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Abstract: Flash memory is an electronic (solid-state) non-volatile computer memory storage medium that can 

be electrically erased and reprogrammed. The two main types of flash memory are named after 

the NAND and NOR logic gates. The individual flash memory cells, consisting of floating-gate 

MOSFETs (floating-gate metal-oxide-semiconductor field-effect transistors), exhibit internal characteristics 

similar to those of the corresponding gates. Flash memory is small size, lightweight, shock-resistant, 

nonvolatile, and consumes little power. Flash memory therefore shows promise for use in storage devices for 

consumer electronics, mobile computers, wireless devices and embedded systems. However, flash memory 

cannot be overwritten unless erased in advance. Erase operations are slow that usually decrease system 

performance and consume power. The number of erase cycles is also limited, and a single worn-out block 

affects the usefulness of entire flash memory device. Therefore, for power conservation, better system 

performance and longer flash memory lifetime, system support for erasure management is necessary. In this 

paper, we propose a novel idea of system software for garbage collection and wear-leveling called Allocation of 

Memory Intellectually for NAND flash memories. Proposed scheme classifies data blocks intellectually 

according to their write access frequencies and improves the space utilization by allocating separate limited 

number of log blocks to both natures, hot and cold, of data blocks with proposed new system architecture. Our 

proposed cleaning scheme achieves a block to erase with optimal number of space utilization and minimum 

overhead of data migration. A hybrid wear-leveling approach is also proposed to evenly wear-down flash 

memory. Proposed scheme enhances the system life time by managing the blocks according to their degree of 

worn. We compared our proposed idea with two previous schemes. Our proposed idea improved system 

performance 95% for garbage collection and 36% for wear-leveling. The evaluation results prove that our 

proposed scheme, outperforms both previous schemes particularly with efficient flash bandwidth utilization and 

attempted erase operations. 

Keywords: Consumer electronics, embedded systems, data organization, endurance management, memory 

management, and system performance. 
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I. INTRODUCTION 
Flash memory is a non-volatile solid state 

memory, which has many attractive features such as 

small size, fast access speed, shock resistance, high 

reliability, and light weight. Because of these 

attractive features, and decreasing price and 

increasing capacity, flash memory is becoming 

increasingly important storage medium for various 

computing systems, such as consumer electronics, 

embedded systems, and wireless devices. 

Furthermore, its density and I/O performance have 

improved to a level at which it can be used as an 

auxiliary storage media for mobile computing 

devices, such as PDA and laptop computers. 

Flash memory is partitioned into equal size 

of erase units called blocks and each block has a 

fixed number of read/write units called pages. Flash 

memory has three kinds of operations: page read, 

page write, and block erase. The size of page and 

block differs by products. 

Even though, flash memory has many 

attractive features, but its special hardware 

characteristics impose design challenges on storage 

systems. However, it has two main drawbacks. 

First Drawback: an inefficiency of in-

place-update operation. When we update data, we 

can not write new data directly at same address due 

to physical erase- before-write characteristics of 

flash memory. Therefore, updating even one byte 

data requires one slow erase operation before the 

new data can be rewritten. 

To address the problem of in-place-update 

operation, the system software called Flash 

Translation Layer (FTL) introduced, as [6, 7, 9, 11]. 

FTL uses non-in-place-update mechanism, 

originally based on log-structured file system. FTL 
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avoids having to erase on every data update by using 

the logical to physical address mapping table, 

maintained in RAM. Under this mechanism, FTL 

remaps each update request to different empty 

location and then the mapping table is updated 

according to newly changed logical/physical 

addresses. This protects one block from being 

erased per overwrite. The obsolete data flagged as 

garbage, which a software cleaning process later 

reclaims, as [3, 5, 8]. This process is called garbage 

collection. 

Second Drawback: the number of erase 

operations allowed to each block is limited (e.g., 

10,000 to 1,000,000 times), and the single worn-out 

block affects the usefulness of the entire flash 

memory device. Therefore, data must be written 

evenly to all blocks. This operation is named as 

wear-leveling, as [1, 2, 4]. These drawbacks become 

hurdle for developing the reliable flash memory 

based systems. 

Although researchers have proposed 

admirable garbage collection and wear-leveling 

policies, but they compromise for saving cleaning 

cost on flash memory bandwidth utilization and 

expansive main memory requirement as [2, 12, 16]. 

