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ABSTRACT 
In August 2019, the Brazilian coast, especially the north-eastern coast, was contaminated by a dense mass of 

extra-heavy oil, causing environmental and social disturbances of different orders, with deleterious effects that 

will have impacts for many decades to come. After exposure in the marine environment by recalcitrant 

hydrocarbons, the fate of these compounds will depend on certain abiotic factors that may increase the 

bioavailability of these molecules, favoring the biological transformations of the removal of the contaminant, 
carried out by competent hydrocarbonoclastic microbes. This work presents a brief history of the greatest 

accidents at sea involving crude oil spills. Further, we defend a fundamental convergence of photo-oxidation and 

the metabolism of Pseudomonas aeruginosa, as natural mechanisms for removing heavy oil. 
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I. INTRODUCTION 
Petroleum remains a main natural energy 

resource.  It is expected that in twenty years, heavy 

oil will still represent 8% of the total supply of liquid 

hydrocarbons [1]. Environmental pollution is one of 

the greatest concerns in modern society [2], 

demanding criteria for and planning strategies along 

the entire oil production chain. Actions are 

imperative to prevent oil spill or mitigate the impact 

when accidents may occur [3]. 

Because of their visual and journalistic 

appeal as well as ecological impact, shipping 

accidents are widely reported [4]. In addition, sea 
currents contribute to the spread of oil over large 

areas, potentially reaching beaches [5], mangroves 

[6], sandbars and the ocean floor [7]. As a 

consequence, the food chain is drastically disrupted 

and the natural recovery process may last for 

decades [8]. 

Microbes and plants are the major 

organisms involved with hydrocarbon removal in 

nature [9]. On the other hand, given the complexity 

and magnitude of an accidental oil spill, the degree 

of microbial inhibition caused by the oil may 

compromise hydrocarbonoclastic activity [10]. Thus, 
the abiotic factors act as ways of transforming a 

contaminant into molecules with better 

bioavailability [11]. 

 

 

 

 

However, heavy oil requires special 

attention due to its high viscosity and the presence of 

recalcitrant compounds, particularly aromatic and 
polycyclic aromatic compounds [12-13]. 

This short review aims to present how the 

interaction between photo-oxidation and 

biodegradation can contribute to the removal of 

heavy oil after an accident in the marine 

environment. It also emphasizes the importance of 

Pseudomonas aeruginosa in this process. 

 

II. HEAVY OIL 
Petroleum is a dark and apparently 

homogeneous substance of natural origin composed 

of a predominantly mixture of hydrocarbons and 

organic derivatives containing sulphur, nitrogen, 

oxygen and other elements [14]. Three classes of 

hydrocarbons occur in crude oil: (i) paraffins, 

straight or branched chain hydrocarbons; (ii) 

naphthenic, saturated hydrocarbons containing one 

or more cyclic chains; (iii) aromatic and polycyclic 

aromatic hydrocarbons (PAHs), the most complex 

molecules, composed of benzene rings, or paraffins 

and naphthenics linked or condensed in the aromatic 
structure [15]. 

The hydrocarbon content may vary between 

70% and 97%, respectively in light oil and heavy oil, 

contributing to the different properties exhibited by 

crude oil [16]. In addition, the hydrocarbon content 
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is used in the chemical classification of oil and its 

fractions [17]. 

Heavy oil is characterized by a high ºAPI, 

among other properties, indicative of a dense oil, 

with high viscosity, low H/C ratio and high contents 

of asphaltenes, resins, aromatic compounds, 

condensates, heterocyclics, polycyclics, heavy 

metals and sulphur.  In addition, heavy oils can 
contain up to 30% of PAHs in their composition 

[18]. 

PAHs are ubiquitous, highly hydrophobic 

and chemically stable molecules, composed of 

aromatic and/or pentacyclic rings, condensed and 

arranged in linear, angular or in groups, formed by 

the incomplete combustion of organic matter. PAHs 

represent risk, having mutagenic and carcinogenic 

properties [19]. Certain properties of PAHs, such as 

recalcitrance [20], high adsorption coefficient [21], 

low water solubility [22] and inhibition of microbial 
activity [23], ensure efficient sorption of sediments 

and organic matter. 

PAHs are the most prevalent contaminants 

among all organic molecules [24] and despite their 

recalcitrance, they are susceptible to transformations 

through various abiotic routes, which include photo-

oxidation, auto-oxidation, photolysis and 

volatilization [25]. Biological removal, however is 

the main mechanism for transforming these 

hydrocarbons, requiring abundant and competent 

hydrocarbonoclastic microbiota [26]. 

