
Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 46 | P a g e

Proof of Storage: A comprehensive framework for Secure

Surveillance Storage using Blockchain

Soujanya Duvvi*, Kondapalli Venkata Ramana**
*(Department of Computer Science and Systems Engineering, AU College of Engineering(A), Andhra

University, Visakhapatnam -03
**(Department of Computer Science and Systems Engineering, AU College of Engineering(A), Andhra

University, Visakhapatnam -03

ABSTRACT
With the increase of security concerns all over the world, there is an enormous amount of surveillance data that

is being produced by various security devices. This enormous information being populated day by day, makes it

a monotonous task for the organization to store as well as to process. Here, distributed environment has a vibrant

impact on storing and analysing the data. But sharing of information between various devices raises concerns
about the security of the information being shared as any foe can intervene and may mislead the surveillance

system by either apprehending or meddling the information. There by we propose a secure blockchain based

model for making the information unassailable. In this context, we save the files in a distributed ledger

technology called IPFS (Inter Planetary File System). IPFS uses encryption for storing data in the form of a

merkle tree. Our proposed model includes various strategies and conservation mechanisms, certificate

ascendancies, authentication and overturning of certificates to access the stored data, by using various smart

contracts.

Keywords - IPFS, Blockchain, Cryptography, Surveillance, Smart Contract.

Date of Submission: 15-12-2020 Date of Acceptance: 30-12-2020

I. INTRODUCTION
Over the last few years, the procedure of

safe guarding the information from illegitimate users

to restrict the unauthorized access to valuable data.

In this digital world the growth of information is

very drastic. Thus, making personal, critical and
sensitive information more prone to vulnerabilities,

thereby increasing the chances for manipulation or

misuse of information. The main source of such

information comes from centralized surveillance

systems which exist in every place. These

centralized systems provide better bureaucracy, but

flinches down in offering pliable, assured,

computationally competent method of processing

critical information.

Blockchain is a distributed ledger

technology working towards the decentralization of

information stored in it. The storage and
organization of data is perceived of by Inter

Planetary File System (IPFS) [1]. The problems in

centralization are overcome, together by blockchain

and IPFS. A smart contract which digitally validates

and imposes safekeeping of stored information binds

the user for registration and authorization.

 In this paper we addressed about
the decentralized storing strategies that are unified

with blockchain and certificate ascendancy.

Authentication of user credentials is taken care of by

the smart contract as an initial and mandatory step.

The certificate ascendancy is entrenched with the

planned system to observe the behavioral pattern of

various users using the system by carrying out

various operations like Policy substantiation, issuing

of certificates, creation and cancellation of

certificates, maintaining enrolment authority and

substantiation of services.

II. RELATED WORK
M. N. Asghar et. al [3] proposed a model

and give solution for visual surveillance data

protection based on General Data Protection

Regulations (GDPR). In the context of GDPR, the

roles of machine learning, image processing,

cryptography and blockchain are explored as a way

of deploying Data protection by design solution for
visual solution data. Nikouei et. al [4] suggested a

blockchain enabled scheme to protect the big data

generated by numerous surveillance devices, where

the data is indexed by encrypting the path between

the nodes, thereby reducing the attacks on the small

edges and devices. Wong et. al [5] implemented a

RESEARCH ARTICLE OPEN ACCESS

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 47 | P a g e

new video surveillance system with permissioned

blockchain, IPFS, CNNs and edge computing to

achieve large scale wireless sensor information

acquisition and data processing.

Nagothu et. al [6] developed microservice -

enabled architecture for smart surveillance system in

which the video analysis algorithms are encapsulated

into each microservice. Kerr et. al. [7] demonstrates
the participation of prototype camera for secured

distributed ledger of video streaming. This scheme

combines blockchain and digital watermarking for

providing trustworthy evidence protection in

distributed environments. Jeong et. al [8] created a

blockchain network where internal managers play

the trusted role. The metadata of the video is

recorded in the distributed ledger of blockchain and

that further generates a license of the videos. The

license stored in the private database of the

blockchain restricted to access others. However,
internal managers can export the videos by exporting

the license.

III. PRELIMINARIES
In this section we present the related

knowledge and background for better understanding

of our proposed system.