Therefore, still there is gape for a technique that 

could combine efficient erasure management with 

optimum usage of flash media and reduced cleaning 

cost. In this paper, we propose novel system 

software for garbage collection and wear- leveling, 

called Allocation of Memory Intellectually  for 

NAND flash memories. As the scheme name shows, 

we intellectually implement our idea based on 

diverse nature of data. We classify data according to 

its write access frequencies in hot and cold data 

nature, where hot data is frequently updating data, 

and cold data is infrequently updating and read only 

data. We store data in separate blocks by managing 

blocks according to their degree of worn. To provide 

free space for new data, our proposed cleaning 

scheme selects victim block for garbage collection 

based on ratio of block utilization and data 

migration cost. To achieve the evenly wear-down 

media, we propose hybrid wear-leveling that is 

combination of both types dynamic and static of 

wear-leveling approaches. Our objective is to 

improve the endurance management of flash 

memory with efficient data organization to enhance 

the overall system performance. We compare our 

proposed scheme with well-known greedy policy  

for garbage collection, and with dual-pool algorithm 

[2] for wear-leveling. To evaluate all three schemes, 

we developed a simulator and performed trace 

driven simulations. Our scheme shows improved 

performance compare to both previous schemes. For 

our proposed scheme,  we found very surprising and 

encouraging results concerned endurance 

management and significantly very low erase 

operations attempted with amazingly evenly wear- 

down the flash device. 

The remainder of this paper is organized as 

follows. We review existing works on garbage 

collection and wear-leveling in section 2. In section 

3, we propose our endurance management technique 

as cleaning scheme and hybrid wear-leveling 

scheme for flash memory. We evaluate the 

performance of the proposed policy and previous 

schemes in section 4. Finally, we conclude  this 

paper in section 5. 

 

II. RELATED WORK 
A number of techniques have been previously 

proposed to improve the system performance. In this 

section, we review greedy policy and dual-pool 

algorithm regarding their technical structures and 

weaknesses. 

 

Greedy Policy 

Wu et al., proposed the greedy policy for 

garbage collection where eNVy controller and 

separate battery backed SRAM is used for storage 

management. The in-place-update is provided by 

keeping array in expensive SRAM where they 

buffer modified pages. eNVy uses logical to 

physical page mapping on fine granularity level. 

That large size of mapping table is also part of 

SRAM storage. 

Cleaning operation is triggered when there 

is no free space remaining to flush data from SRAM 

buffer to flash memory except one block is kept free 

to support cleaning process. For cleaning, greedy 

policy selects the block with largest amount of 

garbage with least cleaning work to recover large 

free space.  Greedy policy tends to select a block in 

a first-in-first- out order. Therefore, it shows to 

perform well for uniform accesses but poor for high 

locality of references. Greedy policy supports not 

more than one segment cleaning at a time. To keep 

the average cleaning cost, it limits the live data of 

the total flash array at 80%. Data distribute in 

uniform fashion irrespective of data access patterns. 

Therefore, by frequent cleaning operations, all of the 

segments end up with mix distribution of hot and 

cold data, and the overall cleaning cost increases 

with time when there is data distribution with high 

localities. However, greedy policy does not consider 

wear-leveling. 

 

Dual-Pool Algorithm 

Li-Pin Chang [2] proposed Dual-Pool 

algorithm (DP) for wear-leveling. The algorithm is 

based on two principals. First, blocks are prevented 

from being overly worn by storing cold data. 

Second, blocks involved in wear-leveling are left 

alone until wear- leveling takes effect. Author 

implements his scheme by three basic methods. 
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Dirty-Swap method is used  for swapping data 

blocks among hot and cold blocks pool when user-

configurable threshold is crossed. Hot- pool resizes 

and cold-Pool Resize methods are used when data 

access patterns become change. 

Even though, this scheme claims attractive 

features regarding spatial localities but it has few 

intolerable drawbacks. First, DP uses smaller user-

configurable threshold to pursue more even wear-

leveling. Smaller threshold leads to frequent cold 

data migration, which results in repeated erase 

operations and additional I/O overhead. Therefore, 

ratio of erase cycles increases and system faces 

extra unnecessary cleaning overhead. Second, DP 

applies many checks to confirm wear- leveling 

condition after every write operation. Hence, small 

handheld devices which support limited 

computation, these checks after every write 

operation could cause system speed slow. Third, DP 

consumes extra RAM space to maintain effective-

erasure-cycles with every block in RAM along with 

system required logical to physical mapping 

information and Erase Count Number (ECN) of 

every block. Therefore, devices like mobile phones 

and PDAs have limited RAM resources can suffer 

their performance because of extra RAM 

consumption overhead. The user-data and meta-data 

storage management in flash memory is not exactly 

mentioned in DP scheme, except author mentions 

greedy policy for garbage collection. 

