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ABSTRACT 
This paper provides a theoretical description as how a targeted buried object is detected using a ground 

penetrating radar. GPR systems work in two different modes (i) monostatic mode, and (ii) bistatic mode. In the 

monostatic mode, the transmitter antenna and receiver antenna of a GPR are collocated. In the case of bistatic 
mode, the transmitter antenna and the receiver antenna are kept separately but with a fixed distance between 

them. By moving, for instance, a monostatic GPR antenna system along a preselected line over the ground 

surface, which is called B-scan, one can obtain a two-dimensional reflection profile called radargram. At every 

position of the GPR antenna on the ground, an echo is obtained. Signals emitted by a GPR antenna spread in the 

form of a fan while scanning. The radiated signal ray broadens when it passes through the ground’s subsurface. 

Due to this, a buried object would be visible in the radar console before and after moving over the object. That is 

why a point-shaped buried object will show up as an inverted hyperbola on the received image data. 

Mathematical description of various kinds of GPR related activities are briefly presented in this paper. 
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I. INTRODUCTION 
While radar systems work in a free-space 

environment, GPRs work in media that exhibit 

electromagnetic properties, which are frequency-

dependent. So, the reflected electromagnetic energy 

shows dispersive effects. Radar systems are used to 

detect targets at ranges of hundreds of kilometers, 

but in the case of GPR, targets at ranges of some 

meters only are detected because of limitation in the 

transmitted power and attenuation of the reflected 
signal. Moreover, resolution of GPR is very much 

limited to centimetres or metres (based on the active 

frequencies, which are smaller when compared to 

those used in tactical radar systems). In any case, 
one has to employ frequencies ranging from tens of 

MHz to some GHz in order to achieve good spatial 

resolution of the reflected data. Different GPR 

configurations are used in land surveys and their 

choice is made based on different applications like 

(i) the type of exploration to be made, (ii) the type 

of targets to be detected, and (iii) the extent of 

region to be explored. For example, the region to be 

explored is studied initially by an aerial survey. Fig. 

1 shows the image of an area obtained using a drone 

camera. 

 

 

Fig. 1: Image of an area to be prospected 
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GPR Configurations for Data Collection and 

Measurement 

GPR systems work in two different modes 

(i) monostatic mode, and (ii) bistatic mode. In the 

monostatic mode, the transmitter antenna and 

receiver antenna of a GPR are collocated. Fig. 2 

shows a monostatic mode GPR architecture. In the 

case of bistatic mode, the transmitter antenna and 
the receiver antenna are kept separately but with a 

fixed distance between them. While moving the 

GPR along a predetermined survey line (profile), the 

distance between these antennas is kept unchanged. 

Let us consider the monostatic mode GPR to be 

used for prospecting a land of interest. By moving, 

for instance, a monostatic GPR antenna system 

along a preselected line over the ground surface, 

which is called B-scan, one can obtain a two-

dimensional reflection profile called radargram. At 

every position of the GPR antenna on the ground, an 
echo is obtained. Signals emitted by a GPR 

antenna spread in the form of a fan while scanning. 

 

  

Monostatic GPR Architecture Bistatic GPR Architecture 

Fig. 2: Monostatic  and Bistatic GPR Architectures 

 

The radiated signal ray broadens when it 

passes through the ground’s subsurface. Due to this, a 

buried object would be visible in the radar console 

before and after moving over the object. That is why 

a point-shaped buried object will show up as an 

inverted hyperbola on the received image data. Fig. 3 

shows this phenomenon. 

