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ABSTRACT 

A non-stationary ECG signal was analyzed using time-frequency distributions to enhance diagnostic efficiency. 

The time-frequency distributions were formulated using discrete Wigner-Ville distribution with various 

windowing techniques. Various time-frequency distributions techniques such as discrete pseudo-Wigner-Ville 

distribution, separable discrete Lag-Independent smoothed Wigner-Ville distribution, separable discrete 

Doppler-Independent smoothed Wigner-Ville distribution and separable discrete smoothed pseudo-Wigner-Ville 

distribution were developed to analyze supra-ventricular and malignant ventricular ECG arrhythmia signals. The 

performance of the time-frequency distributions was evaluated through energy distribution and time-frequency 

resolution. The discrete pseudo-Wigner-Ville distribution was computed in the time-lag domain, which gave 

low resolution in the time-frequency domain. Whereas the Lag-Independent and Doppler independent discrete 

smoothed Wigner-Ville distributions were computed in the time lag and Doppler-lag domain had resulted in 

cross-terms problems. But, the discrete smoothed pseudo-Wigner-Ville distribution kernels were served as low-

pass filters and could be estimated in the Doppler-lag as well as time-lag domains. The results obtained from 

this study revealed that the separable discrete smoothed pseudo-Wigner-Ville distribution provided a better 

resolution in the time-frequency domain and in turn exhibited the shape of the waveform clearly than the other 

time-frequency distributions. Consequently, the separable kernel time-frequency distributions may be treated as 

a suitable time-frequency WVD for the detection of the heart rate variability and QRS peak. 
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I. INTRODUCTION 
Most of the real-life signals are non-

stationary and multicomponent signals [1]. The 

electrical activity of the heart generates a pattern of 

ECG signal during atrial depolarization, ventricular 

depolarization, and ventricular repolarization and is 

represented as P-QRS-T complex waves, 

respectively. The shape, relative position, duration, 

and amplitude of these waves are considered an 

important diagnostic tool to a cardiologist in the 

diagnostic process [2]. Biomedical signals including 

the ECG signal are characterized as time-varying 

signal properties, called non-stationary signal in 

which the components of the signal has time-varying 

properties occur at different frequencies. Hence, 

stationary methods are not suitable to analyze time 

varying characteristic signal. Therefore, the time-

variant frequency-selective approach is required for 

the "time-frequency" analysis of non-stationary 

signals [3]. Time-frequency techniques are found 

more suitable, which maps the one-dimensional 

time-domain signal into two-dimensional time-

frequency representation [4]. They describe signal 

energy around the instantaneous frequency both on 

time and frequency spaces [5]. The Wigner-Ville 

distribution is an important algorithm of time-

frequency analysis in biomedical signal processing 

[6-7]. It has the best time-frequency resolution 

properties [8-11] and the bilinear nature of Wigner-

Ville distribution introduced a cross-term for a 

multicomponent, non-stationary signal, while 

preserving most of the signal properties. As a result, 

many researchers have been experimented the time-

frequency distributions to resolve critical technical 

issues in many areas of science, engineering and 

technology [12-14].  

Wigner-Ville distribution is a primary 

distribution to form so many classes of bilinear 

distribution in which windowed Wigner-Ville 

distribution is one of the recent development in time-

frequency distribution [15]. Consequently, this 

research work concentrated on the analysis of the 

ECG signal based on windowed Wigner-Ville 

distribution. Some of the windowing techniques 

proposed to formulate time-frequency representation 
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are discrete pseudo-Winger-Ville distribution 

(DPWVD), Lag-Independent, Doppler-Independent 

discrete smoothed Wigner-Ville distributions and 

separable discrete smoothed pseudo-Wigner-Ville 

distribution (DSPWVD). To understand the 

potentially of the proposed methods, the discrete 

form of time-frequency distributions was computed 

and compared with Hanning, Hamming, Kaiser and 

Gaussian windows in time-lag domain and Doppler-

lag domain by analyzing the ECG signal for the 

cardiovascular diseases like supraventricular and 

malignant ventricular arrhythmia.  

This paper is organized as follows: Section 

2 presents the analytical signal and signal model of 

the ECG signal. In Section 3, window characteristics 

are presented. The methodology to form time-

frequency distribution is discussed in Section 4. 

Simulation results and discussion are presented in 

Section 5. 