3.1. ETHEREUM: Blockchain is “an open,
distributed ledger that can record transactions

between two parties efficiently and in a verifiable

and permanent way”.[7] This is a peer-to-peer

network of decentralized systems where each and

every node hold the replica of the original data in a

chained manner. The size of the chain keeps on

increasing as more blocks are attached to it. Each

block has its own unique id called the hash pointer

which identifies the block uniquely. The initial block

is called the genesis block. Any operation performed

in the network is stored in the blockchain in the form

of transactions. These transactions are stored in the
form of cryptographically hashed values. The

cryptography function employed in the blockchain is

a one-way hash function which prevents the data in

the blockchain from being tampered, as the blocks

are all arranged in a tree structure called merkle tree

and any changes made to the data will collapse the

entire tree and it has to be built again.

3.2. ETHEREUM: Ethereum is an open source,

public, blockchain-based distributed computing

platform and operating system featuring smart

contract functionality.[8] It provides users with
various types of accounts to perform the operations

on the blockchain. Any operation performed in

Ethereum is calculated in terms gas units. Gas can be

purchased using ether which is cryptocurrency used

in Ethereum or can be mined by the miner.

Whenever any transaction is triggered by the user

the transaction cost can be calculated as sum of

execution cost and execution cost.

PoT = (EC + T C) ∗ P (1)

Where PoT is the price of a transaction, EC is the

Execution cost, TC is the Transaction cost and P is
the price of 1 gas unit.

3.3. IPFS: IPFS is protocol and also a network

designed to create a content addressable, peer to peer

method of storing and sharing hypermedia in a

distributed file system [3]. This works on the content

it stores in the network. Identifiers are generated

depending on the content in the file i.e., a document,

audio, image, video or any other kind of information

that is stored in it. These identifiers are arranged in

the form of a merkle dag. IPFS as a network model

uses PKI based identity. An IPFS Node is a program

that can find, publish, and replicate merkledag
objects. Its identity is defined by a private key.

KeyGen → PUKey, PRKey (2)

NodeId = MultiHash(PUKey) (3)

All hashes in IPFS are encoded with multihash, a

self-describing hash format. All IPFS nodes support

sha2-256, sha-512, sha3 algorithms. The generated

hash values should be deterministic, uncorrelated,

unique and one-way. The main functionality of IPFS

depends on the Content Identifiers which possess the

following structure <cidv1>::=<multibase-

prefix><cid-version><multicode-content-type>
<multihash-content-address> where <multibase-

prefix> is a code (1 or 2 bytes), to ease encoding

CIDs into various blocks. <cid-version> is a varint

representing the version of CID for upgradability.

<multicode-contenttype> is used to represent the

content type or format of the data being addressed.

<multihash-content-address> represents the

cryptographic hash of the content being addressed in

the format base58(<varint hash function

code><varint digest size in bytes ><hash function

output>).

3.4. SMART CONTRACT: A smart contract is
computer protocol intended to digitally facilitate,

verify, or enforce the negotiation or performance of

a contract. Smart contracts permit trusted

transactions and agreements to be carried out among

disparate, anonymous parties without the need for a

central authority, legal system, or external

enforcement mechanism. They render transactions

which are traceable, transparent, and irreversible.

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 48 | P a g e

IV. SMART CONTRACT FOR SECURE

SURVEILLANCE STORAGE MODEL
Our model consists of Grilling Team (GT),

Enrolment Authority (EA), Certificate Ascendancy

(CA) modules. The primary role of GT is to collect

all the source files, validate them from all sources.

EA’s responsibility is to authenticate all the files

sent by GT and to store them securely. The role of

CA is to administer Issuing Authority (IA),

Receiving Authority (RA) and Unbiased Observer

Group. The CA is also responsible for maintaining

IPFS and governing the flow of information in and

out from a blockchain. The operations performed on

the proposed model are shown in figure 1 and

explained as follows:

 The Grilling Team (GT) collects all the

evidences from various sources.

 GT sends source files and UserId to GnuPG.

 GnuPG generates session key and individual

key pair for the user.

 Performs encryption on message using the keys

generated in step 3

 Adds digital signature to encrypted message.

 Sends back the message generated in 5 and

public keys to GT.

 The Chief Investigator (CI) sends his unique

credentials to Enrolment Authority (EA) for

validation.

 EA authenticates the credentials of CI and

communicates back the same to GT.

 CI sends the received digitally signed encrypted

documents to EA.

 The EA verifies the validity of the document

hash.

 Upon verifying the document hash EA sends

these files to IPFS.

 EA updates the transactions to blockchain.

 IPFS encodes the received files, thereby

generating a MerkleDag for each file.

 If the document is found valid, then it will be

added to virtual file system.

 The CEI places a request to IA to register

themselves with the system to issue certificates.

 Upon validating the request, the IA

accepts/rejects the request.