 

  

Fig. 3: Radargram slice of a scanned object and a hypothetical description of the radar response of a point-

object 

 

When the GPR antenna is kept directly 

over a target, the signal echo will be at the highest 

point of the inverted hyperbola on the data. Such a 

2D radargram provides an approximate information 

about the presence and location of the target. But the 

actual shape of the target would be blurred due to 

propagation and scattering of the electromagnetic 

wave in the soil. Let us consider a point-object, 

which is size wise small in terms of wavelength of 

the transmitted electromagnetic power. The 

reflected echo signals on moving the transmitter 

antenna along the predetermined profile yield a 2D 
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radargram image containing an inverted hyperbola 

corresponding to the point object. Let the position of 

the TX/RX system along the measurement line be 

x and (0,d) be the position of the point-object. Then, 

the two-way travel-time is calculated using the 

equation 

 
where v is the velocity of the electromagnetic wave 

in the soil. Now, the recorded image data shows an 

inverted hyperbola with a vertical axis and the apex 

at (0, 2d/v). The shape of the inverted hyperbola 

depends on (i) the electromagnetic properties of the 

medium that decides the velocity, (ii) the GPR 
configuration, which is either monostatic or bistatic, 

and (iii) the depth of the point object which is the 

scatterer. 

 

2. GPR subsurface imaging 

The aim of GPR based subsurface imaging 

is to obtain radargram images for subsurface truth 

evaluation, that is, to obtain a visual knowledge 

representation of the scene below the ground 

surface. There are many requirements of subsurface 

imaging using a GPR. The basic requirement is to 

detect a buried object by its scattered signals. Next 

requirement is to evaluate the physical size of the 

buried object. Yet another requirement is to study 

the subsurface scene with the help of various 

scatterers. In any case, subsurface imaging is a case 

of inverse scattering of microwave frequencies 

wherein the scatterers are reconstructed as a spatial 

map of the dielectric nature of various elements 

below the ground. This amounts to saying that 
subsurface imaging is a nonlinear problem for which 

one has to device a procedure that is optimistic for a 

particular requirement. Many nonlinear imaging 

schemes have been developed till date; yet all such 

techniques pose the common problem of 

‘reliability’. Moreover, subsurface imaging deals 

with image data of very large size and thus a very 

large database has to be processed within given 

amount of time. This calls for development of fast 

and robust imaging algorithms with a high degree of 

reliability. Fig. 4 shows a 2D radargram of size 
256×256 obtained using a GPR. This radargram is 

also called Vertical Seismic Profile (VSP). Fig. 4 

shows a radargram obtained by B-scan, that is, 

moving a GPR antenna from a given position to 

another along a predetermined profile line. 

 

   

Sample vertical seismic profile 
Four VSPs obtained by a GPR  

moved over four profile lines 

3D image reconstructed  

using 81 VSPs 

Fig. 4: A 2D radargram of size 256×256 obtained using a GPR and a se of 4 VSPs 

 

Fig. 4 also shows a set of four VSPs 

obtained by moving a GPR antenna along four 

parallel profiles and the 3D image by reconstructing 

it from 81 VSPs obtained by moving a GPR antenna 

along 81 parallel profiles. The 3D radargram image 

shown in Fig. 4 is obtained using ‘ray casting’ 

technique, which constructs 3D solid image using 

81 slices (VSPs) obtained using a GPR and displays 

the solid image on a 2D monitor. Notion of ray 
casting is outlined below on need to know basis. 

 

Ray casting technique – Basic principles 

Volume ray casting is an image-ordering 

and volume rendering method. This computes a 2-D 

image from the given 3-D image. A ray is cast for 

each voxel in a 3D image. The color code as well as 

opacities observed in the path of a ray are 

accumulated till the ray exits the volume. The 

accumulated color value is displayed as the 2-D 

image pixel for every voxel in the 3-D image. Fig 

6.9 demonstrates this process pictorially. A 3-D 

image voxel has a value. The purpose of ray casting 

is to project a voxel V in a 3D volume image on to a 
point V’ in 2D plane. All the points that lie in this 

ray overlap at position V’. The opacity αi and the 

color value ci of each point are accumulated and the 

final color or brightness of a point V’ is projected on 
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to the 2D image plane P. This is illustrated in Fig 5.   

 

   

Fig. 5: The process of ray casting 

 

Ray casting allows one to visualize a 3D image on a 

2D monitor. The 3D radargram image shown in Fig. 

