
Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 40 | P a g e

An Advanced Sufferance Management Technique for Flash

Memory Storage Systems

Prof.Dr.Kamal Alaskar
Professor,Bharati Vidyapeeth(Deemed to be University)

Institute of Management, Kolhapur.

Abstract: Flash memory is an electronic (solid-state) non-volatile computer memory storage medium that can

be electrically erased and reprogrammed. The two main types of flash memory are named after

the NAND and NOR logic gates. The individual flash memory cells, consisting of floating-gate

MOSFETs (floating-gate metal-oxide-semiconductor field-effect transistors), exhibit internal characteristics

similar to those of the corresponding gates. Flash memory is small size, lightweight, shock-resistant,

nonvolatile, and consumes little power. Flash memory therefore shows promise for use in storage devices for

consumer electronics, mobile computers, wireless devices and embedded systems. However, flash memory

cannot be overwritten unless erased in advance. Erase operations are slow that usually decrease system

performance and consume power. The number of erase cycles is also limited, and a single worn-out block

affects the usefulness of entire flash memory device. Therefore, for power conservation, better system

performance and longer flash memory lifetime, system support for erasure management is necessary. In this

paper, we propose a novel idea of system software for garbage collection and wear-leveling called Allocation of

Memory Intellectually for NAND flash memories. Proposed scheme classifies data blocks intellectually

according to their write access frequencies and improves the space utilization by allocating separate limited

number of log blocks to both natures, hot and cold, of data blocks with proposed new system architecture. Our

proposed cleaning scheme achieves a block to erase with optimal number of space utilization and minimum

overhead of data migration. A hybrid wear-leveling approach is also proposed to evenly wear-down flash

memory. Proposed scheme enhances the system life time by managing the blocks according to their degree of

worn. We compared our proposed idea with two previous schemes. Our proposed idea improved system

performance 95% for garbage collection and 36% for wear-leveling. The evaluation results prove that our

proposed scheme, outperforms both previous schemes particularly with efficient flash bandwidth utilization and

attempted erase operations.

Keywords: Consumer electronics, embedded systems, data organization, endurance management, memory

management, and system performance.

-- -----------------------

Date of Submission: 13-03-2020 Date Of Acceptance: 28-03-2020

-- ---------------------------------------

I. INTRODUCTION
Flash memory is a non-volatile solid state

memory, which has many attractive features such as

small size, fast access speed, shock resistance, high

reliability, and light weight. Because of these

attractive features, and decreasing price and

increasing capacity, flash memory is becoming

increasingly important storage medium for various

computing systems, such as consumer electronics,

embedded systems, and wireless devices.

Furthermore, its density and I/O performance have

improved to a level at which it can be used as an

auxiliary storage media for mobile computing

devices, such as PDA and laptop computers.

Flash memory is partitioned into equal size

of erase units called blocks and each block has a

fixed number of read/write units called pages. Flash

memory has three kinds of operations: page read,

page write, and block erase. The size of page and

block differs by products.

Even though, flash memory has many

attractive features, but its special hardware

characteristics impose design challenges on storage

systems. However, it has two main drawbacks.

First Drawback: an inefficiency of in-

place-update operation. When we update data, we

can not write new data directly at same address due

to physical erase- before-write characteristics of

flash memory. Therefore, updating even one byte

data requires one slow erase operation before the

new data can be rewritten.

To address the problem of in-place-update

operation, the system software called Flash

Translation Layer (FTL) introduced, as [6, 7, 9, 11].

FTL uses non-in-place-update mechanism,

originally based on log-structured file system. FTL

RESEARCH ARTICLE OPEN ACCESS

https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Solid-state_storage
https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/NAND_gate
https://en.wikipedia.org/wiki/NOR_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Memory_cell_(computing)
https://en.wikipedia.org/wiki/Floating-gate_MOSFET
https://en.wikipedia.org/wiki/Floating-gate_MOSFET
https://en.wikipedia.org/wiki/Metal-oxide-semiconductor_field-effect_transistor

Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 41 | P a g e

avoids having to erase on every data update by using

the logical to physical address mapping table,

maintained in RAM. Under this mechanism, FTL

remaps each update request to different empty

location and then the mapping table is updated

according to newly changed logical/physical

addresses. This protects one block from being

erased per overwrite. The obsolete data flagged as

garbage, which a software cleaning process later

reclaims, as [3, 5, 8]. This process is called garbage

collection.

