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ABSTRACT 
The aim of this paper is to study the heat and mass transfer in the boundary layer flow of an Eyring-Powell fluid 

due to an exponentially stretching sheet with chemical reaction and thermal radiation. By utilizing the similarity 

transformations, the governing equations are changed into a set of non-linear ordinary differential equations. The 

resulting equations are solved numerically by using bvp4c MATLAB package. The physical significance of 

different parameters on the velocity, temperature and concentration distributions as well as the skin friction 

coefficient, Nusselt number and Sherwood number is discussed through graphs and tables. The results indicate 

that the influence of Soret and Dufour numbers are significantly active in the study of non-Newtonian fluid 

flows. Also, the mixed convection parameter has an inverse relationship with thermal and concentration fields. 

Keywords – Chemical reaction, Cross diffusion, Eyring-Powell fluid, Exponential stretching sheet, Thermal 

radiation.
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NOMENCLATURE 

 B   Magnetic field 

0B   Strength of the magnetic field 

C    Concentration of the fluid 

0C   Reference concentration 

fC   Skin friction coefficient 

pC   Specific heat at constant pressure  

sc    Concentration susceptibility 

wC   Species concentration at the surface 

C   Species concentration far away from the surface  

mD   Diffusion coefficient  

Du  Dufour number 

d     Material fluid parameter 

f    Dimensionless velocity 

g     Acceleration due to gravity 

k     Fluid thermal conductivity  
*k    Rosseland mean absorption coefficient 

*Kr  Dimensional chemical reaction parameter 

Kr   Dimensionless chemical reaction parameter 

TK   Thermal diffusion ratio 

L     Characteristic length 

wm   Surface mass flux 

M    Magnetic field parameter 

Nu   Nusselt number 

Pr    Prandtl number 

rq     Radiative heat flux  

wq    Surface heat flux 

R      Radiation parameter 

Rex   Local Reynolds number 

Sc     Schmidt number 

Sh     Sherwood number 

Sr     Soret number 

T      Temperature of the fluid 

0T      Reference temperature 

mT     Mean fluid temperature 

wT     Temperature at the surface  

T     Temperature far away from the surface 

,u v   Velocity components  

         in the x-, y-directions respectively  

0u     Reference velocity 

wu    Stretching velocity of the sheet 

Greek symbols 

Fluid parameters  

 

       Similarity variable 

      Dynamic viscosity  

T     Thermal expansion coefficient 

       Kinematic viscosity  

      Fluid density  

     Electrical conductivity 
*    Stefan-Boltzmann constant 

       Dimensionless temperature 

       Dimensionless concentration 

,i j    Shear stress component 
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w      Surface shear stress 

        Mixed convection parameter 

 

I. INTRODUCTION 

In recent years, a lot of researchers have 

been explored the flow analysis of non-Newtonian 

fluids. Many polymer solutions and molten polymers 

are non-Newtonian fluids such as starch 

suspensions, paint, shampoo, foods (ketchup, 

mayonnaise, soup, butter, jam, and yogurt), natural 

substances (magma, lava, extracts and gum), 

biological fluids (blood, saliva, semen) and slurries 

(plasters, lime and clay). These are various examples 

of practical applications of non-Newtonian fluid 

flow over a stretching surface. Erdogan and Imrak 

[1] studied some properties of unsteady 

unidirectional flows of a non-Newtonian fluid. 

Chandra et al. [2] discussed various types of non-

Newtonian flow characteristics and its implication in 

engineering applications. Sarpkaya [3] analyzed the 

flow of non-Newtonian fluids with magnetic field. 

These types of flow attain special attention because 

of their active use in industrial applications, 

chemical engineering, biological and polymer 

processing.   

The boundary layer flow of non-Newtonian 

fluid over a stretching surface has received unique 

attentiveness from the researchers because of its 

abundant significant applications such as metal 

spinning, metal extrusion, food processing, glass 

fiber and paper production, slurry transporting, 

cooling of the metallic plate in a cooling bath, 

continuous casting of metal and the extrusion of 

polymer sheet from a die. In view of all these 

numerous applications, huge number of researchers 

studied the non-Newtonian fluids over a stretching 

sheet. This stretching sheet is possibly linear, 

quadratic, power law, inclined, exponential and so 

on. Crane [4] examined the boundary layer flow of 

viscous fluid over a linear stretching surface.  

