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ABSTRACT 
Hydrogels are three-dimensional (3D) network structure materials consisting of hydrophilic polymer chains, 

which are crosslinked to form matrices with high water content which swells but does not dissolve in water. 

They are characterized by tunable physical, chemical, biological properties, high biocompatibility and versatility 
in fabrication, which classified them as a promising materials in several fields. The soft and wet nature makes 

hydrogels ideal candidates for applications in soft robotics, smart lenses and artificial muscles. Recently, carbon 

nanomaterials, have been incorporated into various hydrogels, because of their superior electrical, mechanical, 

and thermal properties, which have been widely applied to sensors, actuators and barrier technologies. These 

unique physicochemical properties of carbon nanomaterials are highly desired for soft robots, enabling them to 

work in different environments and provide real-time feedback in order to achieve optimal human-robot and 

robot-robot interfaces. Carbon nanotubes (CNTs) are often used as reinforcing agents to enhance the mechanical 

properties of hydrogels. A new class of hydrogels, known as nanocomposite hydrogels were obtained by 

incorporating CNTs in hydrogel formulations, resulting as very tough and electrically conductive hydrogels. 

Herein, will be discussed more in detail the use of carbon nancomposite hydrogels in the applications as 

actuators and sensors, conductive hydrogels and tissue engineering and biomedicine.  
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I. INTRODUCTION 
Nanotechnology is an interdisciplinary 

study which allows us to develop materials with 

new, interesting and useful properties [1]. 

Nanotechnology is necessarily a multidisciplinary 

field which encompasses and draws from the 

knowledge of several diverse technological fields of 
study including chemistry [2], physics, molecular 

biology, material science, computer science, and 

engineering [3-4]. Nanomaterials have dimensions 

below 100 nm and usually exhibit different chemical 

and physical properties than macroscopic objects 

based on the same material [5-6]. For a perspective 

of this scale at the atomic level, a hydrogen atom’s 

diameter is on the order of an Ångström (1 Å = 0.1 

nm). Thus, ten hydrogen atoms laid side by side 

would measure a distance of about 1 nm across. 

Nanomaterials are being used in a number of 
industries to improve product functionality for 

electronic, magnetic, optoelectronic, cosmetic, 

catalytic, biomedical, pharmaceutical, energy, and 

materials applications.  

In the past decades, a new class of 

hydrogels, known as nanocomposite hydrogels [7] 

has been designed to improve mechanical 

performance. These gels, next to the polymeric 

network, contain inorganic particles, such as clay, 

graphene, carbon nanotubes (CNTs), or silica [8]. 

All nanomaterials composed of carbon 

atoms are termed as carbon-based or carbon 

nanomaterials. The era of carbon-based 

nanotechnology, as it is well-known, started from 

1985 when the fullerene C60 was discovered. The 

rediscovery of carbon nanotubes and unexpected 

discovery of graphene gave a powerful impulse to 

the further development of carbon nanostructures 
[9]. Nanostructured allotrope forms of carbon have 

been intensively investigated in the past two decades 

because of their unique hybridization properties and 

sensitivity to perturbation during synthesis, allowing 

for fine manipulation of the material properties.  

This review aims to provide an overview on 

recent progress in hydrogels and its nanocomposites 

with carbon nanotubes. Recent progress on the use 

of carbon nanotubes as nanofillers for the synthesis 

of nanocomposite hydrogels will be discussed in 

detail. It briefly describes the applications related to 

actuators and sensors, conductive hydrogels and 
tissue engineering and biomedicine. 

 

II. CARBON NANOTUBES 
Carbon nanotubes, discovered by Japanese 

scientist Ijima in 1991 [10], are another allotrope 

form of carbon with a cylindrical structure. CNTs 
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was discovered by an early experimental observation 

of carbon nanotubes by transmission electron 

microscopy (TEM). CNTs can be described as 

graphite sheets that are rolled up into cylindrical 

shapes. The length of CNTs is in the form of 

micrometers with a diameter of about 100 nm [11]. 

