
Okonkwo F.C Journal of Engineering Research and Application                                  www.ijera.com 

ISSN: 2248-9622 Vol. 10, Issue 01 (Series -III) January 2020, pp 34-40 

 
www.ijera.com                                      DOI: 10.9790/9622-1001033440                          34 | P a g e  

 

 

 

 

Characterization of Lithium-ion Cathode Material Using 

Artificial Neural Network 
 

Okonkwo F.C, Onochojah U, Ichu B. C and Uwakwe E. 
Lithium-ion Battery Research Group, Projects Development Institute (PRODA), P.M.B. 01609, Emene, Enugu, 

Nigeria 

Corresponding Author; Okonkwo F.C 

 

ABSTRACT 
Cathode active materials are the main elements dictating the differences in the composition of battery cells. 

The cathode materials comprised of cobalt, nickel and manganese in the crystal structure forming a multi-metal 

oxide material to which lithium is added. Artificial neural network was proposed for the characterization of 

lithium ion cathode material to determine the existence of x-ray diffraction peaks at different degrees and 

layered structure of the sample. The model was classified for training, testing and validation. The data obtained 

from the synthesized cathode materials (LiNi0.5Mn0.5O2) were used as inputs and processed as x-ray diffraction 

patterns. The design and analysis was done with MATLAB/SIMULINK software. The results obtained gave 

82.97% accuracy of x-ray diffraction pattern prediction for cathode materials. 
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I. INTRODUCTION 
Considering various technologies for 

storing energy, the usage of lithium (Li) – ion 

batteries still stands as one of the most promising 

options, especially for the on-going huge demand 

for electric and plug-in hybrid vehicles. The main 

limiting factor in the performance of a Li-ion 

battery is the cathode material and design 

specifications.  

Lithium-ion batteries comprise of the 

anode, cathode, separator and the supporting 

solution in which progression of lithium ions from 

the cathode to anode and vice versa during 

charge/discharge process [1]. The materials that are 

typically used for fabricating the anode are metallic 

lithium, graphitic carbon, hard carbon, synthetic 

graphite, lithium titanate; tin-based alloys and 

silicon-based materials [2]. The materials used for 

making cathode are an oxide of lithium manganese, 

lithium cobalt oxide, FeS2, V2O5, lithium nickel 

cobalt manganese oxide, lithium ion phosphate and 

electronic conducting polymers [3]. The materials 

used as electrolytes include LiPF6 , LiClO4, LiAsF6  

and LiCF3SO3 [4]. Apart from these main 

components, there are other components such as a 

binder, flame retardant, gel precursor and 

electrolyte solvent [5]. 

Battery design based on experiments is 

time-consuming and expensive. In contrast, 

simulation-based design is not only more efficient, 

but also provides deeper insights into the 

mechanisms governing the battery performance [6]. 

The majority of current battery models are based 

on the pseudo two-dimensional (P2D) electro-

chemical model, which is based on the porous 

electrode theory [3]. The P2D model has been used 

to optimize the cathode and anode thickness, 

porosity, particle size and many other important 

electrode parameters. 

High-throughput material synthesis and 

rapid characterization are necessary ingredients for 

design and accelerated material discovery [7]. X-

ray diffraction (XRD) is a workhorse technique to 

determine crystallography and phase information, 

including lattice parameters, crystal symmetry, 

phase composition, density, space-group, and 

dimensionality [7]. This technique works on the 

principle of Bragg’s law, where the material is 

bombarded with X-rays at different angles and the 

intensity of the beam is measured.  This is achieved 

by mapping XRD patterns for a material to the 

measured or simulated XRD patterns of known 

materials [8]. 

Despite its indispensable utility, XRD is a 

common bottleneck in materials-characterization 

loops; up to one hour is typically required for thin-

film XRD data acquisition for a 2θ scan with high 

angular resolution, and another one to two hours 

are typically required for Rietveld refinement by an 

expert crystallographer when the crystalline phases 

are known. It is widely recognized that machine 

learning methods have potential to accelerate this 

process; however, practical implementations have 

thus far focused on well-established materials, 

require combinatorial datasets spanning among 

various phases or require large datasets [9].In this 
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study, artificial neural network technique will be 

applied to the characterization of lithium ion 

cathode  material (LiNi0.5Mn0.5O2)  and also 

compare the percentage accuracy of the model 

developed. 

II. ELECTRODE MATERIALS 
2.1 Cathode Materials  
 Over the last two decades there has been 

intensive research in improving the overall 

performance of Li - ion batteries. Among the 

different components of the battery mechanism one 

of the main attention has been alternative cathode 

materials. Cathode materials can primarily be 

categorized based on structure types; LiCoO2, 

LiNiO2, Li2MnO3, LiNi1-xCoxO2, 

LiNi1/3Mn1/3Co1/3O2 etc. 