Rajagopal et al. [5] have extended the work of crane 

[4] and they discovered the solutions of equation of 

motion for the boundary layer flow past a stretching 

plate. Afterwards the features of flow over a 

stretching surface are pioneered by Siddappa and 

Abel [6]. Yurusoy and Pakdemirli [7] considered a 

problem to examine the motion of non-Newtonian 

fluid induced by stretching surface. They acquire an 

exact solution of the problem with the assistance of 

suitable similarity transformations. Hayat et al. [8] 

studied the unsteady unidirectional flows of some 

non-Newtonian fluids. Siddiqui et al. [9] studied the 

unsteady MHD flow of a non-Newtonian fluid due 

to eccentric rotations of a porous disk and a fluid at 

infinity.  

Non-Newtonian fluids have promising 

applications in power industry, engineering science 

and technology. On the basis of this significance of 

non-Newtonian fluids, in 1944, Powell and Eyring 

[10] proposed an inventive fluid model known as 

Eyring-Powell fluid model. Despite the fact that this 

model is mathematically more difficult. Even 

though, it deserves special attention because of its 

distinct advantages over the non-Newtonian fluid 

models. Over the period of years, there has been a 

continuous development in the analysis of Powell-

Eyring fluid. Initially, this model is deduced from 

the kinetic theory of fluids earlier than the 

experimental relation. In addition to that, it 

appropriately reduces to Newtonian behavior for low 

and high shear rates. In recent times, some effective 

investigations have been done on this fluid with 

diverse flow situations. Hayat et al. [11] studied the 

steady flow of a Powell-Eyring fluid over a moving 

surface with convective boundary conditions. The 

boundary layer flow of Powell-Eyring fluid over a 

linearly stretching sheet was analyzed by Javed et al. 

[12]. Malik et al. [13] discussed the impact of 

variable viscosity on Powell-Eyring fluid across a 

stretching cylinder. From this paper, it is identified 

that the thermal boundary layer decreases with the 

increasing values of Prandtl number. Panigrahi et al. 

[14] examined the influence of MHD on mixed 

convection boundary-layer flow of Powell-Eyring 

fluid over a nonlinear stretched surface. Akbar et al. 

[15] reported the impact of Lorentz force on Eyring-

Powell fluid due to a stretching surface. Rahimi et 

al. [16] presented an analytical solution to the 

boundary layer flow of non-Newtonian liquid over a 

linear stretching sheet. They noticed that the 

temperature and thermal boundary layer thickness 

decreases when the values of fluid parameter are 

increases.  

In recent times, knowledge in boundary 

layer flow with heat and mass transfer is paying 

attention to researchers because of its several 

important applications. In particular, the combined 

effect of heat and mass transfer plays a vital role in 

numerous engineering applications. Many 

researchers are inspired and still engaged with the 

discussion of heat and mass transfer effects in the 

flow over a stretching surface. Magyari et al. [17] 

studied the heat and mass characteristics of 

boundary layer flow. Chen [18] discussed the 

influence of frictional and Ohmic heating on MHD 

flow of Newtonian liquid past a vertical surface. 

Gupta and Gupta [19] extended the work of Chen 

[18] by including the effect of suction or blowing. 

Sagar and Dubey [20] studied the heat and mass 

transport effects on natural convective flow of non-

Newtonian fluid with magnetic field.  

The combined effects of heat and mass 

transfer problem with chemical reaction have 

importance in many processes. The widespread 

applications of such kind of problems can be found 

in the processes of drying, energy transfer in a wet 

cooling tower, evaporation at the surface of a body, 

damage of crops due to freezing, food processing, 
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hot rolling, continuous casting of metal and spinning 

of fibers. So, such problems have received a special 

concentration by the researchers in recent years. The 

effect of radiation and chemical reaction on 

micropolar fluid flow over a surface with porous 

medium was analyzed by Singh and Kumar [21]. 

Reddy et al. [22] investigated the heat and mass 

transfer characteristics of chemically reacting casson 

fluid flow past a stretching sheet with magnetic 

field. Through this investigation, they observed that 

the chemical reaction parameter has a tendency to 

control the concentration field. Hayat et al. [23] 

analyzed the motion of a second grade fluid over a 

plate in the existence of chemical reaction. The heat 

and mass transfer effects on MHD flow due to 

stretching of surface with chemical reaction was 

reported by Kandasamy et al. [24]. By this article, it 

is seen that the temperature of the fluid increases and 

concentration of the fluid decreases with the increase 

of chemical reaction parameter. Mukhopadhyay and 

Bhattacharyya [25] presented an unsteady two-

dimensional flow of a Maxwell fluid across a 

stretching sheet with the aid of chemical reaction. 

Krishna et al. [26] elucidated the flow of Powell-

Eyring fluid past an inclined stretching sheet in the 

presence of radiation and chemical reaction.   