6.8 is also visualized using ray casting method. 

 

3. Linear Imaging Algorithms for Buried Object 

Detection 

Just as Magnetic Resonance Imaging 

(MRI) is used for visualizing internal body parts, 

subsurface imaging is employed for detecting and 

localizing elements like oil, underground water, 

minerals, diamonds, precious stones and gems, rare 

earth elements and buried archeological structures. 

But in most cases, detection and localization of 

buried objects is of major concern. This is achieved 

by using imaging algorithms based on scattering 

models which are defined by linear equations. It has 
been found that subsurface imaging algorithms work 

well in the framework of linear models upon which 

they are founded. In this thesis, imaging algorithms 

based on linear models are suggested to be 

employed in practical scenarios. Such algorithms 

fall under two categories: (i) migration 

algorithms and (ii) inverse filtering algorithms. 

Subsurface imaging algorithms are essentially signal 

processing procedures, but most of them address 

primarily the problem of clutter reduction. The echo 

signals of a GPR are not only reflections obtained 
from targeted buried objects but also from 

surrounding soil, stones and other unknown 

elements. Reflected signals from a targeted buried 

object are used for object detection and localization 

whereas reflected clutter signals from unwanted 
surrounding scenario are to be filtered out. 

Maximum clutter arises from the air-soil interface 

and one has to use appropriate clutter noise filtering 

algorithms in order to obtain reasonably good 

radargram images. 

 

3.1 Migration algorithms 

Migration procedures essentially aim at 

reconstructing buried scattering objects surrounded 

by air or soil, using measurements made. A 

mathematical treatise could be developed based on 

wave equation. Let us assume that the antennas for 
transmitting and receiving are located at the surface 

of the ground in a monostatic configuration. In this 

context, the effects due to air-soil interface is 

ignored. This means that a homogeneous 

background scenario is considered with the 

electromagnetic features of the subsurface. Let us 

consider a point-like scatterer located in the object 

space at  and let us denote the 

observation variable for the positions where the 

scattered field is recorded as . 

 

  

Geometry of the subsurface prospecting problem Hypothetical model of A-scan trace 

Fig. 6: Geometry of the subsurface prospecting problem and A-scan trace 

 



T. Kishan Rao, et. al. International Journal of Engineering Research and Applications 

www.ijera.com  
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-III) December 2020, pp. 13-24 

 

 
www.ijera.com                                        DOI: 10.9790/9622-1012031324                         17 | P a g e  

      

 

 

 

With reference to Fig. 6, it is assumed z0 = 

0,  is the 

synthesized measurement aperture. sT(t) is the 
transmitted impulse signal. Then the corresponding 

backscattered field is given by 

 

where v is the soil propagation speed, which is 

assumed to be a constant. Here, the amplitude 

variations due to propagation spreading are ignored. 

Now, the backscattered signal in the x0-t data space 

will appear as a diffraction hyperbola whose apex is 

in (x, 2z/v) which can be translated in the x−z image 
space by exploiting that x = x0 and z = vt/2. The 

hyperbolic output of B-scan is due to the fixed 

directivity of the antennas. The operation of 

migration is for compensating the spreading by re-

focalizing every segment of hyperbola to its apex. In 

order to do this, the travel-time “t” should not be 

translated directly into depth measure, because equal 

travel-times formally imply equal distances, 

whereas the direction of arrival is not used in the 

calculation. Now for each trace of a position (i.e., A-

scan), the scatterer object position should lie 

theoretically on a semicircle centred on the source-
receiver position and whose radius is equal to the 

distance obtained by multiplying the travel-time by 

half the wave-speed in the soil. Based on this 

hypothesis, each x0−t data point is equally 

distributed over a semicircle in the image space, 

such that all the semicircles intersect at . This 

method is called as Wave Interference Migration, 

which is also known as A-scan-driven approach. 
This technique is useful only when Signal to Noise 

Ratio (SNR) is guaranteed and that the surrounding 

scattering scenario is not complex. However, an 

ensemble of point scatterers is considered and thus 

linearity of the scattering model seems to be an 

implicit model. 