 

III. PROPOSED SUFFERANCE 

MANAGEMENT TECHNIQUE 
System Architecture 

The proposed system architecture is 

illustrated as Figure 1. The proposed garbage 

collection module consists of four components. 

Hot/Cold Data Identifier recognizes hot and cold 

data by their nature. The nature is accessibility ratio 

per logical block number for read/write operations, 

further discussed in detail in Section 3.2. This 

activity helps in assigning free blocks for data 

storage. Free Block Allocator is responsible for 

keeping a list of available free blocks. It decides 

which of the free block is to be assigned next 

according the nature of data, as discussed in detail in 

section 3.3. Victim block collector selects the victim 

block by considering the utilization; migrations cost 

and erase counts of candidate blocks. Finally, 

Cleaner reclaims invalid pages of victim block to 

generate new free space, as defined in section 3.4. 

The reclamation takes place either in the 

background when CPU is idle or on-demand when 

the amount of free space drops below the 

predetermined threshold. However, the prediction of 

the I/O workload such as the number of I/O request 

arrivals during the next garbage collection execution 

can control the number of victim blocks to be erased 

according to the estimated I/O workload, as in [8, 

12]. 

 

 
Figure 1. Proposed system architecture. 

 

Flash Meta Data Structure 

The log based schemes maintain the lists of 

data blocks, log blocks, and free blocks in map 

blocks, as in [9, 11]. The data blocks hold ordinary 

data and the log blocks are used to store update 

writes to data blocks. In this paper, we additionally 

propose the dirty blocks list that is used to save the 

information related to obsolete blocks, and we 

consider blocks by nature of data stored in blocks, 

either hot or cold. We identify nature of data by 

hot/cold data identifier. The hotness denotes how 

often the block data is modified. Hence, hot blocks 

are frequently updating blocks, and cold blocks are 

infrequently updating and read only blocks. Data 

blocks are logically divided in hot data and cold data 

blocks. Initially each data block defines as the hot 

block. When a hot data block becomes read only or 

updates infrequently, its nature changes to cold. 

Similarly log blocks are divided in hot log and cold 

log blocks. We assign log blocks by separate log 

block scheme, where hot and cold both types of data 

blocks have separate limited number of log blocks. 

To overcome the scanning of whole flash array on 

every time of booting, we are using the limited 

number of map blocks to store the meta-

information. 

 

Block Allocation Policy 

The hot and cold data can be separately 

stored by carefully selecting the next fresh block to 

be  used from free blocks pool. In this paper, block 

allocation  is applied by the free block allocator 

based on degree of hotness of data. In case of cold, 

data and log block, new block with high erase count 

is allocated. This is because cold data is either read 

only data or updates infrequently. That’s why the 

new block experiences less invalidation. 

Correspondingly, In case of hot, data and log block, 

a block with low erase count is selected to increase 

its usage. The new block can be expected to reach 

its next cleaning cycle earlier because of its 

frequently updating nature of data. This 

phenomenon keeps balanced the erase cycles on all 
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blocks. 

 

Garbage Collection Policy 

The garbage collection process is consisted 

of the rewrite and the erase operations. There are 

usually three stages involved. System first selects 

victim block and identifies valid data that are not 

obsolete in the victim block. System copies the valid 

data from victim block and rewrites the data to the 

new physical location of memory, called data 

migration. Finally, the victim block is erased and 

available for new data. Cleaning efficiency depends 

mainly on the rewriting phase, where data migration 

cost highly impacts on total cleaning cost. Erasing 

phase consists only of a hardware operation, erase, 

which incurs a fixed cost. Therefore, for efficient 

memory utilization and reduced cleaning cost, the 

effective victim block selection is highly important. 

In this paper, the first priority for erasure is for 

already obsolete blocks available in dirty blocks 

pool. We achieve reduced erase operations as well 

as efficient wear-leveling by not erasing blocks 

immediately after they become obsolete. Blocks are 

collected in dirty blocks pool and when system 

triggers the cleaner for free space, block with least 

ECN is selected for erasure, then provides to free 

blocks pool. In other case, if dirty blocks pool is 

empty, the Victim Block Collector applies victim 

selection. We prefix two main goals for our victim 

block selection policy. 