Second Drawback: the number of erase

operations allowed to each block is limited (e.g.,

10,000 to 1,000,000 times), and the single worn-out

block affects the usefulness of the entire flash

memory device. Therefore, data must be written

evenly to all blocks. This operation is named as

wear-leveling, as [1, 2, 4]. These drawbacks become

hurdle for developing the reliable flash memory

based systems.

Although researchers have proposed

admirable garbage collection and wear-leveling

policies, but they compromise for saving cleaning

cost on flash memory bandwidth utilization and

expansive main memory requirement as [2, 12, 16].

Therefore, still there is gape for a technique that

could combine efficient erasure management with

optimum usage of flash media and reduced cleaning

cost. In this paper, we propose novel system

software for garbage collection and wear- leveling,

called Allocation of Memory Intellectually for

NAND flash memories. As the scheme name shows,

we intellectually implement our idea based on

diverse nature of data. We classify data according to

its write access frequencies in hot and cold data

nature, where hot data is frequently updating data,

and cold data is infrequently updating and read only

data. We store data in separate blocks by managing

blocks according to their degree of worn. To provide

free space for new data, our proposed cleaning

scheme selects victim block for garbage collection

based on ratio of block utilization and data

migration cost. To achieve the evenly wear-down

media, we propose hybrid wear-leveling that is

combination of both types dynamic and static of

wear-leveling approaches. Our objective is to

improve the endurance management of flash

memory with efficient data organization to enhance

the overall system performance. We compare our

proposed scheme with well-known greedy policy

for garbage collection, and with dual-pool algorithm

[2] for wear-leveling. To evaluate all three schemes,

we developed a simulator and performed trace

driven simulations. Our scheme shows improved

performance compare to both previous schemes. For

our proposed scheme, we found very surprising and

encouraging results concerned endurance

management and significantly very low erase

operations attempted with amazingly evenly wear-

down the flash device.

The remainder of this paper is organized as

follows. We review existing works on garbage

collection and wear-leveling in section 2. In section

3, we propose our endurance management technique

as cleaning scheme and hybrid wear-leveling

scheme for flash memory. We evaluate the

performance of the proposed policy and previous

schemes in section 4. Finally, we conclude this

paper in section 5.

II. RELATED WORK
A number of techniques have been previously

proposed to improve the system performance. In this

section, we review greedy policy and dual-pool

algorithm regarding their technical structures and

weaknesses.

Greedy Policy

Wu et al., proposed the greedy policy for

garbage collection where eNVy controller and

separate battery backed SRAM is used for storage

management. The in-place-update is provided by

keeping array in expensive SRAM where they

buffer modified pages. eNVy uses logical to

physical page mapping on fine granularity level.

That large size of mapping table is also part of

SRAM storage.

Cleaning operation is triggered when there

is no free space remaining to flush data from SRAM

buffer to flash memory except one block is kept free

to support cleaning process. For cleaning, greedy

policy selects the block with largest amount of

garbage with least cleaning work to recover large

free space. Greedy policy tends to select a block in

a first-in-first- out order. Therefore, it shows to

perform well for uniform accesses but poor for high

locality of references. Greedy policy supports not

more than one segment cleaning at a time. To keep

the average cleaning cost, it limits the live data of

the total flash array at 80%. Data distribute in

uniform fashion irrespective of data access patterns.

Therefore, by frequent cleaning operations, all of the

segments end up with mix distribution of hot and

cold data, and the overall cleaning cost increases

with time when there is data distribution with high

localities. However, greedy policy does not consider

wear-leveling.

Dual-Pool Algorithm

Li-Pin Chang [2] proposed Dual-Pool

algorithm (DP) for wear-leveling. The algorithm is

based on two principals. First, blocks are prevented

from being overly worn by storing cold data.