 

Alternative method 

‘Diffraction Summation’ is yet another 

technique, which is a pixel-driven approach. In this 

case, the object space is treated as an array of pixels 

and a diffraction hyperbola is constructed for each 
pixel in the image data space. Subsequently, each 

pixel reconstruction is obtained as a sum of all A-

scan traces. This will yield a synthesized hyperbola 

in the image. This is carried out by evaluating the 

summation integral for each pixel defined by (x, z). 

 

Σ is the measurement aperture and T is the time 

interval and R(x,z) is the corresponding migrated 

data. SR(x0,ω) is the Fourier transform of sR(x0,t) and 

exp(−jωt) is the temporal Fourier kernel. Now R(x,z) 

is rewritten as 

 

where Ω is the frequency bandwidth. Now, 

if , then the equation for R(x,z) becomes  

 

where Ωk denotes the frequency band in the k 

domain. In this case, unwanted scalar factor is 

ignored. The above equation establishes equivalence 

between Diffraction Summation and the Range 

Migration Technique. In both the cases, convolution 

in x0 and an integration in k are used. The 

convolution is computed using two-dimensional 

Fourier transform domain as 

 

where Ωkx is the selected frequency band in the 

spectrum kx,  is the 

amplitude (where   is 

neglected),  is the Fourier 

transform with respect to x0 of SR(x0,k) and exp(jkx) 

is the spatial Fourier kernel, where the Fourier 

transform of the exponential term is 

. If one substitutes the frequency wavenumber k by 

the integration in kz, then the Fourier transform is 

rewritten as 

 

The above equation exhibits considerable 

computational advantage since it is evaluated using 

appropriate Fast Fourier Transform (FFT) algorithm 

for every point in the object space. This also 

requires data to be interpolated and re-sampled in a 

rectangular grid in the kx-kz  spatial spectral domain. 

 

Exploding source model 

This is another migration method that 

involves wave equation. In this case, the scattered 
field is viewed as primary radiation from excitation 

source (assumed) rather than as secondary 

reradiation from passive source (actual). Now, the 

scattered field outside the source is a solution of the 

frequency domain based wave equation

 where , and 

SR(x,ω) is the Fourier transform of sR(x,t). Now, one 

obtains the field spatial spectrum as 

, where kz  

is the same wave number as defined previously; but 

with the exception that only the up-travelling waves, 

that is, the wave travelling along the 
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negative z direction is considered. Accordingly, the 

field in the object space is determined by assuming 

boundary condition over the measurement line at z = 

0. Finally, the superimposition along frequency ω is 

obtained as 

 

This is called F-K Migration, which is a 

generalization of the Doppler compression 
technique used in SAR imaging. This technique is 

also referred to as Phase Shift Migration. Phase 

Shift Migration is similar to Summation Diffraction 

technique and it is expressed as a Fourier double 

integral in the spatial/spectral domain. Unlike the 

migration technique described earlier where field is 

back-propagated, Phase Shift Migration assumes 

field as radiated by a localized source. Hence, the 

field “extrapolation” in the object space works as 

long as the scatterers are reached. It is obvious for 

the scatterers, which are buried within a dispersive 
and dissipative medium. The inverse Fourier 

transform with respect to kx is  

 

where G* is the complex conjugated Green’s 

function. This migration scheme is known as 

Rayleigh-Sommerfeld holography, which is a 

specific case of Generalized Holography founded 

on the basis of Porter-Bojarski integral equation. 

The time domain version of the above equation is 

called as Kirchhoff Migration. Now, R(x,z) is further 

expressed as  

 

where  is the angle between the unit 

normal vector at the measurement line and the 

vector . 