There are two types of CNTs that are classified 

according to the number of carbon layers present in 
them (Figure 1). Single-walled carbon nanotubes 

(SWCNTs) consist of single graphene layer with 

diameter varying between 0.4 and 2 nm and usually 

occurs as hexagonal-packed bundles. Multi-walled 

carbon nanotubes (MWCNTs) comprises of two or 

several cylinder, each made up of graphene sheets. 

The diameter varies from 1 to 3 nm [12].  

 

 
Fig. 1. Representation of single-walled carbon 

nanotube (SWCNT) and multi-walled carbon 

nanotube (MWCNT). [13] 

 

The unique structure of CNTs results in 

many extraordinary properties. CNTs exhibit 
excellent chemical and physical properties such as 

high tensile strength, ultra-light weight, special 

electronic structures and high chemical and thermal 

stability. In addition to their extraordinary 

properties, the density of CNTs is around 1.33–1.4 

g/cm3 [14], which is half of the density of aluminium 

(2.7 g/cm3), making them very attractive for 

lightweight applications. CNTs belong to a 

promising group of nanomaterials. Because of these 

exceptional properties, scientists have developed an 

immense interest in these nanomaterials. These 
include applications in high-strength composite 

materials, scanning probe microscopy, field 

emission sources, nanoelectronics, 

nanoelectromechanical systems (NEMS), 

nanorobotics, chemical sensors, bio-nanotechnology, 

and energy storage. Furthermore, the main 

applications of carbon nanotube include 

biomolecule, drug, and drug delivery to the targeted 

organs, biosensor diagnostic and analysis [15]. 

Recently, carbon nanomaterials, such as 

carbon nanoparticles [16-17], carbon nanotubes [18-

20], [21-22], and graphene oxide (GO)[23-24], have 
been incorporated into various hydrogels, because of 

their superior electrical, mechanical, thermal 

properties, high mechanical strength, high specific 

area, and low mass density [25] which have been 

widely applied to sensors [26], actuators [27-28], 

and barrier technologies [29-30]. These unique 

physicochemical properties of carbon nanomaterials 

are highly desired for soft robots, enabling them to 

work in different environments and provide real-

time feedback in order to achieve optimal human-

robot and robot-robot interfaces. Nevertheless, the 
incompatibility between “hard” carbon 

nanomaterials and “soft” hydrogels has been a huge 

challenge towards full utilization of their intrinsic 

physicochemical properties in the fabricated soft 

robots [31]. 

CNTs are often used as reinforcing agents 

to enhance the mechanical properties of hydrogels. 

By incorporating CNTs in hydrogel formulations, it 

is possible to obtain very tough [32-33] and 

electrically conductive hydrogels [34-36]. CNT-

based nanocomposites represent a versatile platform 
for developing hydrogels with multiple responsive 

properties and remarkable mechanical performance. 

However, there is a concern about the toxic effects 

of CNTs and, therefore, hydrogel biocompatibility. 

Studies reported CNT toxicity that seemed to be 

dose-dependent, but which could be reduced when 

CNTs are functionalized and incorporated in 

networks [37]. Most of the reported CNT-based 

nanocomposite hydrogels contain covalent cross-

links between CNTs and polymer chains, or between 

polymer chains, with CNTs being only physically 

embedded in the network [33, 34, 38-40]. 
 

III. HYDROGELS 
Both natural and synthetic polymers have 

been broadly used for the synthesis of hydrogels 

[41]. The primary natural polymers exploited for 

fabrication of hydrogels are biodegradable materials 

such as fibrin [42], collagen [43], hyaluronic acid 

[44] and alginate [45], that are able to mimic natural 

tissue constructs [46]. However, their mechanical 
strength is essentially poor and their composition 

may vary from one hydrogel to the other. On the 

other hand, hydrogels that are made of synthetic 

polymers such as poly(ethylene glycol) (PEG)[47], 

poly(acrylamide) (PAM)[48] and poly(vinyl alcohol) 

(PVA)[49] possess controllable chemical and 

mechanical features. However, they need to be 

modified to become bioactive by incorporating 

adhesive molecules upon polymerization [50]. 