Second, blocks involved in wear-leveling are left

alone until wear- leveling takes effect. Author

implements his scheme by three basic methods.

Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 42 | P a g e

Dirty-Swap method is used for swapping data

blocks among hot and cold blocks pool when user-

configurable threshold is crossed. Hot- pool resizes

and cold-Pool Resize methods are used when data

access patterns become change.

Even though, this scheme claims attractive

features regarding spatial localities but it has few

intolerable drawbacks. First, DP uses smaller user-

configurable threshold to pursue more even wear-

leveling. Smaller threshold leads to frequent cold

data migration, which results in repeated erase

operations and additional I/O overhead. Therefore,

ratio of erase cycles increases and system faces

extra unnecessary cleaning overhead. Second, DP

applies many checks to confirm wear- leveling

condition after every write operation. Hence, small

handheld devices which support limited

computation, these checks after every write

operation could cause system speed slow. Third, DP

consumes extra RAM space to maintain effective-

erasure-cycles with every block in RAM along with

system required logical to physical mapping

information and Erase Count Number (ECN) of

every block. Therefore, devices like mobile phones

and PDAs have limited RAM resources can suffer

their performance because of extra RAM

consumption overhead. The user-data and meta-data

storage management in flash memory is not exactly

mentioned in DP scheme, except author mentions

greedy policy for garbage collection.

III. PROPOSED SUFFERANCE

MANAGEMENT TECHNIQUE
System Architecture

The proposed system architecture is

illustrated as Figure 1. The proposed garbage

collection module consists of four components.

Hot/Cold Data Identifier recognizes hot and cold

data by their nature. The nature is accessibility ratio

per logical block number for read/write operations,

further discussed in detail in Section 3.2. This

activity helps in assigning free blocks for data

storage. Free Block Allocator is responsible for

keeping a list of available free blocks. It decides

which of the free block is to be assigned next

according the nature of data, as discussed in detail in

section 3.3. Victim block collector selects the victim

block by considering the utilization; migrations cost

and erase counts of candidate blocks. Finally,

Cleaner reclaims invalid pages of victim block to

generate new free space, as defined in section 3.4.

The reclamation takes place either in the

background when CPU is idle or on-demand when

the amount of free space drops below the

predetermined threshold. However, the prediction of

the I/O workload such as the number of I/O request

arrivals during the next garbage collection execution

can control the number of victim blocks to be erased

according to the estimated I/O workload, as in [8,

12].

Figure 1. Proposed system architecture.

Flash Meta Data Structure

The log based schemes maintain the lists of

data blocks, log blocks, and free blocks in map

blocks, as in [9, 11]. The data blocks hold ordinary

data and the log blocks are used to store update

writes to data blocks. In this paper, we additionally

propose the dirty blocks list that is used to save the

information related to obsolete blocks, and we

consider blocks by nature of data stored in blocks,

either hot or cold. We identify nature of data by

hot/cold data identifier. The hotness denotes how

often the block data is modified. Hence, hot blocks

are frequently updating blocks, and cold blocks are

infrequently updating and read only blocks. Data

blocks are logically divided in hot data and cold data

blocks. Initially each data block defines as the hot

block. When a hot data block becomes read only or

updates infrequently, its nature changes to cold.

Similarly log blocks are divided in hot log and cold

log blocks. We assign log blocks by separate log

block scheme, where hot and cold both types of data

blocks have separate limited number of log blocks.

To overcome the scanning of whole flash array on

every time of booting, we are using the limited

number of map blocks to store the meta-

information.

Block Allocation Policy

The hot and cold data can be separately

stored by carefully selecting the next fresh block to

be used from free blocks pool. In this paper, block

allocation is applied by the free block allocator

based on degree of hotness of data. In case of cold,

data and log block, new block with high erase count

is allocated. This is because cold data is either read

only data or updates infrequently. That’s why the

new block experiences less invalidation.

Correspondingly, In case of hot, data and log block,

a block with low erase count is selected to increase

its usage. The new block can be expected to reach

its next cleaning cycle earlier because of its

frequently updating nature of data. This

phenomenon keeps balanced the erase cycles on all

Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 43 | P a g e

blocks.