 

II. ECG ARRHYTHMIA SIGNALS 
 The abnormal electrical activity of the heart 

causes an arrhythmia. It is a defect in the conduction 

of the electrical impulses from the right atria to AV 

node and AV node to right ventricle at that time the 

heartbeat may be too fast, too slow or maybe regular 

or irregular. The abnormal electrical activity of the 

heart broadly classified as supraventricular 

arrhythmia and malignant ventricular arrhythmia 

[16]. In this work, supra-ventricular arrhythmia and 

malignant ventricular arrhythmia ECG signals were 

studied. A supraventricular arrhythmia occurs in the 

right atria due to abnormal impulses arising from the 

atria. It has irregular shapes of QRS complexes [17]. 

The malignant ventricular arrhythmia originates 

from the AV node or ventricle. In this, the QRS 

complexes are wide and the T wave disappears [18]. 

The QRS complexes of the abnormal have irregular 

shapes and changes over time.  

The ECG arrhythmia signals are obtained 

from the MIT BIH arrhythmia database [19]. The 

signals were sampled at 360Hz. This time-domain 

signal is represented by x[n] is a real, causal and 

band-limited signal. It has both positive and negative 

frequency components introducing aliasing. The 

aliasing can be avoided by a technique called 

analytical signal representation. 

 
2.1 Analytical Signal and Hilbert Transformation 

In order to get alias-free signal, the real-

valued signal x[n] is converted into an analytical 

complex-valued signal using Hilbert transform 

defined in Eq. : (1). 

[ ] [ ] ( [ ])z n x n jH x n             (1) 

where H(x[n]) is a Hilbert transform of the real-

valued signal x[n] and z[n] is an analytical signal of 

the analytical associate x[n]. It is also calculated in 

frequency domain using Fourier transform [20-21].  

 

2.2. Signal Modeling 

Before analyzing any signal using time-

frequency distribution, the signal must be checked 

for mono-component or multi-component signal in 

order to create a model of the signal for analysis. 

After computing the analytical signal, the signal 

model is derived by extracting instantaneous 

amplitude (IA), instantaneous phase (IP), 

instantaneous frequency (IF) and group delay (ID). 

In the case of ECG arrhythmia signal, the bandwidth 

and time spread of the ECG arrhythmia signal are 

calculated and determined as a multicomponent 

signal and then modeled as AM-FM signal model 

described in [22]. It is represented by Eq. : (2) 

1 1
 z(n) ( ) ( )cos( ( )) ( )c c

N N
k k k kk k

z m n a n n w n
 

         (2) 

 

III. AN ANALYSIS OF WINDOW 

FUNCTION 
 The process of multiplying the measured 

signal with a smoothly ending function is called 

window function. The window function is used to 

reduce the spectral leakage [23], detect the desired 

signal and get high resolution by smoothing the time 

and frequency components. The DPWVD and 

DSPWVD have employed several window functions 

to increase or optimize the time and frequency 

resolutions for a particular application. In this work, 

the DPWVD and DSPWVD are used and their 

characteristics are studied using the following 

window functions. 

The rectangular window sequence is represented in 

Eq. : (3) 

  

1
( ) 2 2

0
R

N N
for n

W n

otherwise


  



                          (3)                     

The Hanning window sequence is given by the Eq. 

:(4) 

2
0.5 0.5cos

( ) 2 2

0

Hn

n N N
for n

W n N

otherwise

  
       




  (4) 

The Hamming window sequence is given by the Eq. 

: (5) 

2
0.54 0.46cos

( ) 2 2

0

Hm

n N N
for n

W n N

otherwise

  
       




       (5) 

The Kaiser Window sequence is defined in Eq. :(6) 

2

0

0

2
1 1

1

( ) ,
( )

K

n
I

N

W n for N n N
I

 
  
          


            (6) 

The Gaussian window sequence is expressed in Eq. 