Hydrogels, which are a three-dimensional 

(3D) network of cross-linked hydrophilic polymer 
chains with high water content (up to 90 wt%), are 

highly elastic and soft materials. If these hydrogels 

contain stimuli-responsive polymer, they can 

produce drastic changes in their volume in response 

to environmental stimuli, such as heat, light, and 

magnetic and electric fields. Particularly, hydrogel 
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actuators, converting the energy received from 

outside into mechanical motion, can exhibit soft and 

flexible motions similar to that of living creatures. 

Owing to the flexibility, biocompatibility, and 

stimuli sensitivity advantages of hydrogels, they can 

be utilized in a wide variety of applications, 

including drug delivery, smart window and soft 

actuators [51]. 
Hydrogels are characterized by tunable 

physical, chemical, biological properties, high 

biocompatibility and versatility in fabrication, which 

classified them as a promising materials in several 

fields. The soft and wet nature makes hydrogels 

ideal candidates for applications in soft robotics [52-

55], smart lenses [56-57], manipulators [58-59] and 

artificial muscles [60-61].  

In spite of these significant features 

exhibited by the hydrogels, they still possess many 

shortcomings, for instance, poor mechanical 
strength, low strain, low thermal stability, which 

have restricted their optimal and efficient realization 

in various fields of science and technology. 

Unfortunately, most conventional hydrogels are 

fragile and weak. A major problem is the 

inhomogeneous distribution of crosslinks and mesh 

size in the network [62]. The poor mechanical 

properties have prevented conventional hydrogels 

from practical applications.  A great of trials have 

been made by scientists and researchers into 

redesigning and developing new hydrogels with 

improved and unique properties. In some cases, 
nanoparticles are functionalized to form covalent 

bonding or host-guest recognition with polymer 

chains. Upon loadings, the interactions between 

polymer chains and nanoparticles gradually rupture 

to dissipate energy [63]. 

Hydrogels have been actively investigated 

considering their high 

reconfigurability/deformability, low material 

stiffness, and more importantly, their outstanding 

biocompatibility, high conformability, as well as 

intrinsic interfacial adhesion [64-66]. 
Multifunctional soft robots require enhanced 

capabilities in mechanical stability, tensile sensation, 

and stimuli responsiveness which could be achieved 

by different approaches such as polymer 

modification, dual-crosslinking strategies, and 

nanomaterial reinforcement of hydrogels [67-68].  

 

III. I NANOCOMPOSITE HYDROGELS 

Nanocomposite (NC) hydrogels can be 

elongated to more than 1000% of their primary 
length, and tolerate ~90% compression [7]. 

Numerous synthetic routes have been developed to 

synthesize NC hydrogels. However, to tune 

mechanical properties, nanomaterials have been 

introduced into polymer networks either via physical 

crosslinking or covalent integration. Polymer 

monomers in physical crosslinking are crosslinked 

by nanomaterials via physical interactions during 

their polymerization. In contrast, in the covalent 

integration, nanomaterials facilitate chemical 

crosslinking using methods like click chemistry and 

radical polymerization [69]. Various nanoparticles 

including ceramic [70], carbon-based [71] and 
metallic nanomaterials [72] have been incorporated 

into hydrogel networks to achieve nanocomposites 

with tuned physical properties and functionality 

[73]. 