Garbage Collection Policy

The garbage collection process is consisted

of the rewrite and the erase operations. There are

usually three stages involved. System first selects

victim block and identifies valid data that are not

obsolete in the victim block. System copies the valid

data from victim block and rewrites the data to the

new physical location of memory, called data

migration. Finally, the victim block is erased and

available for new data. Cleaning efficiency depends

mainly on the rewriting phase, where data migration

cost highly impacts on total cleaning cost. Erasing

phase consists only of a hardware operation, erase,

which incurs a fixed cost. Therefore, for efficient

memory utilization and reduced cleaning cost, the

effective victim block selection is highly important.

In this paper, the first priority for erasure is for

already obsolete blocks available in dirty blocks

pool. We achieve reduced erase operations as well

as efficient wear-leveling by not erasing blocks

immediately after they become obsolete. Blocks are

collected in dirty blocks pool and when system

triggers the cleaner for free space, block with least

ECN is selected for erasure, then provides to free

blocks pool. In other case, if dirty blocks pool is

empty, the Victim Block Collector applies victim

selection. We prefix two main goals for our victim

block selection policy.

Goal 1: select blocks with optimal memory

bandwidth utilization.

System selects the blocks where margin of used

pages is more than free pages from the total number

of used blocks. We aim not to waste the expensive

free space. Therefore, we select the blocks with

optimum written pages.

Goal 2: select blocks with least migration cost.

System extracts the blocks those have minimum

number of valid pages with respect to total number

of used pages to save the cost of copying valid data

from victim block to new memory location.

We substitute above two goals with equation 1,

where the “UtBlock” represents the utilization of

block that is total number of written pages, and

“MC” shows the migration cost of number of valid

pages in candidate block “n”. We set priority to the

usage of block on migration cost by 0≤  < constant

determinants.

less number of valid pages than the obsolete pages

that saves the migration cost.

Compare to previously proposed block recycling

greedy policy, our victim block selection policy sets

the priority on bandwidth usage of candidate blocks

than data migration cost. Therefore, if we select

block by greedy policy than the possibility for

selection of PBN1 and PBN2 is likely higher than

PBN7 because greedy policy selects the victim

block in first-in-first-out order with least number of

data migration regardless of how many free pages

can be reclaimed. Therefore, our victim block

selection policy is fully associative with memory

space utilization and migration cost saving.

After selection of victim block, the merge operation

is applied, where the valid data from victim data

block PBN7 and its corresponding log blocks PBN9

and PBN10 copies to new allocated data block

PBN11, as shown in Figure 2. New block is

assigned by the free block allocator regarding victim

data block nature for efficient data redistribution.

After merge operation, victim block is erased and

provided to free blocks pool.

Victim Score(n) = UtBlock(n) –   MC(n) (1)

In this paper, garbage collection activates

in two directions. First, when assigning the new log

block crosses the predefined limit, system triggers

the garbage collection on log blocks. System selects

the victim log block which has highest victim

score by equation 1, and then it reclaims by Split

operation. Split operation copies up-to-date pages

from victim log block to newly allocated log block.

After copying all the valid pages, the former log

block is returned to the dirty blocks pool for erasure,

and further updates to data blocks forward to new

log block.

Second, when system crosses the threshold

N of free space, it triggers the garbage collection on

data blocks for system reliability. The threshold

value N is not an independent variable but is fixed

as the maximum allowable utilization of the media.

Equation 1 applies on both natures hot and cold of

data blocks and the block with maximum victim

score is selected as victim data block, and then it

reclaims by merge operation. If equation 1 achieves

more than one candidate blocks with same victim

score value than block with least ECN is selected

for erasure.

We explain our garbage collection policy

on data blocks by an example, as shown in Figure 2.

Assume there are total eight data blocks in use, from

Physical Block Number (PBN) 1 to PBN8, and

every block is composed of four pages. Victim score

is calculated by equation 1 with =1 and 

=0.5, as shown before

every block. Therefore, the PBN7 is

selected as victim block with highest victim score

value by fulfilling both predefined goals as there is

no free page that could be waste uselessly because

of erasure operation and it has

Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 44 | P a g e

Figure 2. Garbage collection on data blocks.