:(7) 
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( ) exp
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n N
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   
    
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          (7) 

 

3.1. Window Selection 

Window selection is determined by three 

parameters viz., main lobe width, side lobe level, 

and Equivalent Noise Band Width (ENBW). The 

desirable characteristics of a window are mainly 

depends on the width of the main lobe, i.e., the 

frequency resolution mainly depends on the main 

lobe width[24], for example, if the main lobe width 

is narrow it gives high-frequency resolution and 

contain most of the energy. The main lobe width is 

the measure of the main lobe width at -3db below 

the main lobe peak. Side lobe occurs at either side of 

the main lobe. It is measured in dB relative to the 

peak of the main lobe. When the side lobe level 

decreases it increases the detection ability. ENBW is 

calculated as a ratio of inherent power gain over 

coherent power gain as given in Eq. :(8), (9) and 

(10). 

2

1

1
( )

N

i

Inherent Power Gain w i
N 

               (8) 

2

1

1
( )

N

i

Coherent Power Gain w i
N 

 
  
  
       (9) 

Inherent Power Gain
ENBW

Coherent Power Gain
                 (10) 

The shape and size of these windows are 

shown in the Fig.1.The frequency response of the 

window length is 64 as shown in the Fig. 2.The 

equivalent noise band width (ENBW) value of each 

window is calculated and given in the Table 1. 

 

 
 

Fig. 1 Window function shape in Time Domain 

 
Fig. 2 Frequency Response of Window Function 

 

Table 1: Window selection parameters 

S.No. 
Window 

Type 

Side 

lobe 

Level 

3dB 

bandwidth 

ENBW 

 

1 Rectangular -13.2 0.87 1 

2 Hanning -32 1.47 1.5 

3 Hamming -43.5 1.35 1.36 

4 Kaiser -69.6 1.73 1.82 

5 Gaussian -32.3 1.15 1.23 

 

IV. FORMULATION OF TIME- 

FREQUENCY DISTRIBUTIONS 
The Wigner-Ville distribution with a 

smoothing window formulated the time-frequency 

distribution to realize and implement in the hardware 

and software environment for a particular 

application. The discrete version of the equation is 

formulated as [25]: 

  * *[ , ] 2 [ , ] [ ] [ ]n
n k

n k DFT G n m z n m z n m


       (11) 

where n is the time index, m is the lag index, k is the 

frequency index, z[n] is an analytical signal of 

analytical associate x[n],G[n ,m] is the window 

function in time-lag domain and ρ[n, k] is the time-

frequency distribution in the time-frequency domain. 

*[ , ] z[n m]z [n m]zk n m                             (12) 

where Eq. : (12) is an instantaneous auto-correlation 

function (IACF) in time-lag domain. 

4.1 Discrete Wigner-Ville Distribution 

To form the discrete Wigner-Ville distribution, the 

window function in the Eq. (11) is equal to a 

rectangular window [26-27] and therefore  

[ , ] [ ] 1G n m n                                                (13) 



S.Sivakumar. Journal of Engineering Research and Application                                     www.ijera.com 

ISSN : 2248-9622, Vol. 10, Issue 4, ( Series - IV) April 2020, pp. 23-35 

 

 
www.ijera.com                                    DOI: 10.9790/9622-1004042335                             26 | P a g e  

 

 

Hence, only the instantaneous auto correlation 

function (IACF) itself formed the Wigner-Ville 

distribution [28] and is given by Eq. :(14) 

2
( )

*[ , ] 2 [ ] [ ]
j km

N

m

DWVD n k z n m z n m e

 



    (14) 

The instantaneous autocorrelation is performed on 

the analytical signal z[n] and its conjugate value 

z*[n] in the time-lag domain is called the signal 

kernel. Here, n is the discrete-time 

index , m is the lag index  

and k is the frequency index . After 

performing convolution on time-lag domain, the 

processed value of  is transferred from time-

lag domain to time-frequency domain by taking 

Fourier transform to get DWVD in time-frequency 

domain. 

2
( )

[ , ] 2 [ , ]
j km

N
z

n k
m

DWVD n k DFT k n m e

 




    (15) 

4.2Discrete Pseudo-Wigner-Ville Distribution  

The Wigner-Ville distribution introduced a 

cross-term because the Fourier transform on the 

instantaneous autocorrelation function over the lag 

make the Wigner-Ville distribution as a non-causal 

distribution. It is not suitable for real-time signal 

processing. To minimize the cross term and make 

suitable for real-time application, applying the 

Wigner-Ville distribution to a windowed version of 

the signal [29-30]. Setting the time-lag window G (n, 

m) =δ (n) h (m) [31].The PWVD of a discrete signal 

with a finite length lag window is given by, 

2
2

*

2

[ , ] [ ] [ ] [ ]