 The CErtificate Issuer (CEI) places a request to

the Issuing Authority (IA) for registering their

certificates.

 The IA sends the files and user details to
GnuPG.

 GnuPG generates unique key pairs and session

keys.

 Performs encryption on source files using the

generated keys in 19.

 GnuPG sends back the required digital signed

files and keys to IA.

 The IA sends these files to CA for further

processing.

 CA checks if these files are already existing in
IPFS and also for their validity.

 CA stores the files to IPFS, if they are not

present already.

 CA updates the transaction status to blockchain.

 Recipients register themselves with EA to

receive certificates.

 Upon verifying the details, the EA conveys

them back.

 Recipients place request to EA for various

certificates.

 EA requests CA to issue the requested
certificates.

 CA checks with repository. If requested files are

available, they will be issued otherwise convey

a failure message to EA.

 CA updates the transaction statuses to

blockchain.

 Anyone belonging to Unbiased Observer Group

wishing to verify the recipient's address, places

a request to CA.

 CA upon verifying and validating the

credentials provides them the requested details.

FIGURE 1: Secure Surveillance Storage Architecture

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 49 | P a g e

4.1. GNU PRIVACY GUARD: This OpenPGP

standard is defined by RFC4880 (PGP). This is an

encryption algorithm used to encrypt the data and

communications. GnuPG algorithm also possess a

versatile key management system which is mainly

used in our model. It generates a unique key pair

(public and private key) differently for every user,

also depending on the input file. The operations of

GnuPG can be visualized as in figure 2 and

explained as follows:

FIGURE 2: GNUPG Architecture

 GT sends the required files and user id to hybrid

encryption software.

 HES generates a session key for the

corresponding user.

 HES also generates unique key pair for the
user in communication with HES.

 Using the keys generated in steps 2, 3

HES encrypts the message.

 Digital Signature and encrypted text file

are sent to HES.

 Digital Signature will be applied on the

encrypted text file.

 HES sends the digitally signed encrypted

file along with the public key of the user back.

TABLE I: Notations used in algorithms

Uid User id value

CTx Cipher Text

SC Encrypted session key

Pukey Public key

CID Content Identifier

BLOB Binary Large Object

Fid Unique identity of source file

CHash Secure hash value of certificate

Saddr Sender Address

Useraddr User Address

Pid Peer id

Raddr Recipient Address

Iaddr Issuer address

CHashIssuer Secure Hash of Certificate Issuer

Hx Secure hash of source file

Rid Recipient Address

Cid Unique Certificate Identifier

Algorithm 1: GnuPG Algorithm

Input: Source files, UserId Uid

Output: Digitally signed encrypted files, Pair of

keys

1. Begin

2. UserDetails ← fetch userDetails (name, email,

security code)

3. SessionKeys[] ← Generate SessionKey (userId)

4. if userDetails exist in registeredUsers[] then

5. dig_Signature ← fetch digitalSignature

(User)
6. keypair[] ← Generate Individual KeyPair

(User)

7. else

8. Display “User not registered”

9. End if

10. if keypair[] isNotNull then

11. recipient_Keys[] ← Generate KeyPair

(UserDetails)

12. CTx ← Encrypt(files, Uid)

13. SC ← Encrypt(SessionKey, PuKey)

14. else
15. display “Session expired!!”

16. End if

17. End

4.2. IPFS

This module receives input files from Enrolment

Authority and Certificate Ascendancy. A hash

operation is performed on the received input files

using a one-way hash function. These files are

further encoded and divided into blocks whose size

is not more than 256kb. The generated blocks are

linked in a merkle dag fashion. Upon receiving
requests from Enrolment Authority and Certificate

Ascendancy IPFS searches the repository. IF it

finds an exact match of the files, the hash value of

the file is fetched and send to the corresponding

authority else displays an error message.

Algorithm 2: IPFS working Algorithm

Input: Source files

Output: Merkle dag of source files.

1. Begin

2. BLOB F[] ← fetch source file from user
3. CID[] ← ContentIdentifier(F)

4. while (Size _Of _Block !> 256kb) do

5. CID[] ← ContentIdentifier(F)

6. GenBlocks[] ← MakeBlocks(F)

7. IdValue[] ← hash(GenBlocks)

8. HashCode[] ← sha256(GenBlocks)

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 50 | P a g e

9. Concat(SizeOFHAshFunction DigestSize)

to IdValue[]

10. CID[] ← base58(IdValue)

11. Generate MerkleDag

12. End while

13. End

The core modules are implemented using two smart
contracts whose functionalities are discussed

below.