We achieve efficient utilization of storage

media by selecting the optimal used block for

erasure with reduced data migration. Our proposed

cleaning scheme efficiently derives the approach to

maintain the criteria for victim block selection and

data redistribution.

Hybrid Wear-Leveling Policy

A good wear-leveling policy evenly

distributes the erase cycle counts on all blocks to

prolong the life time of flash media. Thus the

effectiveness of a wear- leveling policy could be

evaluated in terms of the standard variation of the

erase counts of all blocks and the earliest

appearance time of first worn-out block.

Wear-leveling classifies in two directions,

dynamic and static wear-leveling. In dynamic wear-

leveling, recycling of blocks only happens to blocks

that are free or occupied by hot data. Therefore, cold

data is likely to stay untouched for long time

regardless of how updates of hot data wear-out other

blocks. Static wear-leveling is orthogonal to

dynamic wear-leveling.

Its objective is to move any cold data from

staying at any block for a long period of time to

evenly apply erase count to all blocks. Therefore, it

proves that endurance improvement is severely

constrained by data nature.

In this paper, we propose hybrid wear-

leveling, and aim to evenly wear-down blocks with

hot and cold both types of data by following two

schemes.

First scheme: we achieve dynamic wear-

leveling on every block allocation time as we have

already discussed in Section 3.3 that system assigns

the high and low ECN blocks to cold and hot blocks,

respectively. The derived thought of this approach is

that careful free block allocation by considering

diverse nature of data certainly evenly-wear the

flash media.

Second scheme: we achieve static wear-

leveling based on Cease-Swap Policy. The swapping

is applied at regular intervals to move cold data

from low to high erase count blocks. It prevents

high erase count blocks from being overly worn by

storing infrequently updating and read only data,

and allows low erase count blocks to be used for

frequently updating data.

Cease-swap policy: there are irrespective

numbers of erase count blocks in hot, cold and free

blocks pool. System checks the condition using

equation 2, and block with maximum erase count is

extracted either from Hot Blocks Pool (HP) or from

Free Blocks pool FP) by using MaxEC function.

Then condition in equation 3 is examined to

determine the need of wear- leveling by given user-

configurable threshold TH.

If the difference between a maximum erase

count block from hot or free blocks pool and a

minimum erase count block from cold blocks pool

(CP) is more than given threshold TH than the

following procedure is performed.

Step 1: valid data from MinEC (ECCP)

and from corresponding log blocks is merged to

new allocated free block with high erase count.

Step 2: erase block MinEC (ECCP).

Step 3: make available recently erased

block to free blocks pool.

Whenever the condition in equation 3

becomes true, it is assumed that on the one side

block MinEC (ECCP) have not been erased for a

long period of time because of storing cold data,

and on the other side block MaxEC have been

erased plenty of time because it frequently stores

hot data. Therefore, the cold data is merged on high

erase count block available in free blocks pool.

After erasure, the block from cold data list moves to

free blocks pool to start being worn.

Traditional Dirty-Swap operation takes

at least six steps to move cold and hot data in high

and low erase count blocks respectively, as

presented in dual-pool scheme [2]. This approach

takes two expansive blocks erase, two blocks copy,

and extensive meta- information change to commit

one swap operation. Also many other previous

schemes like consume large size of main memory

for data buffering while swapping. However, our

proposed Cease-Swap Policy takes one block erase,

one block copy, comparatively small changes in

meta-data, and no space required in main memory

for data buffering while swapping.

Another reason to avoid the traditional

movement of data is that as the hot blocks become

dirty frequently and next time block allocation

selects the low erase count block from free blocks

pool automatically. So there is no need to move hot

data in low erase count block during swap. Thus,

Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 45 | P a g e

the high erase count block from hot blocks pool

systematically saves in free blocks pool after

erasure, and is assigned to cold data on next time

block allocation.

The proposed hybrid wear-leveling policy

efficiently evenly wear-down, hot and cold, both

natures of blocks by applying separate associative

methods. Our proposed scheme is consistent with

changing access patterns of data, and it saves

expansive erasure and data migration cost on every

time data movement.