It is also important in industrial and 

engineering applications to consider Soret (thermal-

diffusion) and Dufour (diffusion-thermo) effects on 

flows. The heat and mass transfer simultaneously 

influencing each other that will cause the effect of 

cross-diffusion. The heat transfer caused by 

concentration gradient is called the diffusion-thermo 

or dufour effect. Mass transfer caused by 

temperature gradients is called soret or thermal-

diffusion effect. Pal and Mondal [27] analyzed the 

combined effects of soret and dufour on time 

dependent mixed convection flow over a stretching 

sheet in the presence of thermal radiation and first-

order chemical reaction. They observed that the 

temperature is strongly influenced by the dufour 

effect and the soret effect unveils less significance in 

temperature fields. The cross diffusion effect on 

non-Newtonian fluid flows over a permeable 

stretching sheet was reported by Khan and Sultan 

[28]. Sugunamma et al. [29] scrutinized the cross 

diffusion effect on the flow of casson fluid due to an 

exponential stretching sheet. They stated that dufour 

and soret numbers have a tendency to inflate the 

concentration and temperature fields. Reddy et al 

[30] analyzed the influence of cross diffusion on 

MHD non-Newtonian fluids flow over a stretching 

sheet.  

 In the present investigation, we analyzed 

the effect of thermo diffusion and diffusion thermo 

on the flow of Powell-Eyring fluid over an 

exponential stretching surface with chemical 

reaction and thermal radiation. The governing partial 

differential equations are reduced into nonlinear 

ordinary differential equations by suitable similarity 

transformation. Graphs are drawn for the flow fields 

(velocity, temperature and concentration) with the 

help of MATLAB packages. Also the physical 

quantities for the flow parameters are examined and 

presented via tables. 

 

II. MATHEMATICAL FORMULATION 
Consider a steady, two-dimensional flow of 

an incompressible, Powell-Eyring fluid over an 

exponentially stretching sheet in the presence of 

Soret and Dufour effects. The x-axis is chosen along 

the sheet and the y-axis is normal to it. The sheet is 

stretching with velocity 0 expw

x
u u

L

 
  

 
 (where 0u  

is the reference velocity and L  is the characteristic 

length). We assume that the surface temperature and 

concentration of the fluid are 0 exp
2

w

x
T T T

L


 
   

 
 

and 0 exp
2

w

x
C C C

L


 
   

 
 respectively. Here T  

and C are the free stream temperature and 

concentration respectively. 0T  , 0C are the reference 

temperature and concentration respectively. A 

uniform magnetic field 0 exp
2

x
B B

L

 
  

 
 is applied 

normally to the sheet, where 0B  is the strength of the 

magnetic field. The magnetic Reynolds number is 

assumed to be very small and thus the induced 

magnetic field is negligible. The effects of chemical 

reaction and thermal radiation are taken into 

account. 

 

 
Fig. 1. Physical Model of the Problem 

The Cauchy stress tensor A  for Eyring-Powell 

fluid can be given as 
A pI     

The shear stress component ,i j  for the Powell-

Eyring fluid is given by 

1
,

1 1
sinh ,i i

i j
j j

u u

x d x
 




  

   
   
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where 
 
is the viscosity coefficient,   and d  

are the material fluid parameters.  

Under the above assumptions, the governing 

equations for this problem can be written as                                                                

0,
u v

x y

 
 

 
    (1) 

 

 

2 2

2

2 2

3 2

1

1
,

2
T

u u u B
u v u

x y d y

u u
g T T

yd y




 






   
    

   

  
   

  

      (2) 

 

 

2

2

2

2

1
,

p

m Tr

p s p

T T k T
u v

x y C y

D Kq C

C y c C y





  
  

  

  
 

  

 (3) 

 

 

2

2

2
*

2
( ),

m

m T

m

C C C
u v D

x y y

D K T
Kr C C

T y


  
 

  


  



 (4) 

With The Following Boundary Conditions 

( ), 0,

( ), ( ), 0

0, 0,

, ,

w

w w

u u x v

T T x C C x at y

u
u

y

T T C C as y 

  


   
 

  


   

  (5)  

In equations (1) - (4), u  and v  are the velocity 

components in the x   and y  directions 

respectively. 





  is the kinematic viscosity, 

where   is the dynamic viscosity and   is the fluid 

density, k  is thermal conductivity, g  is the 

acceleration due to gravity, T  thermal expansion 

coefficient,   is the electrical conductivity, sc  is 

the concentration susceptibility, pC  is the heat 

capacitance, mD  is the mass diffusivity, TK  is the 

thermal diffusion ratio and mT  is the mean fluid 

temperature, * /
0

x LKr k e  is the dimensional 

chemical reaction parameter, ,T C  are the 

temperature and concentration of the fluid 

respectively. 