4.3. ENROLLMENT AUTHORITY

This authority is responsible for all the operations

related with files – Registering a source file,

Retrieving the files, Retrieving the hash values and

the Peers working on the file or who are associated

with it.

 File Registration: The inputs accepted by

this module are the category of file, secure hash of

the file retrieved from GnuPG module and id of the
author who is storing the file into the repository.

Algorithm 3: File Registration

Input: Input File details

Output: Secure hash generated by IPFS

1. Begin

2. userDetails ← fetch userID

3. SenderDetails ← fetch SenderID

4. DocumentDetails[] ← fetch docdetails from

user(DocumentType, DocumentID,

UserAddress)

5. If UserDetails.exists == true then

6. If UserID.isOwner == true then
7. addDetails()

8. addSourceFile(DocumentDetails[])

9. Increment File Count

10. Else

11. Display(“Only owner can store

 files”)

12. Else

13. Display(“User not Enrolled”)

14. End

 Retrieving Registered Files: This function
enables the users to fetch the files that are

registered and stored in the repository. It takes in

the unique identification of the file that was

generated during the addition of file to repository

and fetches the file for the user.

Algorithm 4: Algorithm for fetching registered file

details

Input: Unique Identity of the Source file,

Output: Details_of_Source (Type,

UniqueId, SecureHash)

1. Begin

2. User_Addr ←fetch User_Address()
3. If(user ∈ Registered_Users) then

4. Fetch_Details_of_file()

5. Else

6. Display(“Not a registered user”)

7. End

 Fetching Hash value of Registered File:
This module accepts the unique identification value

of the registered file and fetches the hash value of

the corresponding document stored in the

repository. This hash value can further be

communicated among other peers or authorities

wishing to verify the details in the source file.

Algorithm 5: Algorithm for Retrieving Evidence

 Hash

Input: Unique Identity of the Evidence file, Fid

Output: Secure hash of the document in

IPFS,

1. Begin

2. Fid ← fetch_unique_Id()

3. userAddr ← fetch_user_addr()

4. if(userAddr ∈ Valid_Registered_Users)

then

5. if(Uid ∈ Valid_Registered_

 Evidence_Id) then

6. Fetch_Details_of_

 file_from_IPFS()

7. else

8. Display(“Invalid ID”)
9. else

10. Display(“Not an authorised user”)

11. End

 Fetching Peer details: By giving this

algorithm the unique identity value of the file, it

will verify the document details and fetches the

author of the file. This value can further be

validated as to - if he is a valid permission to be an

author, authenticated person from the team,

intruder etc.

Algorithm 6: Algorithm for Retrieving Peer ID

Input: Unique Identity of the Evidence file,

Output: Evidence Owner’s ID

1. Begin
2. Fid ← fetch_unique_Document_Id()

3. userAddr ← fetch_user_addr()

4. if(Fid .exists == true) then

5. Fetch_owner()

6. else

7. Display(“Invalid Document Id”)

8. End

4.4. CERTIFICATE ASCENDANCY

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 51 | P a g e

This authority deals with the certificates – Fetching

certificates from various Issuing authorities, storing

them securely, assigning certificates to various

Receiving authorities, Maintaining details of

Issuers, Recipients and unbiased observer group.

 Certificate Registration: The responsibility

of this function is to register a certificate for issuing

it to various other recipients on request. This

function receives secure hash value of the

certificate which is generated in enrolment module

as input.

Algorithm 7: Algorithm for Registering Certificate

Input: Secure hash value of the certificate, CH

Output: Unique Certificate id

1. Begin

2. userDetails ← fetch userID
3. SenderDetails ← fetch SenderID

4. DocumentHash ← fetch unique document

Hash value

5. if UserDetails.exists == true then

6. if UserID.isIssuer == true then

7. Convert the received

 document into required

 evidence format

8. Update

 Issuer_of_Certificate

 [sku] to sender address
9. else

10. Display(“Issuer not

 registered to register

certificate”)

11. else

12. Display “Register user for the

requested hash code”

13. CertificateRegistered(SenderDetails, CH)

14. End

 Issuer Enrolment: The responsibility of

this module is to register the issuers for issuing
various certificates to the other participating

recipients. By enrolling the issuer security will be

provided to the system as no intruder can directly

fetch or store information into it.