N

j km
N

N
m

DPWVD n k h m z n m z n m e






    (16) 

where h[m]is a real-valued frequency smoothing 

window with odd length 2N-1[32]. Due to the 

window function, Fourier transforms consider only 

the signal components in the instantaneous 

autocorrelation function. Thus, the Fourier transform 

over lag will represent only the frequency 

components and reduces the cross-term. The effect 

of the windowing is to smear the signal in a 

frequency direction without affecting the time 

resolution. Hanning, Hamming, Kaiser, and 

Gaussian windows are chosen [33-34] to minimize 

interference and improve the frequency resolution. 

 

 

 

4.3 Formation of Separable Time-Frequency   

      Distribution 

The kernel is represented in a time-lag domain as 

g[n, m] where n is the time index and m is the lag 

index. To reduce the cross term, the kernel in the 

time-lag domain is transformed to the Doppler-lag 

domain by taking DFT of n and represented as g [u, 

m]. Now, the kernel is separated as Doppler function 

G1 [u] and lag function as g2 [m]. Therefore, the 

separable kernel is equal to the product of Doppler 

function and lags function in Doppler-lag domain 

[35-37] and is given by, 

1 2[ , ] [ ] [ ]g u m G u g m                                      (17) 

The dependence on the type of separable kernel 

G1[u] and g2 [m] act as either low pass filter or all-

pass filter. 

The separable kernel can be divided into three types 

[38] 

1. Lag-Independent kernel, G1 [u] act as a low 

pass filter and g2 [m] act as an all-pass filter in 

which g2 [m] =1. The product of G1 [u] and g2 

[m] forms the Lag-Independent kernel. 

2. Doppler-Independent kernel, g2 [m] act as a low 

pass filter and G1 [u] acts as an all-pass filter in 

which G1 [u] =1. The product of g2 [m] and G1 

[u] forms the Doppler-Independent kernel. 

3. To control both on time and frequency domains, 

G1 [u] and g2 [m] are used as a low pass filter. 

The product of these two low pass filters forms 

a kernel. 

 

4.3.1 Discrete Lag-Independent Smoothed Wigner-                                         

Ville Distribution: 

The kernel is used in the Doppler-lag domain is a 

function of Doppler only [38-39] and it is defined as 

1[ , ] [ ]g u m G u                                                  (18) 

Then, the discrete Lag-Independent smoothed 

Wigner-Ville distribution (DLISWVD) is formed by 

introducing Doppler window in the Wigner-Ville 

distribution and is defined as  

1[ , ] [ ]zDLISWVD W n k g n                         (19) 

and  it is expanded using the equation (11), we get, 

2
2

1

2

( , ) [ ] ( ) ( )

N

j km
N

N
m

DLISWVD n k g n z n m z n m e








  
   (20) 

where 1 1[ ] [ ]
n u

g n G uDFT


 , several quadratic 

time-frequency distributions on Lag-Independent 

kernels are proposed such as Hanning, Hamming, 

Kaiser, and Gaussian windows. Expression of these 

windows in the Doppler-lag domain and its dual in 

time-frequency domain [38] are given below. 

2
[ ] 0.5 0.5cosHann

u
W u

N

 
   

 
                   (21) 

2
[ ] 0.5 0.46cosHamm

u
W u

N

 
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 
               (22) 
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1 ( 1) / 2

( ) exp
2 ( 1) / 2

G

u N
W u

N

   
    

    

        (24) 

In g [n, m], the time n is transformed to the Doppler 

domain by taking DFT and it is represented as g [u, 

m]. It is separated as a low pass filterG1 [u] and all-

pass filter g2[m]=1. Then, perform the instantaneous 

autocorrelation on the window G[u] in the 

ambiguity domain and take IDFT and DFT back to 

get time-frequency distribution in the time-

frequency domain. 

The kernel is used in the Doppler-lag domain is a 

function of the lag only [38] and it is defined as 

2[ , ] [ ]g u m g m        (25) 

Then, the discrete Doppler-Independent smoothed 

Wigner-Ville distribution (DDISWVD) is formed by 

introducing lag window in the Wigner-Ville 

distribution and is defined as  

2[ , ] [ ]zDDISWVD W n k G k         (26) 

and it is expanded using the equation (11), we get, 

2
2

2

2

( , ) [ ] ( ) ( )

N

j km
N

N
m

DDISWVD n k g m z n m z n m e








    (27) 

where 2 2[ ] [ ]
m k

g m G kDFT


 , several quadratic 

time-frequency distributions on Doppler-

Independent kernels are proposed such as Hanning, 

Hamming, Kaiser, and Gaussian windows. 