 

2.1.1 Layered Structure Metal Oxides  

 These materials usually have layered α-

NaFeO2 structure, which is a distorted rock-salt 

structure where the cations order in alternating (1 1 

1) planes [10]. This ordering results in a triangular 

structure also known as R3m space group. In these 

structures the oxygen atoms are arranged in a face 

centered cubic close-packed arrangement with the 

transition metal oxides present within the oxygen 

octahedral and the lithium atoms would reside in 

the space between the oxygen layers. This structure 

supports the intercalation process where the lithium 

ions are inserted and removed from the structures 

during charge and discharge cycles as depicted in 

figure 1[11]. 

 

 
Figure 1: Layered structured transition metal 

oxides. 

 

2.1.2  LiCoO2 
 Presently the lithium ion battery industry 

is dominated by the LiCoO2 cathodes and carbon 

anodes first introduced by Sony in 1991. This 

material was first reported by John Goodenough 

who recognized that this material had layered 

structure and that lithium could be removed 

electrochemically, thus making it a promising 

cathode material. 

 LiCoO2 has α-NaFeO2 structure with O 

atoms present in a cubic closely-packed face-

centered cubic (FCC) arrangement, when lithium is 

completely removed; the oxygen layers rearrange 

themselves to give hexagonal close packing in form 

of CoO2. Figure2 represents the layered structure of 

LiCoO2 [11]. 

 
Figure 2: Layered structure of LiCoO2[11]. 

 

 Though LiCoO2 cathode material is 

leading the lithium-ion battery market, there is 

limited availability of cobalt, thereby making it an 

expensive material. A lot of research is being done 

to find a probable replacement for Co with 

materials that are abundant and that are 

environmental friendly such as Ni, Mn, Fe and Cr.  

 

2.1.3  LiNi1-yMnyO2 

 Lithium nickel manganese oxides have 

been of great interest among researchers for 

advanced lithium-ion batteries and as a possible 

replacement for LiCoO2. Figure 3, shows a unit 

cell of LiMnyNi1-yO2. 
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Figure 3: Unit cell of LiMnyNi1-yO2 showing li-

filled and Ni, Mn-filled layers [12]. 

 

The main advantage of this material is that there is 

no CO content which is very expensive and a toxic 

compound compared to Ni and Mn. The most 

successful material of this group has been 

LiNi1/2Mn½ O2 

2.1.4  LiMnO2 (layered)/LiMn2O4 (spinel) 

 Along with its counterparts such as 

LiNiO2 and LiCoO2, this material has also been 

researched a lot over the last decade mainly for its 

prospects of providing not only a low-cost but also 

an environmentally benign cathode material [13].In 

spite of these advantages LiMnO2 was never a 

viable cathode mainly because this material is 

unstable at elevated temperatures and cannot be 

synthesized by the same methods as used for 

materials like NaMnO2.  

When LiMnO2 is synthesized, it tends to revert 

itself to form a more stable spinel structure 

LiMn2O4. LiMn2O4 has proven to be a viable 

cathode material mainly because of the three 

dimensional framework which adds stability to the 

structure during delithiation. Additionally, unlike 

LiNiO2 and LiCoO2, this material does not react 

exothermically with the electrolyte making it 

potentially safer than LiNiO2 and LiCoO2. Figure4 

shows a comparison between LiMnO2 and 

LiMn2O4 structures. The tunnel like structure for 

LiMn2O4 allows lithium to move out of the 

structure without collapse even under high 

charge/discharge rates. 

 

 
Figure 4: Comparison between layered LiMnO2 structure and Spinel LiMn2O4structure [13]. 

 

2.2 Anode materials  
 Anode materials are necessary in Li-ion 

batteries because Li metal forms dendrites which 

can cause short circuiting, start a thermal run-away 

reaction on the cathode, and also causes the battery 

to catch fire. Li metal also suffers from poor cycle 

life. 

 

2.2.1 Graphitic and hard carbons 

 Electrochemical activity in carbon comes 

from theintercalation of Li between the graphene 

planes, which offer good2D mechanical stability, 

electrical conductivity, and Li transport and Li 

transport. Carbon has the combined properties of 

low cost, abundant availability, low delithiation 

potential vs Li, high Li diffusivity, high electrical 

conductivity, and relatively low volume change 

during lithiation/ delithiation  as shown in Table 

1.Thus carbon has an attractive balance of 

relatively low cost, abundance, moderate energy 

density, power density, and cycle life, compared to 

any other intercalation-type anode materials. 