Algorithm 8: Algorithm for Enrolling an issuer

Input: Unique Identity of the Evidence file, Fid

Output: Enrolment status

1. Begin

2. UserAddr ← fetch User Address

3. SAddr ← fetch sender Address

4. Fid ← fetch Document ID

5. if (SAddr.isIssuer==false) then

6. Display “Issuer already registered”

7. else

8. Source_details= Fetch_evidence_

 details()

9. IPFSHash ← fetch

SecureHash(sku)
10. Add IPFSHash to issuers list

11. Change the status of SAddr to

 issuer

12. Issuer_Registered(SAddr,

IPFSHash)

13. End

 Recipient Enrolment: To interact with the

system any participant has to register himself as to

authenticate his candidature and to avoid any

security breaches with the information stored in the

system. Unique ID values will be provided for all
the recipients who are enrolled with the system,

through which they can interact with this system.

Algorithm 9: Algorithm for Enrolling Recipient

Input: Secure Hash code of Peer, Pid

Output: Registration ID

1. Begin

2. UserAddr ← fetch User Address

3. RAddr ← fetch Recipient Address

4. If (RAddr.isRecipient==false) then

5. Display(“Recipient already
registered”)

6. Else

7. Add IPFSHash to Recipients list

8. Change the status of RAddr to

Recipient

9. RecipientRegistered(RAddr,

IPFSHash)

10. End

 Furnish Certificates: Furnishing of

certificates is taken care of by the Certificate
Ascendancy. Recipients place their request to the

Recipient Authority which will be further

processed to the Certificate Ascendancy. This

Certificate Ascendancy communicates with the

IPFS repository to find the requested certificates.

The CA transfers the required documents if a match

occurs else sends the same information for issuing

authority about the required certificates.

Algorithm 10: Algorithm for Furnishing Certificate

Input: Recipient Address , Certificate Hash

, Issuer Address

Output: Status of certificate as transferred from

Issuer to Recipient

1. Begin

2. Raddr ← fetch_Recipient_address()

3. Iaddr ← fetch_Issuer_address()

4. Chash ← fetch_certificate_hash()

5. ChashIssuer ← fetch Issuer_of_certificate()

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 52 | P a g e

6. if(Raddr.alreadyRegistered != true) then

7. Display(“Recipient not registered

to be issued a certificate”)

8. else

9. if(Iaddr.alreadyRegistered != true) then

10. Display(“Issuer not registered to

 register for a certificate”)

11. Cert_Hash ← fetch_Certificates(Iaddr)
12. if (Iaddr == cert_Hash.Iaddr) then

13. Update (Issuer, Recipient,

Certificate, count of Certificates)

14. else

15. Display(“Issuer not registered to

issue this certificate”)

16. Certificate_Issued (CHash, Iaddr, Raddr)

17. End

 Fetching Furnisher of a certificate: This

module fetches the details of the furnisher of the
certificate. This module plays its role when the user

has got his certificate but doesn’t know about who

has furnished it. It takes in secure hash value as the

input and returns all the details of the furnisher.

Algorithm 11: Algorithm for Retrieving Issuer of a

Certificate

Input: Secure Identification hash of the file, Hx

Output: Unique ID of owner of Certificate

1. Begin

2. Hx ← Retrieve Hash value of file

3. if (Hx.isValid and Exists) then
4. Display(Issuer_ID)

5. else

6. Display(“Not a valid hash value”)

7. End

 Fetching the recipient of certificate: This

module helps the authority know about the recent

recipient who has taken that particular certificate.

Algorithm 12: Algorithm for Retrieving the

recipient of a Certificate
 Input: Secure Identification hash of the file, Hx

 Output: List of Recipients using it

1. Begin

2. Uaddr ← fetch_address_of_recipient

3. Chash← fetch(Address_of_certificate)

4. if(Uaddr.alreadyregistered == true) then

5. RDetails ← fetch(Recipient)

6. else

7. Display(“Invalid details”)

8. End

 Fetching all recipients of a certificate:

This module helps the authority about the

recipients who are currently using a particular

certificate. This module is helpful whenever a

certificate has to be revoked or changed the current

users of the certificate will be informed of the

same.

Algorithm 13: Algorithm for Retrieving all the

recipients of a Certificate

Input: Secure Unique hash of the evidence in

IPFS, Fid
Output: List of hashed address registered with that

Certificate T[]

1. Begin

2. Fid ← fetch_Evidence_id()

3. if (Fid.alreadyRegistered == true) then

4. T[] ← fetch(Hx)

5. else

6. Display(“Invalid details”)

7. End

 Fetching all certificates of a recipient:
This function fetches all the certificates which are

being possessed by a recipient.