 

Scattering equations and the Born 

approximation 

So far, various migration algorithms have 

been proposed and used as models that make use of 

Fourier transform operators. In any case, the 

migrated field and the scatterers to be reconstructed 

have not been formally linked and hence this 

problem remained just supported by intuitive 

arguments. To find a solution to this problem, one 
needs to deal with those equations, which describe 

the scattering phenomenon accurately. Therefore, 

the subsurface imaging problem is to be viewed as 

an inverse scattering problem, where one tries to 

infer the electromagnetic properties of the scatterer 

from the scattered field measured outside the 

scatterer. Now, the problem is restated as “Given an 

incident field, Einc , that is the electromagnetic field 

in the background medium without the scattering 

object and generated by a known source, the 

scattered field Es is established as a result of 

interaction with the object. Now, from the 

knowledge of Es , some geometrical or structural 

properties about the scatterer, have to be obtained”. 

In order to do this, a procedure is shown here with 

the help of a case study. A cylindrical dielectric 
object enclosed within the domain D is illuminated 

by a linearly polarized incident field along the axis 

and the scattered field observed in the domain Σ. 

The equivalent dielectric permittivity function of the 

unknown object and that of the background medium 

are denoted by ε(r) and εb(r) respectively. In fact, 

εb(r) need must be constant because of the non-

homogeneous background medium. The magnetic 

permeability of the free space μ0 is assumed 

everywhere. Thus, the problem boils down to 

retrieving the dielectric permittivity profile of 

the unknown object using the knowledge of Es. The 
frequency domain relationship between the data and 

the unknown is furnished by the Helmholtz equation 

where E = Einc+ES is the total 

field, kb is the subsurface wave-number 

and  is the dimensionless contrast 

function. Now, one obtains pair of scalar integral 

equations using Green’s function method as 

 

where G is Green’s function,  is the observation 

point and is the position of the source. Now, the 

above integral equations allow one to interpret the 

scattered field as radiated by secondary sources, 

which are located within the spatial region of 

scatterers. Contrast function is obtained by inverting 

the pair of equations, and this is known as the 

reconstruction problem. The field inside the 

scatterers defined by the first equation depends on 

the unknown contrast function, and thus the 
relationship between contrast function and scattered 

field is said to be nonlinear. However, one can 

assume E ≅ Einc within the scatterer region and 

obtain the Born linear model. Consequently, the 

scattering model becomes a linear approximation 

 

In such a case, the internal field need not depend on 

the dielectric profile. This amounts to saying that 

one can ignore mutual interactions between different 

parts of the object and also between different 

objects. In other words, each part of the scatter 

object is treated as an elementary scatterer 

independent of the other scatterers. If one considers 

a homogeneous background medium and a 

monostatic type of data collection, where 
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, the linearized scatter model equation could be 

rewritten as 

 

In such a case, a two-dimensional filamentary 

current I(ω) ∝ 1/ω is assumed as source of the 

incident field. For the measurement aperture Σ the 

scatter field equation turns out to be 

 

The Fourier transform of the scattered field with 

respect to xO is obtained using the plane-wave 

spectrum of the Green’s function as 

with . When the 

spatial Fourier transform data are arranged in 

the kx−kz spectral plane, then the contrast function is 

obtained as 

 

It is important to note that this equation coincides 

with that of F-K Migration when ω is replaced by kz. 

Therefore, using linear Born approximation a 

connection between the migrated field and scatterers 

is established in terms of contrast functions. Similar 

results may also be obtained for various kinds of 

scatterers where linear approximations are adopted. 

 

3.2 Inverse filtering imaging algorithms 

As discussed earlier, for a two-dimensional 

and scalar geometry, the scattering phenomenon is 

modelled using a linear scalar operator 
where χ is the contrast 

function and ES is the scattered field. 

X and Ε represent the sets pertaining to the contrast 

function and the scattered field data respectively. In 

fact, they are Hilbert spaces of square integrable 

(finite energy) functions, the first one is of complex 

valued functions defined on D, and the second one 

of functions supported over Λ = Σ×Ω. As far as the 

Dirichlet’s conditions to be satisfied by a signal for 

applying Fourier transform to it are (i) the signal 

should be absolutely integrable and square 
integrable. A signal is considered as a subspace of a 

Hilbert space L
-∞,+∞

 and a signal processing system 

as a bounded linear operator φ : L
-∞,+∞

 → L
-∞,+∞

. 