Expression of these windows in the Doppler-lag 

domain and its dual in time-frequency domain [38] 

are given below. 

2 1
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2
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1 (N 1) / 2 1

( ) exp 0
2 ( 1) / 2 2

G

m
W m for m

N

   
     

    

     (31) 

In g[n, m], the time n is transformed to the Doppler 

domain by taking DFT and it is represented as g[u, 

m]. It is separated as a low pass filter g2[m] and all-

pass filter G1[ u] =1. Then, perform the 

instantaneous autocorrelation on the window g2[m] 

in the ambiguity domain and take IDFT and DFT 

back to get TFD in the time-frequency domain. 

 

4.3.3 Discrete Smoothed Pseudo-Wigner-Ville  

Distributions (DSPWVD) 

The Lag-Independent and Doppler-Independent 

kernels improve the frequency resolution only. To 

get high resolution on time and frequency domains, 

smoothing window function is inserted in the 

SWVD. The SPWVD has a separable kernel given 

by Eq. :(32). 

1 2( , ) [ ] [ ]g u m G u g m                                    (32) 

where

2

2 2[ ]
2

m
g m g , G1(u) is the smoothing 

window with odd length 2M-1 and g2(m) is the 

analysis window with odd length 2N-1. TheseG1 [u] 

and g2 [m]windows are used as low pass filters. The 

product of these two low pass filters forms a kernel 

to suppress spurious peaks and to obtain a high time-

frequency resolution. The discrete version of the 

Smoothed Pseudo-Wigner-Ville distribution [40-41] 

is given by Eq. (33). 

 
1 1

2 2 1

1 1

2
( , ) ( ) ( ) ( ) ( ) ( )exp

N M

m N u M

DSPWVD n k g m g m G u z n u m z n u m j km
N

 


   

  
        

   
 

 

 (33) 
In this, the Gaussian window was used as a 

smoothing window G1 [u], the Hanning, Hamming 

and Kaiser Windows were used as an analysis 

window g2 [m]. 

 

V. RESULTS AND DISCUSSION 
 The time-domain ECG supraventricular and 

malignant ventricular signals are shown in the Figs.3 

and 4, respectively. These signals are a real-valued 

signal and converted into an analytical signal. These 

signals were analyzed using the proposed time-

frequency distributions and are presented as case 

studies (case 1,case 2,case 3 and case 4). 

 
Fig. 3 Supraventricular arrhythmia signal 
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Fig. 4 Malignant ventricular arrhythmia signal 

Case 1: Analysis of ECG arrhythmia using discrete 

pseudo-Wigner-Ville distribution 

 

The supraventricular ECG arrhythmia 

signal was analyzed using discrete pseudo Wigner-

Ville distribution by implementing Hanning, 

Hamming, Kaiser and Gauss windows. These 

windows smeared the discrete Pseudo -Wigner-Ville 

distribution in frequency direction in order to 

improve the frequency resolution without affecting 

the time resolution. Then, the windows were 

optimized to get optimum frequency resolution and 

time resolution and are given in Table 2. The 

supraventricular arrhythmia was mapped and 

analyzed by energy distributions of Hanning, 

Hamming, Kaiser and Gauss windows in the time-

frequency domain and are shown in Figs.(5-8), 

respectively. 

 

 
Fig.5 Energy Distribution plot of the 

Supraventricular Arrhythmia signal using DPWVD 

Hanning window function 

 
Fig. 6 Energy Distribution plot of the 

Supraventricular Arrhythmia signal using DPWVD 

Hamming window function 

 
Fig. 7 Energy Distribution plot of the 

Supraventricular Arrhythmia signal using DPWVD 

Kaiser window function 

 
Fig.8 Energy Distribution plotof theSupraventricular 

Arrhythmia DPWVD signal using Gaussian window 

function 

 

The performance of these four windows 

was compared, in which discrete pseudo-Wigner-

Ville distribution (DPWVD) with the Gaussian 

window detected the QRS and T wave 

multicomponent signal. Further, it exhibited the 

energy distributed around the instantaneous 

frequencies with optimum time-frequency 

resolution. 

