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ABSTRACT 
The effect of gravity modulation, thermo-mechanical anisotropies, inverse Darcy number and Brinkman number 

is studied on heat transport. The amplitude equation is obtained in the form of Ginzburg-Landau model. It is 

observed that the gravity modulation , inverse Darcy number and Brinkman number is to reduce the heat 

transfer whereas the thermo-mechanical anisotropies show opposite effect on heat transfer.    
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I. INTRODUCTION 
The study of convection in porous medium 

has a wide range of applications in geophysics, oil 

recovery process, in petroleum industry, and in 

solidification of polymeric liquids. Natural 

convection in a fluid-saturated horizontal porous 

medium has received considerable attention owing 

to its applications in diverse areas. The study has an 

analogy with the usual Rayleigh-Benard convection 

problem from a phenomenological view point. The 

study of natural convection of a Newtonian fluid in a 

porous medium is now well understood and 

documented [1-10]. 

The gravity modulation is one consisting of 

varying acceleration term in the gravitation Rayleigh 

number around the gravitational acceleration, i.e, by 

vertically oscillating a horizontal porous layer. This 

modulation leads to the variable coefficient in the 

momentum equation and involves vertical time-

periodic vibrations of the system. Many authors 

([11-15]) have studied the gravity modulation in 

porous medium. 

Most of the studies on Rayleigh-Benard-

Darcy convection focus attention on only the onset 

of convection. Linear stability analysis is inadequate 

if one wants to study heat transport. It is with this 

motive we have made a weakly non-linear analysis 

of Rayleigh-Bènard-Brinkman convection with 

gravity modulation . One other motive for the study 

is to propose time-periodic vertical vibrations 

(gravity modulation) as an effective external means 

of controlling convection. Alternately one could 

make a non-linear study of Rayleigh-Benard-

Brinkman convection with gravity modulation using 

the Lorenz model that would yield a system of three 

non-autonomous, non-linear ordinary differential 

equations which are difficult to solve (see[16]). It is 

on this reason that we adhere to the use of the 

Ginzburg-Landau equation for our non-linear 

analysis.   

Ginzburg-Landau model is one of the most 

studied equations in applied mathematics. It 

describes a vast array of phenomena including non-

linear waves, second-order phase transitions, 

Rayleigh-Bènard convection and superconductivity 

([16]). With this motivation a study has been 

conducted on the heat transport in an anisotropic 

porous medium with gravity modulation using the 

amplitude equation (Ginzburg-Landau model). 

 

II. MATHEMATICAL FORMULATION 
The physical configuration considered is a 

horizontal anisotropic, porous layer of infinite extent 

occupied by Boussinesquian Newtonian fluid 

confined between two boundaries at z=0 and z=d 

that have a difference in temperature ∆T as a shown 

in Fig.1. The fluid density is assumed to be a linear 

function of temperature T. A cartesian co-ordinate 

system is taken with the origin in the lower 

boundary and z-axis vertically upwards. An 

appropriate single-phase heat transport equation is 

chosen with effective heat capacity ratio and 

effective thermal diffusivity. Thus, the governing 

equations for the system with gravity modulation 

are:  
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Fig.1: Schematic of the flow of  configuration. 
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is the permeability tensor, 
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 

 
0

0

m

f

C

C





 is the heat capacity 

ratio. For simplicity,   is taken to be unity in the 

paper. In the case of  two- dimensional convection, 

one can introduce the stream function after 

eliminating the pressure. Then (2) and (3) take the 

form: 

2 2
0 0 0 1 1 0

2 2
4

2 2

2

0

( ) 1 cos( )

1

( , )

( , )

f

e
v

T
g t

t t

K x z

x z

    

  
 



 


 
    
  

  
    

  

 




       (5) 

2 2

2 2

( , )

( , )
v

T T T T

t x z x z


 

    
   

    
                    (6) 

Scaling length by d (depth of the porous channel), 

  by v  
(thermometric conductivity along z-axis), 

time by 
2

v

d


and temperature by T (temperature 

difference between the horizontal boundaries) in (7) 

and (8), we get the following non-dimensional 

equations: 
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where 2
1 is a small quantity that indicates the weak 

variation. The non-dimensional parameters in the 

above equations are: Pr= 0

v f



 
(Prandtl number), 

3
0

v f

Td
Ra



 


 (Thermal Rayleigh number) 

and
2

1

v

d
Da

K

  (Inverse Darcy number). The 

boundary conditions for solving  (7) and (8) are: 
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     The conduction profile is given by: 

( ) 1 and 0b bT Z Z   
                                  

(10) 

Now we impose finite amplitude perturbations on 

the basic quiescent state given by (10) as: 

1 andT Z    
                                   

(11) 

Substitution of (11) in  (7) and (8) yields the 

following equations: 
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Boundary conditions to solve (12) and (13) are:  
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we now use the expansion: 
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We now assume the variation of time only at the 

slow time scale 
2

1 t   

At the lowest order, we have: 
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     Now the solutions of lowest order system is given 

by : 

 
1

1 2

( ) sin( ) sin( )

( )
cos( ) sin

1
)

7
(

c

c
c

A k x z

k A
k x z



 






  

 



                       

 

     The system (16), together with the solution set 

(17), gives us Rayleigh number for stationary onset 

of convection and the expression is given below: 
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     This is the classical result of [17], 1    
 

yields the classical results of [10a] for isotropic 

porous media. The critical value of 0Ra is obtained 

at the critical value of ck given by the least positive 

root of ( ) 0.c
c

Ra
k





  

     We now derive the expression for the Nusselt 

number and also obtain the Ginzburg-Landau 

equation for the case of stationary instability. 