Goal 1: select blocks with optimal memory 

bandwidth utilization. 

System selects the blocks where margin of used 

pages is more than free pages from the total number 

of used blocks. We aim not to waste the expensive 

free space. Therefore, we select the blocks with 

optimum written pages. 

Goal 2: select blocks with least migration cost. 

System extracts the blocks those have minimum 

number of valid pages with respect to total number 

of used pages to save the cost of copying valid data 

from victim block to new memory location. 

We substitute above two goals with equation 1, 

where the “UtBlock” represents the utilization of 

block that is total number of written pages, and 

“MC” shows the migration cost of number of valid 

pages in candidate block “n”. We set priority to the 

usage of block on migration cost by 0≤  < constant 

determinants.  

less number of valid pages than the obsolete pages 

that saves the migration cost. 

Compare to previously proposed block recycling 

greedy policy, our victim block selection policy sets 

the priority on bandwidth usage of candidate blocks 

than data migration cost. Therefore, if we  select 

block by greedy policy than the possibility for 

selection of PBN1 and PBN2 is likely higher than 

PBN7 because greedy policy selects the victim 

block in first-in-first-out order with least number of 

data migration regardless of how many free pages 

can be reclaimed. Therefore, our victim block  

selection policy is fully associative with memory 

space utilization and migration cost saving. 

After selection of victim block, the merge operation 

is applied, where the valid data from victim data 

block PBN7 and its corresponding log blocks PBN9 

and PBN10 copies to new allocated data block 

PBN11, as shown in Figure 2. New block is 

assigned by the free block allocator regarding victim 

data block nature for efficient data redistribution. 

After merge operation, victim block is erased and 

provided to free blocks pool. 

 

Victim Score(n) = UtBlock(n) –    MC(n)    (1) 

In this paper, garbage collection activates 

in two directions. First, when assigning the new log 

block crosses the predefined limit, system triggers 

the  garbage collection on log blocks. System selects 

the victim  log  block  which  has  highest  victim  

score  by equation 1, and then it reclaims by Split 

operation. Split operation copies up-to-date pages 

from victim log block to newly allocated log block. 

After copying all the valid pages, the former log 

block is returned to the dirty blocks pool for erasure, 

and further updates to data blocks forward to new 

log block. 

Second, when system crosses the threshold 

N of free space, it triggers the garbage collection on 

data blocks for system reliability. The threshold 

value N is not an independent variable but is fixed 

as the maximum allowable utilization of the media. 

Equation 1 applies on both natures hot and cold of 

data blocks and the block with maximum victim 

score is selected as victim data block, and then it 

reclaims by merge operation. If equation 1 achieves 

more than one candidate blocks with same victim 

score value than block with  least ECN is selected 

for erasure. 

We explain our garbage collection policy 

on data blocks by an example, as shown in Figure 2. 

Assume there are total eight data blocks in use, from 

Physical Block Number (PBN) 1 to PBN8, and 

every block is composed of four pages. Victim score 

is calculated by equation  1  with       =1  and    

=0.5,  as  shown before 

every block. Therefore, the PBN7 is 

selected as victim block with highest victim score 

value by fulfilling both predefined goals as there is 

no free page that could be waste uselessly because 

of erasure operation and it has 
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Figure 2. Garbage collection on data blocks. 

 

We achieve efficient utilization of storage 

media by selecting the optimal used block for 

erasure with reduced data migration. Our proposed 

cleaning scheme efficiently derives the approach to 

maintain the criteria for victim block selection and 

data redistribution. 

 

Hybrid Wear-Leveling Policy 

A good wear-leveling policy evenly 

distributes the erase cycle counts on all blocks to 

prolong the life time of flash media. Thus the 

effectiveness of a wear- leveling policy could be 

evaluated in terms of the standard variation of the 

erase counts of all blocks and the earliest 

appearance time of first worn-out block. 

Wear-leveling classifies in two directions, 

dynamic and static wear-leveling. In dynamic wear-

leveling, recycling of blocks only happens to blocks 

that are free or occupied by hot data. Therefore, cold 

data is likely to stay untouched for long time 

regardless of how updates of hot data wear-out other 

blocks. Static wear-leveling is orthogonal to 

dynamic wear-leveling. 