Chen et al in 2015 prepared a new type of 

fully physically cross-linked Agar/hydrophobically 

associated polyacrylamide (HPAAm) DN gels by a 

simple one-pot method. The Agar/HPAAm DN gel 

consisting of the hydrogen-bond crosslinked agar gel 

as the first network and the hydrophobically 

crosslinked HPAAm gel as the second network. Use 
of ductile, nonsoft HPAAm gel as the second 

network can not only effectively dissipate energy 

and thus greatly enhance the mechanical properties, 

but also introduce superior self-recovery and self-

healing properties via reversible network 

reconstruction. At the optimal formulation, 

Agar/HPAAm gels showed high mechanical strength 

and toughness, comparable to conventional 

chemically linked DN gels and superior to hybrid-

linked DN gels. More importantly, due to its unique 

physically, reversible network structures, the gels 

can sufficiently and quickly reconstruct the gel 
network structures, leading to rapid self-recovery 

and self-healing from softening and damages 

without any external stimuli at room temperature.  

Xia et al in 2017 have prepared an open 

porous microgel with high hydrophilicity and great 

injectability based on double bonded poly-(L-

glutamic acid)-g-2-Hydroxyethyl methacrylate 

(PLGA-g-HEMA) and maleic anhydride-modified 

chitosan (MCS), with diameter of 200-300 μm, pore 

diameter of 38 μm, and porosity of 88.3%. The 

storage modulus of 30 mg/ml of microgel 
dispersions is 2000 Pa, which is similar to that of the 

native adipose tissue. The spheroidal stem cell shape 

and extensive cell-cell connections can be formed in 

the present microgels to promote adipogenic 

differentiation and realize adipose tissue 

regeneration. After injection in vitro, the microgels 

can maintain high stem cell viability up to 14 days. 

The extensive Oil Red O staining is observed after 

adipogenic induction for 14 days. After 12 weeks 

post-implantation, adipose tissues can be regenerated 

well. Blood vessels are formed in the neo-generated 

tissues. The degradation rate of microgels roughly 
matches with the adipose tissue formation rate. 

Takashima et al. in 2012 have prepared a 

photoresponsive supramolecular actuator which 
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reminiscent of a natural muscle by integrating host–

guest interactions and photoswitching ability in a 

hydrogel. They demonstrated that an intelligent 

supramolecular actuator could be formed using a 

main chain with a sufficient length and an adequate 

number of guest molecules to generate reversible 

crosslinks between αCD and the Azo units. A 

photoresponsive supramolecular hydrogel with α-
cyclodextrin as a host molecule and an azobenzene 

derivative as a photoresponsive guest molecule 

exhibits reversible macroscopic deformations in both 

size and shape when irradiated by ultraviolet light at 

365nm or visible light at 430 nm. Moreover, 

photoresponsive materials have many general 

applications, including remotely controlled materials 

and medical devices. They believe that these 

stimulus-responsive stretching properties may 

eventually be used in stents and drug delivery 

carriers to selectively release drugs. αCD–Azo gels 
may realize photoresponsive embolization 

application, where photoresponsive αCD–Azo gels 

will be introduced into the vessels around a tumour 

using catheter techniques, and optical fibres will 

provide the photostimuli. It is hypothesized that the 

introduced gels will embolize the blood stream in 

arbitrary vessel positions controlled by photostimuli 

using optical fibres.  

 

III. I. I Carbon Nanotubes Nanocomposite 

Hydrogels 
Within the past few decades, inorganic (e.g. 

silica, clay, carbon nanotubes)—organic (polymer) 

nanocomposites have attracted many attentions as 

they hold promise for properties that cannot be 

realized by their microcomposite counterparts. 

Presently, CNTs nanoparticles are one of the widely 

used inorganic components embedded in the 
matrices of polymeric hydrogels in order to enhance 

their inherent properties. In fact, the CNTs have 

found a place as nanofillers in the fabrication of 

nanocomposite hydrogels due to the fact that CNTs 

have some excellent properties, such as regular pore 

structure, high conductivity, excellent 

electrochemical stability, well-defined one-

dimensional structure, low mass density, high 

mechanical strength, and high specific area [74]. 