The malignant ventricular ECG arrhythmia 

signal was analyzed using discrete pseudo-Wigner-

Ville distribution (DPWVD) by implementing 

Hanning, Hamming, Kaiser and Gauss windows. 

These windows smeared the discrete pseudo-

Wigner-Ville distribution in frequency direction in 

order to improve the frequency resolution as shown 

in Figs. (9-12). These windows were optimized to 

get optimum frequency resolution and time 

resolution and are given in Table 3. 

 

 
Fig. 9 Energy Distribution plot of the 

Malignantventricular arrhythmiasignal using 

DPWVD Hanning window function 

 
Fig. 10  Energy Distribution plot of the 

Malignantventricular arrhythmia signal using 

DPWVD Hamming window function 

 
Fig. 11 Energy Distribution plot ofthe 
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Malignantventricular arrhythmia signal using 

DPWVD Kaiser window function 

 
Fig. 12 Energy Distribution plot of 

theMalignantventricular arrhythmia signal using 

DPWVD Gaussian window function 

 

The analysis results of these four types of 

windows using DPWVD exhibited that the Gaussian 

window resolved the multi-components of the QRS 

and T waves very well than the other windows. 

Consequently, the energy distributed around the 

instantaneous frequencies was found to be resolved 

low in the time-frequency domain.  

 

Case 2: Analysis of ECG arrhythmia signals using 

Lag-Independent DSWVD 

The supra-ventricular ECG arrhythmia 

signal was analyzed using discrete Lag-Independent 

smoothed Wigner-Ville distribution (LI-DSWVD) 

by implementing Hanning, Hamming, Kaiser and 

Gauss windows and their corresponding energy 

distribution are shown in the Figs.(13-16), 

respectively. The windows were optimized to get 

maximum resolution in frequency and time domain 

and are summarized in Table 2. 

 

 
Fig. 13 Energy Distribution plot of the 

Supraventricular arrhythmia signal using LI-

DSWVD Hanning window function 

 
Fig. 14 Energy Distribution plot of the 

Supraventricular arrhythmia signal using LI- 

DSWVD Hamming window function 

 
Fig. 15 Energy Distribution plotof the 

Supraventricular arrhythmia signal using LI-

DSWVD Kaiser window function 

 
Fig. 16 Energy Distribution plot of the 

Supraventricular arrhythmia signal using LI- 

DSWVD Gaussian window function 

 

From the Figs. (13-16), it is clear that the energy 

distribution of the lag independent window 

decreases the frequency resolution, due to the 

presence of the cross-terms in the frequency domain. 
Similarly, the malignant ventricular ECG 

arrhythmia signal was examined in the discrete Lag-

Independent smoothed Wigner-Ville distribution for 

the four window functions such as Hanning, 

Hamming, Kaiser and Gaussian and their 

corresponding time-frequency distributions are 

shown in the Figs. (17-20), respectively, after 

optimizing the respective window functions and are 

summarized in Table3. 

 

 
Fig. 17 Energy Distribution plot of theMalignant 

ventricular arrhythmiasignal using LI-DSWVD 

Hanning window function 

 
Fig. 18 Energy Distribution plot of the Malignant 

ventricular arrhythmia signal using LI-DSWVD  

Hamming window function 
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Fig. 19 Energy Distribution plot ofthe Malignant 

ventricular arrhythmiasignal using LI-DSWVD 

Kaiser window function 

 
Fig. 20  Energy Distribution plot ofthe Malignant 

ventricular arrhythmia signal using LI-

DSWVDGaussian window function 

 

From the energy distribution plots of the 

malignant ventricular arrhythmia, the time-

frequency distribution introduced cross-terms both 

in the Doppler as well as lag directions. This result 

shows that the time-frequency distribution had no 

frequency and time resolution. 

 

Case 3: Analysis of ECG arrhythmia using Doppler- 

Independent DSWVD 

The supraventricular ECG arrhythmia 

signal was tested in the discrete Doppler-

Independent smoothed Wigner-Ville distribution for 

the four window functions viz., Hanning, 

Hamming, Kaiser and Gaussian and their 

corresponding energy distribution plots in the time-

frequency domains are shown in the Figs. 21-24, 

respectively. The optimized windows to get better 

frequency and time resolution are given in Table 2. 