Its objective is to move any cold data from 

staying at any block for a long period of time to 

evenly apply erase count to all blocks. Therefore, it 

proves that endurance improvement is severely 

constrained by data nature. 

In this paper, we propose hybrid wear-

leveling, and aim to evenly wear-down blocks with 

hot and cold both types of data by following two 

schemes. 

First scheme: we achieve dynamic wear-

leveling on every block allocation time as we have 

already discussed in Section 3.3 that system assigns 

the high and low ECN blocks to cold and hot blocks, 

respectively. The derived thought of this approach is 

that careful free block allocation by considering 

diverse nature of data certainly evenly-wear the 

flash media. 

Second scheme: we achieve static wear-

leveling based on Cease-Swap Policy. The swapping 

is applied at regular intervals to move cold data 

from low to high erase count blocks. It prevents 

high erase count blocks from being overly worn by 

storing infrequently updating and read only data, 

and allows low erase count blocks to be used for 

frequently updating data. 

Cease-swap policy: there are irrespective 

numbers of erase count blocks in hot, cold and free 

blocks pool. System checks the condition using 

equation 2, and block with maximum erase count is 

extracted either from Hot Blocks Pool (HP) or from 

Free Blocks pool FP) by using  MaxEC function. 

Then condition in equation 3 is examined to 

determine the need of wear- leveling by given user-

configurable threshold TH. 

 
 

If the difference between a maximum erase 

count block from hot or free blocks pool and a 

minimum erase count block from cold blocks pool 

(CP) is more than given threshold TH than the 

following procedure  is performed. 

Step 1: valid data from MinEC ( ECCP ) 

and from corresponding log blocks is merged to 

new allocated free block with high erase count. 

Step 2: erase block MinEC ( ECCP ). 

Step 3: make available recently erased 

block to free blocks pool. 

Whenever the condition in equation 3 

becomes true, it is assumed that on the one side 

block MinEC ( ECCP ) have not been erased for a 

long period of time because of storing cold data, 

and on the other  side  block MaxEC have been 

erased plenty of time because it frequently stores 

hot data. Therefore, the cold data is merged on high 

erase count block available in free blocks pool. 

After erasure, the block from cold data list moves to 

free blocks pool to start being worn. 

Traditional Dirty-Swap  operation  takes  

at least six steps to move cold and hot data in high 

and low erase count blocks respectively, as 

presented in dual-pool scheme [2]. This approach 

takes two expansive blocks erase, two blocks copy, 

and extensive meta- information change to commit 

one swap operation. Also many other previous 

schemes like consume large size of main memory 

for data buffering while swapping. However, our 

proposed Cease-Swap Policy takes one block erase, 

one block copy, comparatively small changes in 

meta-data, and no space required in main memory 

for data buffering while swapping. 

Another reason to avoid the traditional 

movement of data is that as the hot blocks become 

dirty frequently and next time block allocation 

selects the low erase count block from free blocks 

pool automatically. So there is no need to move hot 

data in low erase count block during swap. Thus, 
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the high erase count block from hot blocks pool 

systematically saves in free blocks pool after 

erasure, and is assigned to cold data on next time 

block allocation. 

The proposed hybrid wear-leveling policy 

efficiently evenly wear-down, hot and cold, both 

natures of blocks by applying separate associative 

methods. Our proposed scheme is consistent with 

changing access patterns of data, and it saves 

expansive erasure and data migration cost on every 

time data movement. 

 

IV. PERFORMANCE EVALUATION 
In this section, first, we establish the simulation 

environment, and then experimental results are 

presented and discussed. 

 

Simulation Environment 

To evaluate the performance characteristics 

of our proposed garbage collection and wear-

leveling scheme,  and previous schemes as greedy 

policy and dual-pool algorithm [2], we developed a 

simulator and performed trace-driven simulations. 

We have built a simulator with l Gigabyte of flash 

space that is divided into equal size of erase blocks. 

Each block size is 16 kilobytes and every block is 

composed of 32 pages as read/write unit. Every page 

size is 512 bytes. We use 15µs for a page read, 

200µs for a page write, and 2ms for a block erase 

from  product. 

We use five data traces in this experiment, 

see Table 1. These traces have been obtained from 

the author of [11]. Traces A, B and C are generated 

from digital cameras and thus contain both small 

random inputs and frequent large sequential inputs. 