Hilbert space representations of X and Ε as square 

integrable functions allows one to assume that no a 

priori information is available other than that the 

finiteness of its energy is due to physical 

considerations. Moreover, it ensures that Ε is wide 

enough to accept effects due to uncertainties and 

noise in the data. Then, the problem calls for 

inverting scatter field equation to obtain contrast 
function. The kernel in the scatter field equation is a 

continuous function on X×E, and so the linear 

operator is compact. This means that the inverse 

problem is indeed an ill-posed problem. For any 

compact, non-symmetric operator, singular value 

decomposition is a sufficiently powerful tool to 

solve the problem. The singular system of 

operator A is denoted as . In 

short,  is the sequence of singular values 

ordered in a non-increasing way, where  

and are orthonormal sets of functions which 

offer solution to the eigenvalue problems  

 

where A
+
 is the adjoint operator of A, which spans 

the orthogonal complement of the kernel of A, that 

is N(A)⊥, and the closure of the range of A, that is 

, respectively. A formal solution is given by

, where ⟨⋅,⋅⟩E denotes the scalar 

product in the data space Ε. Because A is compact, 

R(A) is not a closed set. This implies that the 

Picard’s conditions are not fulfilled for any data 

function; thus, the solution may not exist and if at all 

it exists, it need not depend continuously on data. 

This is a mathematical validation for the ill-

posedness of the problem. In addition, one has to 

account for another problem of actual data corrupted 

by various uncertainties and noise n. Hence the 

contrast function becomes 

 

Now, due to compactness, singular values tend to 

zero and their index increases. This means that, the 

second term  in the above equation does 

not converge and it thus yields an unstable solution. 

Even a small error in the data is amplified by 

singular values that are close to zero. This lacuna 

can be rectified only by regularizing the ill-posed 

inverse problem. For instance, this is achieved by 

discarding projections of data on the singular 

functions corresponding to less significant singular 

values, and it is done by filtering out singular 
functions corresponding to singular values below a 

user specified threshold. This scheme is called as 

Truncated Singular Value Decomposition (TSVD) 

and it is the modest method meant for a large class 

of windowing based regularizing schemes. As a 

result, the finite-dimensional approximate but stable 

solution is given by . The 

fundamental application of regularization theory is 

to substitute a given ill-posed problem by a well-

posed problem, based on a parameter α, from among 

a family of well posed problems defined by

. In the case of Truncated Singular Value 

Decomposition method (TSVD), α corresponds to 

https://www.intechopen.com/books/radar-technology/ground-penetrating-radar-subsurface-imaging-of-buried-objects#E19
https://www.intechopen.com/books/radar-technology/ground-penetrating-radar-subsurface-imaging-of-buried-objects#E20
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the threshold NT and the noise level n, so that a 

compromise between accuracy and stability is 

obtained. When n → 0 and α → 0, the regularized 

reconstruction would tend to a generalized inverse. 

In practice, Tikhonov regularization scheme is used 

widely, because it has the advantage of using a 

priori information about the unknown. In this case, 

the inversion problem is defined as a constrained 

optimization problem . The 

minimization constraint arises from a priori 
information and it may be different from the energy 

constraint outlined earlier. Another scheme called 

Landweber regularization advocates that the first 

kind integral equation be inverted as a second kind 

integral equation such that a well-posed problem is 

obtained. Consequently, the optimization problem is 

recast as , and a solution 

obtained using an iterative procedure. The 

regularization parameter, in this case, is the number 

of iterations employed in the 

minimization procedure. All these regularization 

schemes could be compared in terms of the operator 

properties. This is done by expressing them in terms 

of singular system. Then, Tikhonov regularization is 

expressed as  and Landweber 

method as . One can see that 

all these regularization methods ultimately turn out 
to be the unknown spectral filters. For the sake of 

computational convenience one can choose a 

suitable parameter for a regularization algorithm, 

and the question is how to choose the parameter. As 

specified earlier, this parameter choice is done based 

on the noise level, the mathematical features of the 

operator to be inverted and the available a priori 

information about the unknown. Several methods 

exist for regularization parameter selection. Such 

methods make use of the knowledge about noise 

level, like the Morozov discrepancy principle, or 

some generalized cross validation technique if noise 

level is not of concern. 