 

IV. APPLICATIONS OF CARBON 

NANOTUBES NANOCOMPOSITE 

HYDROGELS 
Owing to the flexibility, biocompatibility, 

and stimuli sensitivity advantages of hydrogels, they 

can be utilized in a wide variety of applications, 
including drug delivery, smart window [75-78] and 

soft actuators [79-80]. There are various types of 

external stimuli including pH, light, heat, magnet 

field and ion strength.  

Carbon nanotubes nanocomposite hydrogels have a 

diverse applications such as actuators, biofuel, tissue 

engineering, effluents treatment, sensors, solar cells, 

biomedicine, conductivity, etc. 

 

IV.I Actuators and Sensors 
According to a study [81], the first 

synthetic actuators were polyelectrolyte gels which 

were found to undergo substantial, and reversible, 

dimensional change. These reversible changes in gel 

volume can be triggered chemically by immersing 

the gel in a different solvent, by changing the 

solution pH, or by altering the solution salt 

concentration. They explained that the mechanism of 

gel actuation can be understood by considering the 
operating forces that maintain the gel in the swollen 

state. The actual changes in gel volume responsible 

for actuation arise from a coil-globule transition of 

individual molecular segments in the crosslinked 

network. However, in another study [82], it was 

stated that the MWNTs nanocomposite hydrogels 

developed through a simple hydrogelation with PVA 

were actually the first actuators to be synthesized. 

The MWNTs/PVA nanocomposite hydrogel 

fabricated in their study exhibited excellent actuating 

properties.  
Exceptional properties of carbon nanotubes 

such as high tensile strength, light weight, fast 

electron transfer kinetics, high biocompatibility, 

helps in protein immobilization. Furthermore, large 

surface area, chemical inertness, large number of 

antibacterial and antifungal properties, can be used 

as protein carriers, contains exposed functional 

groups makes them tremendously attractive in 

various biosensor applications [83]. Multi-walled 

carbon nanotubes possess significant potential in 

biosensors due to their ease in supporting protein 

immobilization while maintaining protein inherent 
activity [84]. 

 

IV.II Conductive hydrogels  
Conductive hydrogels have aroused wide 

attention in recent years due to their promising 

applications for wearable sensors [85-87], 

supercapacitors [88-91], medical diagnosis [92-94], 

etc. For example, recently, a highly stretchable 

supercapacitor assembled from polypyrrole-
incorporated gold nanoparticle/carbon nanotube 

(CNT)/poly(acrylamide) (GCP@PPy) hydrogel was 

developed by Chen et al in 2019 [95], which 

performed excellent supercapacitor performance 

under complex mechanical deformations. 

Recently, hydrogels with shape memory 

function has been expected to display the great 

potentials in soft actuators, intelligent robots, etc. 
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[96-98]. Shape memory hydrogel could transform 

from a temporary shape to its performant shape in 

response to external stimulus, such as thermal, 

electric, magnetic, light or chemical, etc. [99-102]. 

Recently, Hsiao et al., in 2020 [18] 

fabricated a conductive hydrogel by integrating 

pristine multi-walled carbon nanotubes (MWNTs) 

into gelatin solution followed by the introduction of 
a crosslinking agent (i.e., glutaraldehyde). Gelatin 

served as not only the polymer backbone for the 

formation of hydrogels but also a stable, non-

covalent surfactant that could be adsorbed on the 

sidewalls of pristine MWNTs, resulting in effective 

dispersion of MWNTs in aqueous gelatin solution 

prior to crosslinking. The formation of imine 

derivatives (Schiff base bonds) between gelatin and 

glutaraldehyde was as result of crosslinking reaction. 