Traces D and E contains many random inputs and 

infrequent large sequential inputs. As the flash 

memory is being used as the storage media for more 

general computer systems including laptop 

computers [10], we believe that these traces are 

complex enough to show the characteristics of our 

proposed scheme. 

 

Table 1. Traces used for simulation. 

Trace Workload 

Description 

Number of 

Inputs 

A Digital camera (A 

company) 

4,618 

B Digital camera (B 

company) 

5,111 

C Digital camera (C 

company) 

69,576 

D Linux O/S 18,900 

E Symbian O/S 4,049 

 

 

 

For each given trace, simulator counts the 

numbers of reads, writes and erases operations, and 

calculates the number of consumed blocks and size 

of device utilization, and also determines degree of 

worn by total number of allowed erase cycles per 

physical block. To prove the enhancement of our 

idea for large size of systems, we execute every 

trace file for large number of times. Finally, we 

provide the results of every  execution till 10,000 

times. 

We have discussed in section 3.4 that 

garbage collection triggers on data blocks when the 

number of free blocks crosses a threshold N. For our 

experiment, we completely fill flash memory for 

effective media utilization. Thus, we always keep 

only one free block for reliable cleaning process. In 

order to achieve wear- leveling, the user-

configurable parameter TH is discussed in section 

3.5. For our simulator, we consider TH as an 

average erase count value from hot data blocks pool 

for both the scheme and dual-pool schemes. 

 

Simulation Results 

This section describes the experimental 

results. Here, we analysis and compare our scheme 

with the previous schemes [2]. To have fair 

evaluation, all three schemes are simulated in same 

environment. Our results are presented from Figures 

3 to 7, where X-axis denotes the traces symbols, as 

described in Table 1, and Y-axis denotes the number 

of blocks occupied, flash space consumption, 

number of erase and average erase operations 

preformed due to cleaning policies, and overhead 

ratio due to wear-leveling schemes, respectively. 

Figure 3 presents the results of number of used 

blocks for all five given traces, where, every trace 

file executed 10 times. Simulation performed when 

flash memory was completely free. The repetition of 

traces results that greedy policy returns in large 

number of memory blocks consumption than our 

proposed scheme. We believe that space 

consumption is highly depends on storage 

management policy. The major impact of high 

performance of our proposed scheme relates to the 

use of limited number of log blocks. Therefore, 

greedy policy does not use log blocks and applies 

sequential distribution of data. 
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Figure 3. Number of blocks occupied when traces 

execute 10 times. 

 

Figure 4 shows the results of flash media 

consumption in Mega-Bytes (MBs), while executed 

all five traces for 100 times. Our proposed scheme 

outperforms greedy policy for efficiently utilization 

of media bandwidth because of our effective data 

management technique. We specially consider data 

by its nature, and allocate memory by intellectual 

understanding of diverse data access patterns. 

Hence, greedy policy does not consider the write 

access patterns, and every time the repetition of 

traces and cleaning process, mix-up the hot and cold 

data. That result in high erase operations and more 

consumption of media bandwidth. 

Figure 5 shows the results of number of 

erase operations performed in the unit of thousand, 

when all five traces executed for 5000 times. In our 

experiment, no erase operation performed for our 

scheme till the execution of traces for 1000 times, 

where only trace-A starts to experience small 

number of erase operations. But, by greedy policy, 

memory started to worn with the execution of the 

traces for 25 times for trace-C. 

 

 
Figure 4. Media consumption in MBs when traces 

execute 100 times. 

 

Results in Figure 5 clearly show that very 

low number of erase operations attempted by our 

scheme compare to greedy policy. Even though, 

trace-A and trace-E have smaller number of inputs 

compare to trace-C but they experience more 

erasures than other traces by our proposed scheme. 

This experiment shows that trace-A and trace-E 

contains hot data, and trace-C carries more read only 

or cold data, and trace- B and trace-D having cold or 

semi hot data. 

For greedy policy, the reason of large 

number of erases is that after a number of cleaning 

operations, cold data becomes mixed with non-cold 

or hot data, under high localities of access. After 

that time, cold data moves around uselessly together 

with hot data. For this reason, the utilization of 

cleaned blocks remains stable at a high value and 

the amount of free space collected becomes small 

and cleaning cost increases. 

In Figure 5, it can see that by greedy policy 

trace-C experiences more erase operations than 

other traces because it is having more write inputs 

and more cold data. On other side, by our proposed 

scheme, for same trace-C, there is no erasure at all. 