IV. PERFORMANCE EVALUATION
In this section, first, we establish the simulation

environment, and then experimental results are

presented and discussed.

Simulation Environment

To evaluate the performance characteristics

of our proposed garbage collection and wear-

leveling scheme, and previous schemes as greedy

policy and dual-pool algorithm [2], we developed a

simulator and performed trace-driven simulations.

We have built a simulator with l Gigabyte of flash

space that is divided into equal size of erase blocks.

Each block size is 16 kilobytes and every block is

composed of 32 pages as read/write unit. Every page

size is 512 bytes. We use 15µs for a page read,

200µs for a page write, and 2ms for a block erase

from product.

We use five data traces in this experiment,

see Table 1. These traces have been obtained from

the author of [11]. Traces A, B and C are generated

from digital cameras and thus contain both small

random inputs and frequent large sequential inputs.

Traces D and E contains many random inputs and

infrequent large sequential inputs. As the flash

memory is being used as the storage media for more

general computer systems including laptop

computers [10], we believe that these traces are

complex enough to show the characteristics of our

proposed scheme.

Table 1. Traces used for simulation.

Trace Workload

Description

Number of

Inputs

A Digital camera (A

company)

4,618

B Digital camera (B

company)

5,111

C Digital camera (C

company)

69,576

D Linux O/S 18,900

E Symbian O/S 4,049

For each given trace, simulator counts the

numbers of reads, writes and erases operations, and

calculates the number of consumed blocks and size

of device utilization, and also determines degree of

worn by total number of allowed erase cycles per

physical block. To prove the enhancement of our

idea for large size of systems, we execute every

trace file for large number of times. Finally, we

provide the results of every execution till 10,000

times.

We have discussed in section 3.4 that

garbage collection triggers on data blocks when the

number of free blocks crosses a threshold N. For our

experiment, we completely fill flash memory for

effective media utilization. Thus, we always keep

only one free block for reliable cleaning process. In

order to achieve wear- leveling, the user-

configurable parameter TH is discussed in section

3.5. For our simulator, we consider TH as an

average erase count value from hot data blocks pool

for both the scheme and dual-pool schemes.

Simulation Results

This section describes the experimental

results. Here, we analysis and compare our scheme

with the previous schemes [2]. To have fair

evaluation, all three schemes are simulated in same

environment. Our results are presented from Figures

3 to 7, where X-axis denotes the traces symbols, as

described in Table 1, and Y-axis denotes the number

of blocks occupied, flash space consumption,

number of erase and average erase operations

preformed due to cleaning policies, and overhead

ratio due to wear-leveling schemes, respectively.

Figure 3 presents the results of number of used

blocks for all five given traces, where, every trace

file executed 10 times. Simulation performed when

flash memory was completely free. The repetition of

traces results that greedy policy returns in large

number of memory blocks consumption than our

proposed scheme. We believe that space

consumption is highly depends on storage

management policy. The major impact of high

performance of our proposed scheme relates to the

use of limited number of log blocks. Therefore,

greedy policy does not use log blocks and applies

sequential distribution of data.

Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 46 | P a g e

Figure 3. Number of blocks occupied when traces

execute 10 times.

Figure 4 shows the results of flash media

consumption in Mega-Bytes (MBs), while executed

all five traces for 100 times. Our proposed scheme

outperforms greedy policy for efficiently utilization

of media bandwidth because of our effective data

management technique. We specially consider data

by its nature, and allocate memory by intellectual

understanding of diverse data access patterns.

Hence, greedy policy does not consider the write

access patterns, and every time the repetition of

traces and cleaning process, mix-up the hot and cold

data. That result in high erase operations and more

consumption of media bandwidth.

Figure 5 shows the results of number of

erase operations performed in the unit of thousand,

when all five traces executed for 5000 times. In our

experiment, no erase operation performed for our

scheme till the execution of traces for 1000 times,

where only trace-A starts to experience small

number of erase operations. But, by greedy policy,

memory started to worn with the execution of the

traces for 25 times for trace-C.

Figure 4. Media consumption in MBs when traces

execute 100 times.