  

III. ICONIC ACCIDENTS INVOLVING 

CRUDE OIL AT SEA 
Contamination caused by oil and its 

derivatives may occur in different degrees along all 

of the production chain of petroleum exploration 

[27], involving accidental spills and contributing to a 
significant contamination of soil [28] and water [29]. 

The release of oil from natural sources is 

approximately 0.5 million tons annually, but the 

greatest source of oil pollution originates from 

human activity [30]. 

Several accidents involving oil spills occur 

annually. In the past 50 years, millions of tons of oil 

have been released in almost 2000 reported 

accidents and incidents. Most of the sources of the 

spill were ships and only a small portion of these 

accidents reported damage to wildlife [31]. In most 

of oil spills, however, legal action against those 
responsible were not effective, indicating that the 

regulatory acts concerning the transportation of oil 

and petroderivatives are still insufficient [32]. 

Some of these accidents were of significant 

proportions or suffered intense media attention, 

making them iconic, as follows: The first oil spill 

accident with international repercussions occurred 

on March 18, 1967, involving the SS Torrey Canyon 

in the English Channel. The ship ran aground on the 

Seven Rocks reef due to a navigation error and 

caused the leakage of 120,000 ton of crude oil. The 

environmental impact was inevitable and both the 

northern coast of France and the coast of Cornwall 

were strongly affected. The death of seabirds 

reached hundreds of thousands. The case was 
exhaustively covered by the press at the time [33]. 

As a consequence, several international agreements 

were signed and in 1969 the International Oil 

Pollution Compensation Funds (IOPC) was created 

[34]. 

On March 24, 1989, the Exxon-Valdez 

spilled more than 35,000 tons of oil and caused the 

most emblematic environmental accident involving a 

historic oil spill. The accident occurred in Prince 

William Sound, Gulf of Alaska. Approximately 40% 

of the spilled oil reached 783 km of coastline, 
covering 26,000 km2 of the water surface and the 

consequences of that disaster persist to this day [35-

36]. Although the accident occurred in a region with 

mostly cold temperatures, monitoring over the 

decades, of the area affected by the oil, has become a 

landmark for the evolution of studies in 

bioremediation, contributing significantly to the 

knowledge and applications currently used [37-38]. 

In 2012, the ship involved in the accident was 

purchased by an Indian company and after several 

controversial lawsuits was finally turned into scrap 

metal a few years later [39]. 
The next accident occurred during a 

military conflict in 1991, with live coverage on 

television, during the Gulf War (1990-1991). The oil 

spill is believed to be the largest in history, in times 

of war or peace [40]. More than 800 oil wells were 

bombed and it is estimated that between 1 and 1.7 

million ton of crude oil were leaked into the Persian 

Gulf, causing severe damage to the marine and 

terrestrial ecosystems, especially along the Kuwaiti 

and Iraqi coasts [41]. 

On November 13, 2002, the oil tanker 
Prestige sank off the coast of Galicia, Spain after a 

storm and more than 20 million gallons of oil were 

spilled, affecting more than 1000 Spanish and 

French beaches, also compromising the bird 

population [42]. The case was treated as a criminal 

by Spanish authorities and currently the region is 

still being monitored [43]. 

On April 20, 2010, a huge explosion 

destroyed the Deepwater Horizon oil rig in the Gulf 

of Mexico and for 83 days a volume of about 4 

million barrels of crude oil spilled directly into the 

water, impacting aquatic and terrestrial life. To 
minimize the hazards, different strategies were 

applied, and millions of gallons of dispersing agents 
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were used. In the following years, many efforts have 

been made to recover the affected area, including 

photoremediation [44-45]. 

The biggest environmental tragedy related 

to oil spills in Brazil started on August 30, 2019. The 

first dense patches of crude oil appeared on the 

north-eastern coast and, by November had reached 

643 areas in 116 municipalities in the region [46]. 
There was no immediate intervention on the part of 

the Brazilian government; despair of the people 

affected motivated and impelled the first actions. 

These actions were carried out in an incorrect and 

dramatic way, whose consequences will only come 

to light in the medium to long term [47]. The 

accident had a direct impact on more than 870,000 

people, dependent on artisanal fishing and tourism, 

among other activities. The origin and responsibility 

for the oil spill are still unknown, but its nature was 

characteristic of an extra-heavy oil [48]. In the 
beginning of January and up to May 2020, small 

new spots resurfaced on the beaches of the Northeast 

and Southeast regions of Brazil. 