Singular system formalism could also be used to 
compare the migration and inverse filtering 

techniques. One may observe that the Diffraction 

Summation migrated field reconstruction 

corresponds substantially to attain inversion by 

means of adjoint operator, that is which is 

expressed in terms of singular system as

. One may also observe that 

migration allows one to have a stable reconstruction 

because the singular values appear in the numerator. 

In practice, this involves an intrinsic limit on the 
resolution in the reconstructions regardless of noise 

levels. Now, χ and its reconstructed version  are 

related by the integral 

 

where K(x, z; x' z') is called model resolution 

kernel. So, the model resolution kernel tends to a 

Dirac delta, that is, , 

when noise is absent and α → 0. Therefore, inverse 

filtering can provide better resolution in the 

reconstructions, but that depends on the noise level. 

Fig. 7 shows reconstruction performances of TSVD 

and F-K migration for a point-target. 

 

 

 

Fig. 7: Comparison between TSVD (left) and F-K migration (right) 

 
So far, the theory of buried point object detection 

using GPR has been described to certain extent. The 

question arises here whether one can theorize a 

multi-object detection by GPR. 

 

 

Non-Linear Imaging of Buried Multi-Object 

Detection 

Neither F-K Migration algorithms nor 

TSVD algorithms would be of any use in the case of 

detecting multiple objects buried under the ground 

at different depths. In such cases, the receiver 

antenna of a GPR will receive multiples of echoes 
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from the scatterers and the onboard computer should 

integrate all such echoes received at a particular 

position fixed by GPS coordinates. Ground 

Penetration Radar (GPR) is used for excitation. 

Excitation is applied at appropriate locations, 

preferably at the centers of the sub divided regions 

of the area to be prospected. Fig. 8 shows excitation 

process as a serpentine scanning of a rectangular 

subsampled field model.  

 

  
Fig. 8: Excitation process as a serpentine scanning of rectangular field model 

 

Area of a sub divided region determines the 

resolution. The intensity of excitation depends on 

many factors but mainly on the required depth of 

penetration. A short duration pulse is applied as 

excitation and the echo received and registered for 

further analysis. With reference to Fig. 8, one would 

obtain 99 echoes in the form of one-dimensional 

characteristic signals. Fig. 9 presents a hypothetical 

diagram showing more than one buried object. 

 

   

Four buried objects Fifteen buried objects Several buried objects 

Fig. 9: Multiple objects buried under ground and at different depths 

 

Fig. 10 shows a real time radargram obtained using a GPR. There are 81 VSP slices in the radargram data.  
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Fig. 10: Realtime radargram containing 81 slices obtained by a GPR 

 
Using ray casting method, one can 

reconstruct a 3D model image from all these 81 

slices. The 3D radargram obtained from using a 

GPR does not show any meaningful visualization. 

One has to explore the possibilities of interpreting 

3D radargrams using suitable 3D image processing 

and pattern recognition techniques. Fig. 11 shows 

the first 54 VSP slices and the processed version of 

the 3D radargram. Fig. 12 shows the 3D model 

obtained by ray casting method and the processed 

version of the 3D radargram with left and right 

oblique views. 

 

 

 

 

 

80 VSP slices obtained using a GPR Processed 3D image 

Fig. 11: The first 54 VSP slices and the processed version of the 3D radargram 
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3D radargram from 81 slices Left anterior oblique view Right anterior oblique view 

Fig. 12: 3D radargram and its processed versions with left and right oblique views 

 

Details of processing 3D radargrams are not in the 

scope of this paper and hence not provided. 
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