Results in Figure 5 clearly show that very

low number of erase operations attempted by our

scheme compare to greedy policy. Even though,

trace-A and trace-E have smaller number of inputs

compare to trace-C but they experience more

erasures than other traces by our proposed scheme.

This experiment shows that trace-A and trace-E

contains hot data, and trace-C carries more read only

or cold data, and trace- B and trace-D having cold or

semi hot data.

For greedy policy, the reason of large

number of erases is that after a number of cleaning

operations, cold data becomes mixed with non-cold

or hot data, under high localities of access. After

that time, cold data moves around uselessly together

with hot data. For this reason, the utilization of

cleaned blocks remains stable at a high value and

the amount of free space collected becomes small

and cleaning cost increases.

In Figure 5, it can see that by greedy policy

trace-C experiences more erase operations than

other traces because it is having more write inputs

and more cold data. On other side, by our proposed

scheme, for same trace-C, there is no erasure at all.

The major reason of high performance of our

proposed scheme is found as the usage of separate

data and log blocks for both natures of hot and cold

data. The separate space allocation for both types of

data stops mix-up the hot and cold data and results

in effective utilization of the media and minimize

the erasure operations. We found very surprising

and encouraging results, where trace-C not

experiences any erase operation even by execution

of traces for 10,000 times.

Figure 6 shows the results of number of

average erase cycles distributed on every block of

media, when the traces files executed 10,000 times.

Results clearly show that greedy policy highly

suffers its performance compare to scheme, because

of its sequential uniform distribution of data and its

first-in-first-out block cleaning strategy. In

experiment, greedy policy experienced 95% more

erase cycles than proposed scheme.

Figure 5. Number of erase operations when traces

execute 5000 times.

Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 47 | P a g e

Figure 6. Number of average erase cycles when

traces execute 10000 times.

Figure 7 shows the overhead ratio in the

unit of milliseconds (ms) appeared by scheme and

dual- pool scheme, when the traces files executed

10,000 times. The overhead ratio stands for the ratio

of amount of traffic system experiences due to

cleaning process as extra writes and erases

performed for applying wear-leveling policy. We

calculate cleaning cost by using equation 4.

Cleaning Cost(vb) = Numvb (ErC(vb)+ MC vp (vb))

 (4)
The cleaning cost is combination of fixed

erasure cost “ErC” and migration cost “MC” of

number of valid pages “vp” from number of

victim block “ Numvb ” to new allocated free

block. Results in Figure 7 clearly show the

effectiveness of both schemes. We observed that

dual-pool scheme also performs well and media

becomes evenly worn like proposed schem, but

dual-pool algorithm suffers by the acquired cleaning

cost and extra computation. We believe that the

wear-leveling scheme performance highly depends

on data management policy. However, there is no

exact definition given for storage management in

dual-pool algorithm; thus, we simulated both wear-

leveling schemes on same log based data

management platform of proposed scheme.

Figure 7. Overhead ratio (ms) when traces execute

10000 times.

In this experiment, dual-pool algorithm

experienced 36% more cleaning cost than proposed

hybrid wear-leveling policy. Therefore, hybrid

wear- leveling approach has evenly wear-down all

blocks with enhanced system performance. Results

show that applying an intellectual and effective

endurance management policy associative with

diverse nature of data reduces the reasonable

cleaning overhead and increases the device life time.

 Proposed scheme outperforms greedy

policy and dual-pool algorithm in all cases.

However, greedy policy have its own phenomena

regarding cleaning and it could give better results

while working together with efficient data

management policy.

Proposed scheme is proving as an efficient

technique of garbage collection and wear-leveling

for flash devices by giving very encouraging results

related to erasure attempted even after a large

number of times traces execution. Results show that

proposed scheme performs outstanding to handle

changing data access patterns with time, and highly

improves the overall system performance, and

prolongs system life time. This is the core

achievement of proposed research.

V. CONCLUSIONS
I have presented the data organization and

endurance management techniques, to improve

overall system performance, called

Allocation of Memory Intellectually.

