6343 

10.1395 0.1446 0.0125 0.1339 -0.0953 -0.0086 -0.1081 
50.9790 -0.1478 -0.0523 -0.3502 0.2542 0.0354 0.2931 

153.6447 -0.1469 -0.1217 -0.6025 0.4266 0.0806 0.5099 
256.3103 -0.1353 -0.1632 -0.7082 0.4904 0.1067 0.5992 
514.3992 -0.1170 -0.2315 -0.8474 0.5631 0.1482 0.7127 
772.4881 -0.1063 -0.2784 -0.9286 0.5989 0.1758 0.7758 
1288.6660 -0.0936 -0.3460 -1.0328 0.6380 0.2141 0.8530 
1613.0682 -0.0883 -0.3788 -1.0798 0.6532 0.2323 0.8862 
1937.4703 -0.0842 -0.4071 -1.1188 0.6649 0.2477 0.9132 
2586.2747 -0.0781 -0.4546 -1.1819 0.6818 0.2729 0.9553 
3235.0790 -0.0737 -0.4939 -1.2322 0.6939 0.2933 0.9876 
3883.8833 -0.0702 -0.5275 -1.2742 0.7031 0.3104 1.0139 
5181.4920 -0.0651 -0.5836 -1.3424 0.7165 0.3383 1.0551 
6479.1007 -0.0615 -0.6296 -1.3968 0.7260 0.3605 1.0867 
8110.1163 -0.0580 -0.6778 -1.4529 0.7348 0.3832 1.1182 
9741.1318 -0.0554 -0.7186 -1.4997 0.7414 0.4021 1.1437 

13003.1630 -0.0516 -0.7855 -1.5752 0.7510 0.4321 1.1833 
16265.1942 -0.0489 -0.8391 -1.6348 0.7578 0.4554 1.2133 
19527.2253 -0.0468 -0.8839 -1.6841 0.7629 0.4744 1.2374 
32575.3500 -0.0418 -1.0122 -1.8232 0.7752 0.5266 1.3019 
40775.7015 -0.0399 -1.0687 -1.8838 0.7799 0.5486 1.3285 
48976.0531 -0.0385 -1.1145 -1.9326 0.7833 0.5660 1.3494 
65376.7563 -0.0365 -1.1852 -2.0075 0.7881 0.5922 1.3803 
98178.1626 -0.0341 -1.2793 -2.1066 0.7938 0.6257 1.4195 

163780.9752 -0.0318 -1.3844 -2.2165 0.7992 0.6615 1.4608 
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378775.4276 -0.0293 -1.5143 -2.3514 0.8051 0.7035 1.5086 
593769.8799 -0.0285 -1.5618 -2.4005 0.8070 0.7183 1.5253 
594364.2442 -0.0285 -1.5618 -2.4006 0.8070 0.7184 1.5253 
594958.6084 -0.0285 -1.5619 -2.4007 0.8070 0.7184 1.5254 
823451.1016 -0.0281 -1.5879 -2.4275 0.8080 0.7263 1.5343 

inf -0.0269 -1.6667 -2.5088 - - - 
Table 6: ( )Static sensitivity for perturbation from independent variables and parameters. 

 
IV. CONCLUSION 

A constitute (genes, proteins, metabolites), 
in fact, physically interacts with about four 
ingredients at most. Most of elements of the 
sensitivity matrix  are zero. So, system parameters 
can be decomposed into several groups and perturb 
these groups one by one. In this study, we further 
visualize the reduced normalized dynamic 
sensitivity equations and system equations as 
integrated blocks denoting subsystems in the block-
diagrams-based Simulink environment. In this way, 
the difficulty in simultaneously solving system 
equations and sensitivity equations is largely 
reduced. The proposed approach is able to find out 
the dynamic sensitivity of various biological or 
physical systems. Additionally, the normalized 
dynamic sensitivity curves are affected by initial 
states of the underlying systems. So, two ensemble 
metrics, norm and norm, is introduced to get 
parametric influence ranking on system transient 
behavior. We further discuss the normalized static 
sensitivity of systems for perturbations from 
independent variables or parameters. The tendency 
of system steady states to independent variable 
variations, the parametric influence ranking and the 
limiting influence strength for various parameter 
perturbations are sufficiently discussed. In the future, 
we shall develop controllers to let biological 
systems possess satisfactory dynamic behavior. 
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Supplement materials 

 
A. Dynamic sensitivity for reversible pathways 

 
 

 
 

 
Figure S1: )= (14,10,2,4.8)) Simulation results of system dynamic behavior (upper figure), 

sensitivity of (middle figure) and sensitivity of (down figure). denote the normalized 
sensitivity of to the parameters and denote the sensitivity of 

to the parameters  
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Figure S2: )= (2,4.8)) Perturbation at steady states )= (3.6384, 2.5113). Simulation results of 

sensitivity of (upper figure) and sensitivity of (down figure). denote the normalized 
sensitivity of to the parameters and denote the sensitivity of 

to the parameters  
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B. Comparison of Dynamic Sensitivity Evolution of  

)= (14,10,2,4.8) 
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(4,3,2,4.8)
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