 

III. AMPLITUDE EQUATION AND HEAT 

TRANSPORT FOR STATIONARY 

INSTABILITY 
At the second order, we have: 
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     The second order solution is given by: 
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     The horizontally averaged Nusselt number, Nu, 

for the stationary mode of convection is given by: 
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     Substituting 
2 from (21) into (22) , we get: 
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     At the third order, we have: 
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Substituting for 1 1,  and 2 from   (17) and 

(21), we get the following expressions for 31R   and 
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Sollvability condition for the existence of the third 

order solution gives us: 
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     Substituting 
31 32,R R

 
and 

1 2,  from (26), 

(27) and (17) in (28) and completing the integration, 

we get the Ginzburg-Landau equation as below 
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In what follows we discuss the result based 

on the computation of the Nusselt number (23) using 

the solution of  (29). The non-autonomous 

Ginzburg- Landau equation (29) is solved 

numerically for A(τ) by Runge-Kutta-Fehlberg 45 

method. 

 

IV. RESULTS AND DISCUSSIONS 
The problem addresses a non-linear realm 

of Rayleigh-Bènard-Brinkman convection in a 

Newtonian fluid in a sparsely packed anisotropic 

porous medium with g-jitter. A weakly non-linear 

stability analysis is made using a non-autonomous 

Ginzburg-Landau model. The thermal and 

mechanical anisotropies arise due to the properties 

of the porous matrix. The g-jitter or gravity 

modulation arise due to the Rayleigh-Bènard-

Brinkman system being vibrated time periodically in 

the vertical direction. It is well known that, in 

general, gravity modulation leads to increase in 

critical Rayleigh number ([11]). The effect of 

vertical vibrations on the Rayleigh-Bènard-

Brinkman system is assumed to be of 2
1( ).O   In 

essence this means that we are considering small 

amplitude vibrations. Such an assumption facilitates 

over amplitude of convection in a rather simple and 

elegant manner and is much easier to obtain than in 

the case of the Lorenz model. The work of [17] 

clearly show that the thermal anisotropy and 

mechanical anisotropy have opposite influence on 

the Rayleigh number. This can be well understood 

through the expression of Rayleigh number. The 

Ginzburg-Landau model in the problem given by  

(29) is a Bernoulli equation and obtaining the 

analytical solution is hindered by the non-

autonomous nature of the equation. Hence the ODE 

solver with the type RKF, i.e., Runge-Kutta-

Fehlberg method of order 45 in scilab was used to 

solve  (29) 

Equation (23) seen in conjunction with  

(29) clearly reveals that Nu(τ) is a function of the 

inverse Darcy number, Da
−1

, mechanical anisotropy 

parameter,   , thermal anisotropy parameter, η, 

Brinkman number, Λ, the critical Rayleigh number 

Ra0 and the amplitude of modulation,  . Porous 

medium under consideration is a sparsely packed 

one and hence we assume Da
−1 

to take the values 

from 1 to 100. The quantity Λ can assume a range of 

values that are greater than, equal to or less than one 

(see [19]). Principle of exchange of stabilities is 

valid and hence stationary mode is the preferred 

mode of convection.  

From the linear theory, we know that the 

effect of inverse Darcy number and Brinkman 

number is to stabilize the system. whereas 0c
Ra  

decreases with increase in   and increases with 

increasing .  In the case of non-linear theory, we 

find from the fig.2 that effect of Da
−1 

on heat 

transfer is to decrease the same. It is obvious due to 

the fact that Da
−1 

stabilizes the system and hence the 

heat transfer decreases. 

Figure (3) establishes the fact that the effect 

of Λ on heat transport is not very dominant. This 

means that the effective viscosity, µe, and fluid 

viscosity, µf, are almost equal for this problem under 

consideration. 

From figs.4-5  it is clear that    and   

have opposing effect on heat transfer. The effect of  

  is to increase the heat transport and that of   is to 

decrease the same. This is in accordance with the 

linear theory as   destabilizes and   stabilizes the 

system. 

The effect of frequency of modulation   is 

to diminish the heat transport as can be seen in fig. 

(6). 

From the above discussions  it is apparent 

that the geometry of the porous media and the 

externally manageable g-jitter can be effectively 

used in regulating the convection. 

 
Fig 2: Plot of Nu versus τ for different values of 

inverse Darcy number, Da
−1

. 
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Fig 3: Plot of Nu versus τ for different values of 

Brinkman number, Λ. 

 

 

 

 

 
 

Fig 4: Plot of Nu versus τ for different values of 

mechanical anisotropy parameter ε. 

 

 
Fig 5:Plot of Nu versus τ for different values of 

mechanical anisotropy parameter η. 

 

V. CONCLUSION 
The following conclusion are drawn from the above 

study. 

i). Convection can be controlled by proper choice of 

the porosity of the porous medium. 

ii). The mechanical and thermal anisotropies have 

opposite effect on heat transport. 

iii). Frequency of modulation can be used as an 

effective means of controlling convection. 

iv). Ginzburg-Landau model can be used effectively 

to understand heat transport. 

 

 
Fig 6: Plot of Nu versus τ for different values of 

frequency of modulation Ω. 
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