 

IV. PHOTOOXIDATION AS THE MAIN 

ABIOTIC FACTOR IN THE 

ELIMINATION OF HEAVY OIL 
After an oil spill in the sea, the functioning 

of the aquatic ecosystem is affected by different 

variables. These variables determine the fate of the 

natural removal of hydrocarbons through routes 

governed by biotic and abiotic factors [49]. It has 

been known for some decades that photo-oxidation 

plays a major role in the fate of PAHs in the photic 

zone of the seawater [50]. In addition, biotic and 

abiotic factors may interact, positively enhancing the 
rate of hydrocarbon removal [51]. 

The biotic factors concern the availability 

of nutrients and the ability of the indigenous 

microbiota to tolerate and initially uptake the lower 

carbon chain compounds [52]. This initiates a 

process involving successions of the dominant 

microbiota, conditioned to the bioaccess and 

bioavailability of carbon and energy sources [53-55], 

as well as on the hydrocarbon type [56]. The abiotic 

factors are related to the physicochemical 

transformations of hydrocarbons, as well as 

temperature, humidity, pH variations and 
physicochemical properties of contaminants [57]. 

Hydrocarbons are degraded by different 

abiotic routes [58]. Light oil and simple, straight or 

branched chain hydrocarbons tend to be eliminated 

more quickly, especially by volatilization and 

chemical reactions in the presence of light [59]. On 

the other hand, the elimination of heavy oil is more 

prolonged because it is temporarily limited [60]. 

This occurs due to the sorption of these molecules to 

the different substrates [61], as well as sedimentation 

in the beds [62], reefs [63] coastal and mangrove 

areas [64]. Despite this, heavy oil is also susceptible 

to the abiotic degradation routes, in which light oils 

are transformed. 

The main abiotic routes for hydrocarbon 

transformation in water are volatilization [65], 

autooxidation [66], dispersion [67], formation of 
stable oil/water emulsions [68], dissolution [69] and 

sorption/sedimentation [70]. Photooxidation, 

however is the most important transformation route. 

Photooxidation is the most important weathering 

processes and contributes to the physicochemical 

degradation of oil hydrocarbons. Intense solar 

radiation on the surface of spilled oil allows the 

formation of high polarity compounds, such as 

aliphatic and aromatic ketones, aldehydes, 

carboxylic acids, fatty acids, esters, epoxides, 

sulfoxides, sulfones, phenols, anhydrides, quinones, 
aliphatic hydrocarbons and aromatic alcohols [71]. 

Aromatic hydrocarbons are more 

susceptible to photooxidation, compared to branched 

hydrocarbons, which are more resistant compounds. 

Photooxidation transforms aromatic hydrocarbons 

through two mechanisms [72]. The first occurs 

directly on the degradation of aromatic hydrocarbons 

with high molecular weight, including PAHs 

because these molecules absorb wavelengths in a 

range between 300 and 500 nm, comprising 

ultraviolet radiation and visible light [71]. 

The process of eliminating these 
compounds can occur within up to 36 days of 

exposure to sunlight [73]. In addition, the 

degradation of high molecular weight hydrocarbons 

is favored because the singlet oxygen 

photodegradation pathways are facilitated in 

aqueous media [74]. Additionally, in seawater, 

photosensitizing molecules participate in the 

production of reactive oxygen species that attack 

some aromatic compounds and PAHs. Thus, the 

more intense the solar radiation, the higher the rate 

of hydrocarbon photooxidation [75]. 
The second mechanism of hydrocarbon 

photo-oxidation occurs indirectly, via the formation 

of photochemical metabolites of aromatic 

compounds and PAHs, especially ketone 

metabolites. They may act as photosensitizers and 

participate in the transformation of other 

hydrocarbons, including high molecular weight n-

alkanes resistant to ultraviolet radiation [73]. 

Photolytic transformations are enhanced in 

natural waters and this also contributes to an 

increase in the bioavailability of petroleum 

hydrocarbons in the environment [76-77]. When 
there is a limitation in the levels of nutrients, 

photooxidation is the most important process to 
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transform organic matter. In parallel, in marine 

photic zones, the combination of photooxidation, 

dissolution, and biodegradation allow the depletion 

of hydrocarbons at rates faster than just 

biodegradation under aphotic conditions [78]. Given 

this, microbial growth in the marine environment is 

minimal when non-irradiated hydrocarbons are used 

as the sole carbon and energy sources. On the 
contrary, the concentration of dissolved organic 

carbon increases linearly during sunlight irradiation, 

especially the ultraviolet-absorptive hydrocarbons 

[79]. 