Algorithm 14: Algorithm for fetching all the

Certificates fetched by a recipient

Input: Recipient Address,

Output: certificates list, c_list[]

1. Begin

2. if (Rid .isAlreadyRegistered == true) then

3. C_list[] ← fetch_SecureHashValues

(Rid)

4. else

5. Display(“Invalid Recipient”)

6. End

 Fetching Unique Certificate Identity:

This module provides all the details of a particular

certificate like the address of certificate, Issuer of
certificate, Recipient of a certificate, Time of issue

of the certificate.

Algorithm 15: Algorithm for fetching all the

details of a Certificate

Input: Certificate Identifier, Cid

Output: Certificate details, c_details[]

1. Begin

2. if(Cid. isRegistered == true) then

3. C_details ← fetch_Certicate_Details

(Cid)

4. else

5. Display(“Invalid Certificate id”)

6. End

 Fetching all certificates of a furnisher:

This function fetches all the certificates which are

being issued by a furnisher.

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 53 | P a g e

Algorithm 16: Algorithm for fetching all the

Certificates being issued by a furnisher

Input: Furnisher Address,

Output: certificates list, c_list[]

1. Begin

2. if(Fid . isRegistered == true) then

3. C_list[] ← fetch_SecureHashValues

(Fid)

4. Else

5. Display(“Invalid Furnisher”)

6. End

 Count of certificates: This function lets the

authorities know the total count of certificates

stored in the system securely.

Algorithm 17: Algorithm for fetching total count

of Certificates

Input: User Address,

Output: certificates count, C_Count

1. Begin

2. if(Uid.isRegistered == true) then
3. C_Count ← fetch(count(

generated_Certificates))

4. Else

5. Display(“Invalid user”)

6. End

Our proposed system consists of five special

functions which directly interact with the

blockchain. These functions send the required

parameters that are to be stored in the blockchain’s

transactions. These special functions are called

events. Events are the logs of all the transactions
done in the blockchain. So, for every function of

the smart contract, we log its details through

events. Our system keeps a track of the following

events:

 Addition of Source Files: This module

keeps a log of all the source files added to the

repository. The details include Document type,

Document Hash and Author Id.

 Register Issuer: This module keeps a log

of details of every registered issuer.

IssuerRegistered(issuerAddress, IPFS_hash)
function stores the values of all Issuers to the

blockchain.

 Register Recipient: This function keeps a

log of the details of every registered recipient.

RecipientRegistered(recipientAddress, IPFS_hash)

function stores the values of all Recipients to

blockchain.

 Register Certificate: This function keeps a

log of the details of every registered certificate.

CertificateRegistered(issuerAddress, IPFS_hash)

function stores the certificate details into the
blockchain.

 Issue Certificate: This function keeps a log

of the details of of every issued certificate.

CertificateIssued(certificateID, issuerAddress,

recipientAddress) function stores the details of

which certificate has been issued by which issuer to

recipient as transactions in blockchain.

V. EXPERIMENTAL EVALUATION
5.1. CASE STUDY

This application is designed for gathering,

validating and storing the most important files-

audio, video which can include CCTV footage,

documents, also images, which are very crucial and

much prone to tampering. To restrict tampering or
morphing of data we propose this new framework

where CCTV footage is linked to blockchain

technology which is tamperproof and authentic. In

this system the restriction is imposed on people

who are going to perform the operations directly on

the system.

Users of this system will be provided with

their own personal credentials (hash keys), upon

validating their details with the system it grants

them permission to use, store or retrieve the

information. These files are stored in IPFS which

is a decentralised file storage platform capable of
handling larger sized files with great efficiency and

less latency by performing multiple hash operations

on the blocks of specified size. The files are

identified by the Content Identifiers which are

result of one-way hash functions. All the operations

that are performed on the data are validated by

multiple smart contracts. The current version of

blockchain as in use is

{"info":{"version":120100,"protocolversion":7001

2,"blocks":592066,"timeoffset":0,"connections":29,

"proxy":"","difficulty":10183488432890,"testnet":f
alse,"relayfee":0.0001,"errors":"Warning: unknown

new rules activated (versionbit

1)","network":"livenet"}}

 PERFORMANCE TEST:

We implemented a prototype of the

proposed system to study the performance and also

to check the attainment of security levels. The

prototype is implemented using- node of version

12.7.0, npm of version 6.11.2, go-ethereum as the

platform for blockchain and IPFS version v0.4.13.