After large-area printing, the MWNT-gelatin paste 

(containing glutaraldehyde) continued to crosslink, 
and an MWNT-integrated gelatin hydrogel 

(abbreviated as MW-hydrogel afterward) was 

obtained. The MW-hydrogels were highly 

deformable (e.g., 100% stretching, >90° bending, 

360° twisting) and mechanically durable. Within the 

resulting MW-hydrogels, MWNTs served as a 

commercially available and highly conductive 

carbon-based nanofillers. Owing to the high aspect 

ratio of MWNTs (diameter ~5 nm, length ~15 μm), 

the MW-hydrogels only required a low MWNT 

loading to achieve the percolation network with high 

electrical conductivity. In addition, with embedded 
MWNT networks, the electrical resistances of 

conductive MW-hydrogels were responsive to 

various mechanical deformations, including 

tension/compression, twisting, and bending, 

enabling their applications in electronic robotic skin 

to monitor the actuations of soft robots in real time. 

Also, with high water content, the MW-hydrogels 

exhibited high efficiency of heat regulation and were 

further utilized as flame-retardant skin for a soft 

robotic gripper, which could manipulate and rescue 

irregularly shaped objects from a fire scene. Direct 
additive manufacturing such as doctor blading was 

adopted to obtain large-area or patterned conductive 

MW-hydrogels, which could facilitate their wide 

adaptations to various robotic and actuation systems. 

Recently, Zhang et al. in 2019 [103] 

prepared a highly tough and conductive hydrogel 

with good shape memory behavior via constructing 

the catechol-Fe3+ interactions in the poly(vinyl 

alcohol) (PVA) hydrogel matrix. The hydrophobic 

5,5,6,6-tetrahydroxy-3,3,3,3-tetramethyl-1,1-

spirobisindane (TTSBI) was introduced to provide 

the catechol ligands for Fe3+. The fabricated TTSBI-
2@Fe3+-12 nanocomposite hydrogel performed great 

toughness (9.23 MJ/m3), large tensile strength (3.25 

MPa) and high extensibility (752%). The 

distinguished mechanical performance of the 

composite hydrogel was contributed by the synergy 

of nanophase separation structure formed by TTSBI 

in PVA matrix, strong hydrogen bonding interaction 

between PVA and TTSBI, and metal coordination 

interaction of catechol-Fe3+. The introduced Fe3+ 

also imparted good conductivity to the hydrogel. 

Moreover, the mechanical and conductive properties 
of the composite hydrogel could be flexibly 

regulated by the pH value. The conductive hydrogel 

showed excellent sensitivity to stretching, bending, 

twist, and compression. In addition, the hydrogel 

exhibited multiple-stimuli responsive shape memory 

behaviors. This work offers a hierarchical self-

assembly strategy to fabricate functional hydrogel 

with tailored mechanical, conductive properties and 

shape memory behavior for a series of promising 

applications such as flexible wearable electronics 

and intelligent actuators. 
 

IV.III Hydrogels for Tissue Engineering and 

Biomedicine 
Tissue engineering is an approach 

involving the design of tissue constructs with the 

capability of mimicking native tissue in vitro. These 

constructs are subsequently implanted in vivo to 

regenerate damaged tissue functionality and to help 

millions of people who suffer from diseases, or 

impaired organs [104]. This method combines 

scaffolds, cells, and growth factors in which the cells 

are cultured on the scaffold and grown. 
Subsequently, this tissue construct is implanted at 

the site of injury without the need for multiple 

surgeries, thereby reducing the costs, risks, and 

recovery time associated with conventional 

treatments [105]. 

Many patients around the world suffer from 

organ failure, tissue damage or disease, they require 

surplus quantities of tissues or organs for 

replacement. However, due to the shortage of 

donors, still many wait for the suitable transplant 

[106]. To address this issue, researchers started 
focusing towards tissue engineering and regenerative 

medicine, where hydrogels play a major role in 

providing the three dimensional microenvironment 

for the cells [107-108]. The 3D polymeric scaffolds 

used for this specific purpose should be 

biodegradable, biocompatible and also, should 

contain biofactors to enhance the cell adhesion and 

proliferation [109].  