The major reason of high performance of our 

proposed scheme is found as the usage of separate 

data and log blocks for both natures of hot and cold 

data. The separate space allocation for both types of 

data stops mix-up the hot and cold data and results 

in effective utilization of the media and minimize 

the erasure operations. We found very surprising 

and encouraging results, where trace-C not 

experiences any erase operation even by execution 

of traces for 10,000 times. 

Figure 6 shows the results of number of 

average erase cycles distributed on every block of 

media, when the traces files executed 10,000 times. 

Results clearly show that greedy policy highly 

suffers its performance compare to  scheme, because 

of its sequential uniform distribution of data and its 

first-in-first-out block cleaning strategy. In  

experiment, greedy policy experienced 95% more 

erase cycles than  proposed scheme. 

 

 
Figure 5. Number of erase operations when traces 

execute 5000 times. 
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Figure 6. Number of average erase cycles when 

traces execute 10000 times. 

 

Figure 7 shows the overhead ratio in the 

unit of milliseconds (ms) appeared by scheme and 

dual- pool scheme, when the traces files executed 

10,000 times. The overhead ratio stands for the ratio 

of amount of traffic system experiences due to 

cleaning process as extra writes and erases 

performed for applying wear-leveling policy. We 

calculate cleaning cost by using equation 4. 

Cleaning Cost(vb) =  Numvb (ErC(vb)+ MC vp (vb))

 (4) 
The cleaning cost is combination of fixed 

erasure cost “ErC” and migration cost “MC” of 

number of valid  pages  “vp”   from   number   of   

victim   block “ Numvb ” to new allocated free 

block. Results in Figure 7 clearly show the 

effectiveness of both schemes. We observed that 

dual-pool scheme also performs well and media 

becomes evenly worn like  proposed schem, but 

dual-pool algorithm suffers by the acquired cleaning 

cost and extra computation. We believe that the 

wear-leveling scheme performance highly depends 

on data management policy. However, there is no 

exact definition given for storage management in 

dual-pool algorithm; thus, we simulated both wear-

leveling schemes on same log based data 

management platform of  proposed scheme. 

 
Figure 7. Overhead ratio (ms) when traces execute 

10000 times. 

 

In this experiment, dual-pool algorithm 

experienced 36% more cleaning cost than  proposed 

hybrid wear-leveling policy. Therefore, hybrid 

wear- leveling approach has evenly wear-down all 

blocks with enhanced system performance. Results 

show that applying an intellectual and effective 

endurance management policy associative with 

diverse nature of data reduces the reasonable 

cleaning overhead and increases the device life time. 

 Proposed scheme outperforms greedy 

policy and dual-pool algorithm in all cases. 

However, greedy policy have its own phenomena 

regarding cleaning and it could give better results 

while working together with efficient data 

management policy. 

Proposed scheme is proving as an efficient 

technique of garbage collection and wear-leveling 

for flash devices by giving very encouraging results 

related to erasure attempted even after a large 

number of times traces execution. Results show that  

proposed scheme  performs outstanding to handle 

changing data access patterns with time, and highly 

improves the overall system performance, and 

prolongs system life time. This is the core 

achievement of  proposed research. 

 

V. CONCLUSIONS 
I have presented the data organization and 

endurance management techniques, to improve 

overall system performance, called 

Allocation of Memory Intellectually. 

With proposed new system architecture, scheme 

classifies data according to their write access 

frequencies, in hot and cold data nature, and 

improves the space utilization by allocating 

separate limited number of log blocks to both types 

of data blocks. Scheme enhances the system life 

time by managing the blocks according to their 

degree of worn.  proposed cleaning scheme achieves 

a block to erase with optimal number of space 

utilization and minimum overhead of data 

migration. We proposed a hybrid wear-leveling 

mechanism that is combination of both types of 

wear-leveling approaches, dynamic and static. In 

examining the degree of wear-leveling and 

exploring the effect of flash memory utilization, the 

proposed method is amazingly performed well. 

Performance is evaluated by trace-driven 

simulations to explore in detail the impact of data 

access patterns, consumption of device, victim block 

selection, data redistribution and ratio of erase 

operations performed. We found very surprising and 

encouraging results concerned endurance 

management and significantly very low erasure 

attempts with amazingly evenly wear- down the 

flash space. Flash memory life time is thus 

extended. We improved the overall endurance of 

flash memory with enhanced system performance. 
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