The Solidity Framework and IDE for deploying

smart contracts – Truffle is of version v5.0.30,
ganache-cli v6.7.0-beta.0 and the scripting

language used to write the contracts – solidity is of

version v12.7.0. The handling of requests between

Ethereum nodes is maintained by web3js is of

version v^1.2.0.

We deployed the blockchain node is four

machines, and each possess a 2.30GHz core Intel

processor with 8 GB primary memory. Some nodes

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 54 | P a g e

were deployed in various environments like-

ubuntu 16 OS, Windows 10. All the machines

deployed the storage system for handling all kinds

of files possible in the project. The complexity of

this experiment is calculated in terms of gas as

deploying or execution of a smart contract is done

with it. This can also be called as space complexity

of the algorithm. Table II shows the amount of cost
incurred for each operation that is being performed

in the experiment. The metrics used is Gwei – one

of the values in cryptocurrencies where 1 ether =

1018 wei and 1 ether = 109 Gwei. When this

experiment was tested the gas price was set to

5gwei which is equivalent to 5000000000 wei and

0.000000005 ether. Total cost = number of units

of gas consumed * Cost of each unit of gas.

TABLE II: Cost Incurred For The Operations In The Framework

S.

No.

Operation being

performed

Number of units of gas

consumed
Cost Incurred

Total Cost

(in GWei)

Total

Cost (in

USD)
Transaction

(in gas)

Execution(in

gas)

Transaction

(in GWei)

Execution(in

GWei)

1.

Source file

details Contract

deployment

852719 607219 4263595 3036095 7299690 1.298

2.
Adding Source

file
194209 164937 971045 824685 1795730 0.319

3.
Fetching Source

file Details
22537 1137 112685 5685 118370 0.021

4.
Retrieving

Document Hash
23444 2044 117220 10220 127440 0.023

5.
Retrieving Peer

ID
23422 2022 117110 10110 127220 0.023

6.

Deploying

Certificate

Authority

2840335 2110995 14201675 10554975 24756650 4.403

7.
Registering

Issuer
707802 686402 3539010 3432010 6971020 1.24

8.
Registering

certificate
48888 24032 244440 120160 364600 0.065

9.
Registering

recipient
109613 84757 548065 423785 971850 0.173

10.
Issuing

Certificate
293937 267673 1469685 1338365 2808050 0.499

11.
Certificate

Count
21754 482 108770 2410 111180 0.02

12.

Retrieving all

recipients of a

Certificate

27002 2146 135010 10730 145740 0.026

13.
Retrieving

Certificate Id
24647 3183 123235 15915 139150 0.025

14.

Get Count of all

the Certificates

of Issuer

24182 1502 120910 7510 128420 0.023

15.
Retrieving ID of

Certificate Issuer
25961 1105 129805 5525 135330 0.024

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 55 | P a g e

16.

Retrieving the

recipient of a

Certificate

24728 2048 123640 10240 133880 0.024

17.

Get Count of

Certificates

Recipient

possess

24248 1568 121240 7840 129080 0.023

18.
Retrieve owner

details
21868 596 109340 2980 112320 0.02

For the operations performed in rows

3,4,5,11,12,13,14,15,16,17,18 the cost applies only

when it is called by a contract. Hence the total cost

for executing this framework is 7.997 USD.

 SECURITY AND PRIVACY

ANALYSIS

By combing BlockChain technology with IPFS and

validating them with smart contracts the following

advantages will be obtained over the traditional

centralized surveillance and storage system. Here

we discuss the other advantages of the proposed

system.

o CONTROL OF DATA

In the initial phase of this system

the recipients share their public key to the

issuer, for encrypting and sending these

files for further validation and storage.

The registration authority after validating

sends it to IPFS. Upon receiving a file

IPFS will save the file as shown in Fig 3.

FIGURE 3: CID Representation of Input File

The merkle tree can be represented as

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 56 | P a g e

FIGURE 4: Merkle Tree Representation of Input
File

Further upon receiving requests from

issuer, receiver or third party the certificate

authority is responsible for managing the flow of

data between them.

o SINGLE POINT OF FAILURE

By converting the existing centralised

system to a decentralized system and combing it

with blockchain and IPFS technologies, there no

more exists single point of failure in the entire
system as both the technologies are designed in a

decentralized tamper-proof way. In the blockchain

data is stored in a redundant way available with

every node which is part of that network. Any

modification done to any block can be made out as

the remaining nodes contains the original data and

by changing information in a single block makes

the user to generate the entire merkle tree again.