Hydrogels have been recognized as crucial 

biomaterials in the field of tissue engineering, 

regenerative medicine, and drug delivery 

applications due to their specific characteristics. 
These biomaterials benefit from retaining a large 

amount of water, effective mass transfer, similarity 

to natural tissues and the ability to form different 
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shapes. The hydrogels provide the flexibility by 

modifying their polymeric network or cross linking 

density or methods; however, they can be tuned to 

respond to a physical, chemical or biological stimuli 

[110]. 

In recent years, flexible hydrogel strain 

sensors have shown potential applications in 

artificial intelligence, such as medical monitoring, 
human motion detection, and intelligent robotics. It 

is a challenge for flexible strain sensors with 

stretchable and efficient healing to ensure stable 

sensing under repeated deformations or damage. 

Self-healing capacity refers to a material’s ability to 

automatically repair damage and recover to its 

original structure and properties [111-112]. 

Recently, the metal ion cross-linked 

hydrogels have gained enormous interest because of 

its excellent properties like self-healing, fast 

recovery, biocompatibility and high mechanical 
properties combined with multi-stimuli 

responsiveness. In the review article [113], the 

recent trends in the development of metal ion cross-

linked hydrogels for tissue engineering and 

biomedical applications have been summarized.  

In the research carried out by Mao et al. in 

2019 [114], a highly stretchable, self-healing, and 

strain-sensitive sensor was prepared from a hydrogel 

with a dual network structure, consisting of acrylic 

acid (AA), graphene oxide (GO), iron ions (Fe3+), 

and ammonium persulfate (APS) via one-step in-situ 

polymerization without a chemical crosslinker. The 
composite polyacrylic acid (PAA)-GO hydrogel 

showed dual crosslinking effect: (i) ionic 

coordination bonding between Fe3+ ions and the 

carboxylic functional groups of PAA and GO and 

(ii) hydrogen bonding between the polar functional 

groups of PAA and the oxygen-containing functional 

groups of PAA and GO. Because of dynamic 

double-crosslinked networks, the PAA-GO hydrogel 

exhibited superior stretchability (1185.53% 

elongation at break) and self-healing property 

(88.64% healing efficiency) as well as electrical self-
healing performance. Moreover, strain-sensitive 

conductive hydrogels can be used as flexible sensors 

to monitor body motions (e.g., bending of fingers, 

wrists, and elbows) by detecting change in electrical 

signal and can be used as wearable sensors and for 

personal health monitoring. 

Recent publications have been focused on 

ferric (Fe3+) ion based cross-linking. Fe ion- catechol 

(F-C) cross-linked hydrogels were used to develop 

biomimetic materials inspired from the mussel. The 

combination of catechol and iron chelation offers 

enhanced hardness and extensibility to the 
hydrogels. With this combination, Waite and his 

colleagues reported a pH-responsive hydrogel by 

modifying the poly(ethylene glycol)[115] with L-

dihydroxyphenylalanine (DOPA) containing 

catechol groups where mono-, bis- and tris catechol 

forms containing Fe3+ ions were used to develop pH-

dependent crosslinking of hydrogels [116]. 

Similarly, in another work, they varied the different 

metal ions to modulate the mechanical properties of 

the hydrogels by adjusting the pH values [117-118]. 

 

V. CONCLUSIONS 
Among numerous composite hydrogel 

systems, carbon nanotubes-based nanocomposite 

hydrogels have gained significant attention due to 

their high mechanical strength, effective surface 

area, and high electrical conductivity. The well-

demonstrated features of CNTs advocate them as 

one of the most promising nanofiller for diverse 

applications such as regenerative medicines, tissue 
engineering, drug delivery devices, implantable 

devices, bio-sensing and bio-robotics.  
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