The radiative heat flux obeys the Roseland 

approximation, which is given by 
* 4

*

4

3
r

T
q

yk

 



    (6) 

where k  and    is the Roseland mean 

absorption coefficient and the Stefan-Boltzmann 

constant respectively.   

The Taylor’s series expansion of 4T  about T  

is given by 
4 3 44 3 ,T T T T       (7) 

Using Eqs. (6) and (7) in Eq.(3), We obtain  
2

2

* 3 2 2

* 2 2

161
,

3

p

m T

p s p

T T k T
u v

x y C y

D KT T C

C c Ck y y








  
  

  

  
 

   

 (8)

 

Consider the following similarity 

transformations to convert the governing PDE’s of 

flow into ODE’s. 
 

 

 

   

   

0
0

0

exp , exp ,
2 2

exp ,
2 2

, ,
w w

u x x
y u u f

L L L

u x
v f f

L L

T T C C

T T C C

 



  

    

 

   
     

    


  
       

  
 

  
  

 (9)                         

where 
 
is the similarity variable. f   ,   and 


 
are the dimensionless velocity, temperature and 

concentration respectively. 

Using the similarity transformations (9), in Eqs. 

(1), (2), (4) and (8). Eq. (1) is automatically satisfied 

and Eqs. (2), (4) and (8) become 

 
2

2

(1 ) 2( )

( ) 2 0,

f f f f

f f Mf



  

     

    
   (10) 

 

 
4

1 Pr Pr 0,
3

R f f Du   
 

        
 

 (11) 

 

  0,Sc f f ScSr Sc Kr             (12) 

 

The corresponding boundary conditions are 

 

 0 0, (0) 1,

(0) 1, (0) 1 0,

f f

at  

 

     
(13) 

 

( ) 0, ( ) 0,

( ) 0, ( ) 0 ,

f f

as

 

    

  

  
  (14) 

In equations (10) - (12), prime ( ' ) denotes the 

differentiation with respect to  ,
1

d



 ,
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3

0

24

x

Lu e

Ld




 
 
 
 

  are the fluid parameters,

 
2
0

2 ( )

2
exp

T wg T T L

x
u

L


 


 
 
 

is the mixed convection 

parameter, 

2
0

0

2 B L
M

u




 is the magnetic field 

parameter, 
34 T

R
k k

 





 
is the radiation parameter 

and
 

pC
Pr

k


  is the Prandtl number. 

m

Sc
D


 is 

the Schmidt number,

 

( )

( )

m T w

m w

D K T T
Sr

T C C








 is the 

Soret number, 
( )

( )

m T w

s p w

D K C C
Du

c C T T









 is the Dufour 

number and 0

0

2k L
Kr

u
  is the chemical reaction 

parameter. 

The skin-friction coefficient ( fC ), local Nusselt 

number ( Nu ) and Sherwood number ( Sh ) are 

defined as 

2

2
, , ,

( ) ( )

w w w
f

w m ww

xq m x
C Nu Sh

k T T D C Cu



  

  
 

  (15) 

where  

3

0

1 1 1

6
w

y

u u

d y d y
 

 


     
      

      

 is 

the shear stress,  
* 3

*

0

16

3
w

y

TT T
q k

y yk

 



  
   

   

and 

0

w m

y

C
m D

y


 
   

 
 correspondingly indicate the 

surface heat and mass fluxes.  

Substituting Eq. (9) in Eq. (15), we obtain 

 

1
1

2
2

2

2
(Re )

1 1 (0) (0),
3

f x

x
C

L

f f






 
 
 

  
     

  

  (16) 

 
1

1
2

2
4

(Re ) 1 (0),
2 3

x

x
Nu R

L




   

     
   

 (17) 

 
1

1
2

2(Re ) (0),
2

x

x
Sh

L




 

  
 

  (18) 

where 0 e
Re

x

L

x

u L


  is the local Reynolds  

number. 

 

III. RESULTS AND DISCUSSION 
The set of nonlinear ordinary differential 

equations (10)-(12), subject to the boundary 

conditions (13) and (14) have been solved 

numerically by Runge-Kutta and shooting methods. 