Carbon’s gravimetric capacity is higher than most 

cathode materials but the volumetric capacity of 

commercial graphite electrodes is still small (330–

430 mAh cm
-3

).  
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Table 1 

 
 

III. METHODOLOGY 
 The purpose of this work is to develop an 

artificial neural network model that can 

characterize a lithium ion cathode materials using 

data obtained from x-ray diffraction equipment. 

The first step in constructing a neural network is to 

determine the inputs and outputs. The inputs are 

determined from the cathode material synthesized. 

The synthesis is done by using a sol- gel method or 

any other methods to obtain a processed cathode 

material, the concentration, diffusion coefficient, 

particle radius, Bruggeman constant, thickness and 

solid phase volume fraction are chosen as the input 

variables.  

 The output of the neutral network is 

obtained by extracting data from the x-ray 

diffraction set up for a particular sample material 

which will be used to train the networks in other to 

make accurate predictions of outputs 

characterization. Figure 5 represents the 

SIMULINK model of the design. 

 

 
Figure 5: artificial neural network model for characterization of lithium ion ( ) material. 

 

 Data of the XRD spectrum of the 

LiNi0:5Mn0:5O2 material prepared by sol-gel method 

at 800 °C for 20 hours was obtained [14] and 

classified for training testing and validation. The 

XRD spectrum was indexed based on the α-

NaFeO2 structure with a space group R3 m [15]. 

The model for the characterization   ofLiNi0:5 

Mn0:5O2 was created using a Levenberg-Marquardt 

algorithm. Figure 5 shows the input layer, hidden 

layer, output layer and output. 
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Figure 5: Schematic of neural network layers. 

 

IV. RESULTS AND DISCUSSION 
The parameters for LiNi0:5Mn0:5O2 of the 

synthesized compound used for the simulation is 

shown in Table 2. 

 

Table 2: Design variables 
Variable Value Symbol(Unit) 

Electrode 

concentration 

25.8x 10-3 (molm-3) 

Active material 

particle radius 

6 x10-6 m 

solid phase volume 

fraction 

0.6  

Thickness 50 x10-6 m 

Bruggeman 

constant 

1.5  

Diffusion  
Coefficient 

1x10-13  

 

 A regression plot for the characterization 

was created as seen in figure 6; it shows the 

relationship between the output of the network and 

the targets which typically are represented by a 

regression factor (correlation Coefficient R). The 

four plots represent the training, testing data, 

validation and overall performance of the 

LiNi0:5Mn0:5O2characterization. The dashed line in 

each plot represents the perfect result – outputs = 

targets. The solid line represents the best fit linear 

regression line between outputs and targets. The 

training data indicates a good fit with an R value of 

0.92313. The validation and test results also show 

R values of 0.85267 and 0.91489.The overall 

model show performance training accuracy 

0.91981(91.98%) which indicates that the neural 

network was well characterize. 

 

 
Figure6: Neural network Regression plot 

 

2.3  XRD analysis 

 Figure 7 represent the XRD pattern of 

LiNi0:5Mn0:5O2 characterization   and the simulated 

result for  LiN0:5Mn0:5O2characterization. The 

experimental set up was used to determine the 

existence of doublet XRD peaks at different 

degrees and layered structure of the sample [15]. 

The result obtained shows a close relation between 

the XRD experimental pattern and the artificial 

neural network model. 
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Figure 7: Comparison of XRD pattern and ANN model for   LiN0:5Mn0:5O2. 

 

 The graph shows a relationship between 

intensity (number of counts) to diffraction angles 

(2θ).the XRD gave a maximum peak at 9051 

counts at 18.1
0
 while the ANN model recorded a 

maximum peak at 7121 counts at 18.2
0
1 .The 

proposed model indicates a close relationship with 

the experimental result and has a percentage 

accuracy of 82.97% as express below. 

 

XRD =
 9051 + 3101 + 6851 + 1051 + 1301 + 3401 + 2000

7
= 3822.3 

ANN =
 7121 + 2722 + 6121 + 671.9 + 921.9 + 3022 + 1621

7
= 3171.5 

Percentage error =
3822.3 − 3171.5

3822.3
∗ 100 = 17.03% 

 The percentage error is 17.03%. 
Percentage accuracy = 100 − 17.03 = 82.97% 

 

V. CONCLUSION 
 In this work an artificial neural network 

model was designed for the characterization of 

lithium ion battery electrode material. The data 

used was gotten from x-ray diffraction set up and 

the synthesis of LiNi0:5Mn0:5O2 material using sol-

gel method at 800 °C for 20 hours. The model was 

classified for training testing and validation using 

the data obtained. The neural network was used to 

predict the characterization pattern of lithium ion 

cathode material to determine if a set of input 

variables is physically feasible. Comparison 

between the artificial neural network and the 

experimental result gave a satisfactory accuracy. 

The proposed model provides a framework for 

creating more efficient models for lithium ion 

battery characterization.  
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