With proposed new system architecture, scheme

classifies data according to their write access

frequencies, in hot and cold data nature, and

improves the space utilization by allocating

separate limited number of log blocks to both types

of data blocks. Scheme enhances the system life

time by managing the blocks according to their

degree of worn. proposed cleaning scheme achieves

a block to erase with optimal number of space

utilization and minimum overhead of data

migration. We proposed a hybrid wear-leveling

mechanism that is combination of both types of

wear-leveling approaches, dynamic and static. In

examining the degree of wear-leveling and

exploring the effect of flash memory utilization, the

proposed method is amazingly performed well.

Performance is evaluated by trace-driven

simulations to explore in detail the impact of data

access patterns, consumption of device, victim block

selection, data redistribution and ratio of erase

operations performed. We found very surprising and

encouraging results concerned endurance

management and significantly very low erasure

attempts with amazingly evenly wear- down the

flash space. Flash memory life time is thus

extended. We improved the overall endurance of

flash memory with enhanced system performance.

Prof.Dr.Kamal Alaskar. Journal of Engineering Research and Application www.ijera.com

ISSN: 2248-9622 Vol. 10, Issue 03 (Series -IV) March 2020, pp 40-48

www.ijera.com DOI: 10.9790/9622-1003044048 48 | P a g e

REFERENCES
[1]. Ban A., “Wear Leveling pf Static Areas in

Flash Memory,” US Patent 6,732,221, 2004.

[2]. Chang P., “On Efficient Wear Leveling for

Large Scale Flash Memory Storage

 Systems,” in

[3]. Proceedings of the ACM Symposium on

Applied Computing, pp. 1126-1130, 2007.

[4]. Chang P. and Kuo W., “Efficient

Management for Large Scale Flash Memory

Storage Systems with Resource

Conservation,” Computer Journal of ACM

Transactions on Storage, vol. 1, no. 4, pp.

381-418, 2005.

[5]. Chang H., Hsieh W., and Kuo W.,

“Endurance Enhancement of Flash-Memory

Storage Systems: an Efficient Static Wear

Leveling Design,” in Proceedings of the

Annual ACM IEEE Design Automation

Conference, pp. 212- 217, 2007.

[6]. Chung S., Lee M., Ryu Y., and Lee K.,

“PORCE: an Efficient Power off Recovery

Scheme for Flash Memory,” Computer

Journal of Journal of Systems Architecture

Embedded Systems Design, vol. 54, no. 10,

pp. 935-943, 2008.

[7]. Chung S., Park J., Park S., Lee H., Lee W.,

and Song J., “A Survey of Flash Translation

Layer,” Computer Journal Of Systems

Architecture Embedded Systems Design, vol.

55, no. 5, pp. 332-343, 2009.

[8]. Chung S. and Park S., “STAFF: A Flash

Driver Algorithm Minimizing Block

Erasures,” Computer Journal of Systems

Architecture, vol. 53, no. 12, pp. 889-901,

2007.

[9]. Han Z., Ryu Y., Chung S., Lee M., and Hong,

S., “An Intelligent Garbage Collection

Algorithm for Flash Memory Storages,” in

Proceedings of International Conference on

Computational Science and its Applications,

US, pp. 1019-1027, 2006.

[10]. Kwon J. and Chung S., “An Efficient and

Advanced Space-management Technique for

Flash Memory using Reallocation Blocks,”

Computer Journal of IEEE Transactions on

Consumer Electronics, vol. 54, no. 2, pp.

298- 303, 2008.

[11]. Lawton G., “Improved Flash Memory Grows

in Popularity,” Computer Journal of IEEE,

vol. 39, no. 1, pp. 159-163, 2006.

[12]. Lee W., Park J., Chung S., Lee H., Park S.,

and SongJ, “A Log Buffer Based Flash

Translation Layer Using Fully Associative

Sector Translation,” Computer Journal of

ACM Transaction on Embedded Computing

System, vol. 6, no. 3, pp. 178-181, 2007.

[13]. Longzhe H., Yeonseung R., and Keunsoo Y.,

“CATA: A Garbage Collection Scheme for

Flash Memory File Systems,” in Proceedings

of Lecture Notes in Computer Science, pp.

103- 112, 2006.