 

V. ASSIMILATION AND DEGRADATION 

OF HEAVY OIL BY 

HYDROCARBONOCLASTIC 

BACTERIA 
At the beginning of the 20th century, some 

microbes were discovered to use hydrocarbons as 

sources of carbon and energy. The term 

hydrocarbonoclastic was coined to designate these 
microbes. In the 1940s, studies deepened on the 

theme after publication of a classic study by 

Bushnell and Haas [80] when they proved that more 

complex hydrocarbons can be mineralized. 

Hydrocarbonoclastic microbes are widely 

distributed in the environment due to their 

diazotrophic nature [81]. The microbial cell 

alterations caused by hydrocarbon exposure promote 

drastic changes in the indigenous biota [82], 

especially because the C:N:P ratio is unbalanced 

[22]. In contrast, after exposure to crude oil, the 

population of hydrocarbonoclastic microbes 
becomes more prevalent [83]. 

Microbial metabolism is the key role to the 

recovery of a specific oil-contaminated site [84-85]. 

Bacteria exhibit different mechanisms to uptake 

hydrocarbons, among them, the expression of 

oxidoreductases [86], synthesis of surfactants [87], 

biofilm formation [88] and production of compatible 

solutes [89]. In addition, the presence of macro and 

micronutrients is crucial. Simple molecules with 

higher bioavailability may enhance the removal of 

recalcitrant hydrocarbons, acting as cosubstrates 
[90]. 

In fresh water, hydrocarbon biodegradation 

processes are more favored, compared to the marine 

environment. The salinity of sea water promotes 

salting out, i.e., a reduction of hydrocarbon 

solubility and bioavailability caused by increased 

hydrophobicity of hydrocarbons due to interactions 

of these molecules with cations [91]. Thus, 

photooxidation plays a crucial role in the marine 

environment, as it promotes the formation of 

assimilable photoproducts that contribute to the 

acceleration of the rate of elimination of the 

contaminant [92]. 

Several hydrocarbonoclastic 

microorganisms are capable of removing oil in 

seawater and on soil and beaches contaminated by 

hydrocarbons [93-95]. Due to its metabolic 

versatility, Pseudomonas aeruginosa is 

acknowledged as a representative 
hydrocarbonoclastic microbe [96]. The bacterium 

exhibits resistance and tolerance to toxic molecules 

in environments with different degrees of selective 

pressure [97]. In addition, P. aeruginosa uses more 

than 90 molecules as carbon and energy sources 

[98], including paraffins [99], naphthenics [100], 

2015), aromatics [101] and PAHs [102]. The 

hydrocarbon mineralization process is divided into 

two distinct stages. The first is more accelerated and 

mediated by the bioavailability of the contaminant. 

The second stage is slower and controlled by the 
hydrocarbon sorption/desorption ratio [103]. It may 

be enhanced when other abiotic factors are 

interacting [104]. 

The degradation of different recalcitrant 

hydrocarbons by P. aeruginosa is complex. The 

bacterium may have preferential choices for the 

carbon sources [105] especially those with high 

molecular weight hydrocarbons [106]. Given this, 

the role of photooxidation and other abiotic factors 

in the transformation of these molecules is extremely 

important because this process enhances 

bioavailability. In parallel, P. aeruginosa can 
assimilate hydrophobic compounds because it is 

capable of producing ramnolipids, i.e., molecules 

with tensoactive properties that enable bioaccessing 

[107], as well as increase bacterial respiratory 

activity [108]. Therefore, the reduction in the surface 

tension of heavy oil becomes proportional to the 

increase in the kinetic parameters of hydrocarbon 

degradation [109] and the products of this 

degradation comprise intermediates of different 

pseudomonal metabolic routes for the production 

biomass and attainment of energy [110]. 
 

VI. CONCLUSION 
The interaction of biotic and abiotic factors 

is crucial for the fate of hydrocarbons introduced 

into the marine environment. Photic transformations 

in particular are responsible for the formation of 

products with higher bioavailability and thus, able to 

be assimilated and mineralized by competent 

microbes, especially Pseudomonas aeruginosa, one 
of the most versatile and ubiquitous 

hydrocarbonoclastic microorganisms. 
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