 

 
Fig. 21 Energy Distribution plot of the 

Supraventricular arrhythmiasignal using DI-

DSWVD  Hanning window function 

 
Fig. 22 Energy Distribution plot of the 

Supraventricular arrhythmiasignal using DI- 

DSWVD Hamming window function 

 
Fig. 23 Energy Distribution plot of the 

Supraventricular arrhythmiasignal using DI-

DSWVD Kaiser window function 

 
Fig. 24 Energy Distribution plot of 

theSupraventricular arrhythmiasignal using DI-

DSWVD Gaussian window function 

    

All the four windows with the DI-DSWVD 

detected the QRS peaks and their change in shape 

with high energy distribution and better resolution in 

the time-frequency domain. Further, the wave was 

notices with low energy distribution.   

Similarly, the malignant ventricular ECG 

arrhythmia signal was tested in the DI-DSWVD 

algorithm using the four window functions viz., 

Hanning, Hamming, Kaiser and Gaussian and their 

energy distribution in the time-frequency domain are 

in the Figs. 25-28, respectively. The results were 

obtained for the optimized window functions given 

in Table 3.  

 
Fig. 25 Energy distribution plot of the Malignant 

ventricular arrhythmia signal usingDI-DSWVD 

Hanning window function 



S.Sivakumar. Journal of Engineering Research and Application                                     www.ijera.com 

ISSN : 2248-9622, Vol. 10, Issue 4, ( Series - IV) April 2020, pp. 23-35 

 

 
www.ijera.com                                    DOI: 10.9790/9622-1004042335                             31 | P a g e  

 

 

 
Fig. 26 Energy distribution plot of the Malignant 

ventricular arrhythmia signal using DI-DSWVD 

Hamming window funtion 

 
Fig. 27 Energy distribution plot of the Malignant 

ventricular arrhythmia signal using DI-DSWVD 

Kaiser window function 

 
Fig. 28 Energy distribution plot of the 

Malignantventricular arrhythmia signal using DI-

DSWVD Gaussian window function 

 

Even though the Hanning, Hamming and 

Gauss windows detected the variations in QRS peak 

with high energy distribution, wave shape and better 

resolution in time-frequency domain, still the cross-

term influence was observed in the energy 

distribution plots. 

 

Case 4: Analysis of ECG arrhythmia signals using  

DSPWVD 

The supraventricular arrhythmia signal was 

tested in the discrete smoothed pseudo-Wigner-Ville 

distribution using Hanning, Hamming and Kaiser as 

analysis window functions and Gauss window as a 

smoothing window function. The corresponding 

energy distribution and contour plots are shown in 

Figs. 29-34. The windows used in this study were 

optimized for better time-frequency resolution as per 

the values summarized in Table 2.  

 

 
Fig. 29 Energy Distribution Plot of the 

Supraventricular arrhythmia signal using 

DSPWVD with Gaussian and Hanning window 

functions 

 
Fig. 30 Contour plot of the Supraventricular 

arrhythmia signal using DSPWVD with Gaussian 

and Hanning window functions 

 
Fig. 31 Energy Distribution plot of the 

Supraventricular arrhythmia signal using 

DSPWVD with Gaussian and Hamming window 

functions 

 
Fig. 32 Contour plot of the Supraventricular 

arrhythmia signal using DSPWVD with Gaussian 

and Hamming window functions 
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Fig. 33 Energy Distribution Plot of the 

Supraventricular arrhythmia signal using  

DSPWVD with Gaussian and Kaiser window 

functions 

 
Fig. 34 Contour plot of the Supraventricular 

arrhythmia signal using DSPWVD with Gaussian 

and Kaiser window functions 

 

From the Figs. 29-34, it was noticed that 

the discrete smoothed pseudo-Wigner-Ville 

distribution completely removed the cross-terms 

from the supraventricular arrhythmia signal and 

exhibited the changes in shape of the QRS waveform 

clearly with better time-frequency resolution. 

 

Similar study was conducted for the 

malignant ventricular arrhythmia signal using 

discrete smoothed pseudo-Wigner-Ville distribution 

for the Hanning, Hamming and Kaiser as analysis 

windows and Gauss window as a smoothing window 

and their corresponding energy distribution and 

contour plots are shown in Figs. 35-40, respectively. 