The IPFS works in a peer-to-peer manner with the

help of distributed hash

table routing technology to maintain a high throughput.

o SECURITY AND PRIVACY

Storing information in blockchain and IPFS gives

the user’s data utmost privacy as the chunks of the

files are hashed and then stored in a decentralized

way. The node that stores the files is also unaware

as to where the file has been stored and to search

for the information that he has stored. Security is

provided to the information with the help of unique

address that are generated to every user. The

unique peerid in IPFS restricts all the users to
access every file. Intended users of the file has to

register with the system well before to utilize. The

oneway hash function is used to encrypt the data

that has to be stored in the blockchain. Though a

non-intended user gets to know of the hashed

information he cannot decode it as it requires

private key which is unknown to him and reverse

hashing is not possible. All these restrictions and

permissions are all govered by the smart contracts

Registration Authority and Certificate Authority

which work as follows.

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications
www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 57 | P a g e

FIGURE 5: Secure Surveillance Storage Model
Interaction Diagram

VI. CONCLUSION
Our Secure Surveillance Storage model

proposes a way to provide security for the

surveillance data with the blockchain technology.

Also, with the implementation of various protocols

high level security is provided to the information

stored in it. All the operations and permission
management are automated by smart contracts. By

combining our work with various machine learning

algorithms and neural networks, for performing

operations like event tracking, object detection,

Segmentations etc.

REFERENCES
[1]. Benet,J.: IPFS-Content Addressed,

Versioned, P2P File System Retrieved from

https://github.com/ipfs/papers/raw/master/ipf

s-cap2pfs/ipfs-p2p-file-system.pdf

[2]. G. Wood: Ethereum: A secure decentralised

generalised transaction ledger. In: Ethereum

Project Yellow Paper, 2014, vol. 151

[3]. M. N. Asghar and N. Kanwal and B. Lee and
M. Fleury and M. Herbst and Y. Qiao:

Visual Surveillance Within the EU General

Data Protection Regulation: A Technology

Perspective. In: IEEE Access, 2019, vol. 7,

pp. 111709-111726. IEEE,

https://doi.org/0.1109/ACCESS.2019.29342

26

[4]. S. Y. Nikouei and R. Xu and D. Nagothu

and Y. Chen and A. Aved and E. Blasch:

Real-Time Index Authentication for Event-

Oriented Surveillance Video Query using

Blockchain. In: IEEE International Smart
Cities Conference (ISC2) 2018, IEEE, pp. 1–

8.

https://doi.org/10.1109/ISC2.2018.8656668

[5]. R. Wang and W. Tsai and J. He and C. Liu

and Q. Li and E. Deng: A Video

Surveillance System Based on Permissioned

Blockchains and Edge Computing. In: IEEE

International Conference on Big Data and

Smart Computing (BigComp) 2019, IEEE,

pp. 1–6.

https://doi.org/10.1109/BIGCOMP.2019.867
9354

Soujanya Duvvi, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-IV) December 2020, pp. 46-58

www.ijera.com DOI: 10.9790/9622-1012044658 58 | P a g e

[6]. D. Nagothu and R. Xu and S. Y. Nikouei

and Y. Chen: A Microserviceenabled

Architecture for Smart Surveillance using

Blockchain Technology. In: IEEE

International Smart Cities Conference

(ISC2) 2018, IEEE, pp. 1–4.

https://doi.org/10.1109/ISC2.2018.8656968

[7]. Michael Kerr, Fengling Han, Ron van
Schyndel : A Blockchain Implementation for

the Cataloguing of CCTV Video Evidence.

In: 15th IEEE International Conference on

Advanced Video and Signal Based

Surveillance (AVSS) 2018, IEEE, pp. 1–6.

https://doi.org/

10.1109/AVSS.2018.8639440

[8]. Y. Jeong and D. Hwang and K. Kim:

Blockchain-Based Management of Video

Surveillance Systems. In: International

Conference on Information Networking
(ICOIN) 2019, IEEE, pp. 465–468.

https://doi.org/10.1109/ICOIN.2019.871812

6

[9]. S. B. H. Youssef, S. Rekhis, N. Boudriga. :

A Blockchain based Secure IoT Solution for

the Dam Surveillance. In: IEEE Wireless

Communications and Networking

Conference (WCNC) 2019, IEEE, pp. 1–6.

https://doi.org/10.1109/WCNC.2019.888547

9

[10]. Iansiti, Marco; Lakhani, Karim R.: The

Truth about Blockchain. Harvard Business
Review. Harvard University, 1–11 (2017)