The windows were optimized to get better frequency 

and time resolution as per the values given in Table. 

3. 

 
Fig. 35 Energy Distribution Plot of the Malignant 

ventricular arrhythmiasignal using  DSPWVD 

with Gaussian and Hanning window functions 

 

 
Fig 36 Contour Plot of the malignant ventricular 

arrhythmia signal using DSPWVD with Gaussian 

and Hanning window functions 

 
Fig. 37Energy Distribution Plot of the Malignant 

ventricular arrhythmia signal using DSPWVD with 

Gaussian and Hamming window functions 

 
Fig 38 Contour Plot of the malignant ventricular 

arrhythmia signal using DSPWVD with Gaussian 

and Hamming window functions 

 

 
Fig. 39 Energy Distribution Plot of the Malignant 

ventricular arrhythmia signal using  DSPWVD with 

Gaussian and Kaiser window functions. 
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Fig. 40 Contour Plot of the malignant ventricular 

arrhythmia signal using DSPWVD with Gaussian 

and Hanning window functions 

 

From the Figs 35-40, it is evident that the discrete 

smoothed pseudo-Wigner-Ville distribution 

completely removed the cross-term in the malignant 

ventricular arrhythmia signal and clearly exhibited 

the changes in the shape of the QRS waveform with 

better time-frequency resolution. 

 

Table 2: Optimized window width and control 

parameter for supraventricular arrhythmia 

Window  

Function 

Supraventricular Arrhythmia 

DPWVD 
LI- 

DSWVD 

DI- 

DSWVD 

DSPWVD 

Analysis  

window 

Smoothing 

window 

Gaussian 

G1(u) 

Hanning 61 121 31 61 61 , σ=0.5 

Hamming 61 121 31 61 61 , σ=0.5 

Kaiser 61,α=3 121 , α=3 63 , α=3 61, α=3 61 , σ=0.5 

Gaussian 61,σ=0.05 
121 ,σ= 

0.5 
31,σ=0.05 -- -- 

 

Table 3: Optimized window width and control 

parameter for malignant ventricular arrhythmia 

Window  

Function 

Malignant ventricular Arrhythmia 

DPWVD 
LI-

DSWVD 

DI-

DSWVD 

DSPWVD 

Analysis 

window 

Smoothing 

window 

Gaussian 

G1(u) 

Hanning 61 121 31 121 63 , σ=0.5 

Hamming 61 121 31 121 63 , σ=0.5 

Kaiser 63, α= 0.3 
121, 

α=0.3 

63,  α= 

0.03 

63, 

α=0.03 
63 , σ=0.5 

Gaussian 61,σ=0.05 
121,σ= 

0.5 

31,  

σ=0.05 
-- -- 

 

VI. Conclusion 
 In this research work, the various forms the 

discrete Wigner-Ville distributions were studied 

using Hanning, Hamming, Kaiser and Gaussian 

window function in order to improve the time-

frequency resolution for better identification of the 

shape of the ECG waveform components. The 

discrete Wigner-Ville distribution computed in the 

time-lag domain introduced cross-term, whereas the 

discrete pseudo-Wigner-Ville distribution computed 

in the time-lag domain provided a low time-

frequency resolution. Conversely, the discrete Lag-

Independent smoothed Wigner-Ville distribution 

window function computed in the Doppler-lag 

domain eliminated the cross-term for the 

supraventricular arrhythmia signal, but it retained 

the cross-term in the case of the malignant 

ventricular arrhythmia signal. Subsequently, the 

Doppler independent discrete smoothed Wigner-

Ville distribution was computed in Doppler-lag 

domain and observed that the cross-terms were not 

completely removed. Finally, the discrete smoothed 

pseudo-Wigner-Ville distribution kernels were used 

as low pass filters and computed the time-frequency 

resolution in the Doppler-lag and time-lag domains. 

The analysis results revealed that the separable 

discrete smoothed pseudo-Wigner-Ville distribution 

provided a better resolution in the time-frequency 

domain and in turn exhibited the shape of the 

waveform clearly than the other time-frequency 

distributions. Consequently, the separable kernel 

time-frequency distributions may be treated as a 

suitable time-frequency WVD for the detection of 

the heart rate variability and QRS peak. 
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