The variations in velocity, temperature, 

concentration, local skin friction coefficient, Nusselt 

and Sherwood number for different values of 

physical parameters are displayed in Figs. 2-26 and 

tables 1-2. In the present study, we have chosen 
M=2;  =0.5; =0.1;  Du=0.5;  =0.1;  Pr=7;  

Sc=0.5; Kr=0.5; Sr=0.5; R=0.5  for obtaining the 

results. These values have been kept as common 

throughout our analysis except the varied values 

shown in respective figures and tables. 

Fig. 2 shows the effect of magnetic field 

parameter ( M ) on the velocity. It is seen that the 

fluid velocity is diminishing by enhancing the value 

of M . Figs. 3 and 4 depict the influence of magnetic 

field parameter ( M ) on temperature and 

concentration distributions respectively. From these 

figures, it is observed that the temperature and 

concentration increase with an increase of M . This 

is due to the fact that the application of M  to an 

electrically conducting fluid produces a resistive 

force called the Lorentz force. This force has a 

tendency to slow down the motion of the fluid in the 

boundary layer. This force also produces some heat 

energy. Hence an enhancement in both thermal and 

concentration boundary layer thickness is noted.  

Figs. 5-7 illustrate the influence of fluid 

parameter (  ) on velocity, temperature and 

concentration fields. It is noticed that the fluid 

velocity increases with an increase in  . So, the 

viscosity of fluid decreases. As a consequence, we 

notice decay in the temperature and concentration 

fields with an increase in  . From fig. 8, it is 

observed that the fluid velocity decreases with the 

increasing value of fluid parameter ( ). This is due 

to the fact that the viscosity of the fluid increases by 

increasing the value of  , which causes a decrease 

in the velocity of fluid. Figs. 9 -10, depict the impact 

of fluid parameter ( )
 

on temperature and 

concentration distributions. It is obvious that both 

the temperature and concentration increases by 

increasing the value of  . 

Fig. 11, describes the effect of mixed 

convection parameters (  ) on velocity field. From 

this figure we notice that the fluid velocity enhances 

with an enhancement in  . This is because of an 

enhancement in the mixed convection parameter 

causes larger buoyancy force which accelerates the 

fluid motion. From Figs. 12 - 13, we found that the 
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increasing values of   reduces both the temperature 

and concentration fields. The effect of radiation 

parameter ( R )
 

on velocity, temperature and 

concentration fields is shown in Figs. 14 - 16. It is 

observed that the velocity and temperature increases 

with the increasing values of R . This is due to the 

fact that higher values of the radiation parameter 

provide more heat to the fluid. An opposite trend is 

seen in the case of concentration field. i.e. the 

concentration field decreases with an increase in R .  

Figs. 17 and 18 elucidates the influence of 

Prandtl number ( Pr ) on temperature and 

concentration. Generally, thermal conductivity of the 

fluid decreases with an increase in Pr  . So, the 

increase in the Prandtl number ( Pr ) reduces the 

thermal boundary layer thickness. So heat transfer 

happens rapidly which causes a drop in fluid 

temperature. But an opposite behavior is observed in 

the case of ( )  . 

Figs. 19 and 20 depict the effect of Soret 

number ( Sr ) on temperature and concentration 

distributions. It is observed that the temperature 

distribution across the thermal boundary layer 

thickness reduces with the increase of Sr . An 

opposite behavior can be observed in concentration 

distribution with the increasing values of Sr . The 

reason behind this phenomenon is that, higher values 

of Sr  reduces the thermal diffusivity. 

The effect of Schmidt number ( Sc ) on 

temperature profile is shown in fig. 21. It is noticed 

that the fluid temperature reduces with an increase in 

Sc . Fig. 22 depict that the concentration field 

decreases as we increase the values of Sc . Schmidt 

number is defined as the ratio of momentum 

diffusivity (viscosity) to mass diffusivity. Therefore 

increase in Sc  decreases the mass diffusion, which 

in turn reduces the concentration. 

The influence of chemical reaction 

parameter ( Kr )
 
on temperature and concentration 

distribution is shown in Figs. 23 and 24. It is 

observed that the increasing value of Kr  increases 

the fluid temperature but suppresses the 

concentration. Due to an increase in the interfacial 

mass transfer we observe a fall in the concentration 

field. 

The impact of Dufour number ( Du ) on 

temperature is shown in fig. 25. It is observed that 

the temperature increases with the increasing values 

of Du . Fig. 26 demonstrates the variation in 

concentration distribution 
 
with Du . We observe 

that an increase in Dufour parameter ( Du )
 
causes a 

depreciation in the concentration. 
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Fig. 2. Impact of M  on ( )f 
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Fig. 3. Impact of M  on ( )   
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Fig. 4. Impact of M  on ( )   
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Fig.5 Impact of   on ( )f   
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Fig. 6. Impact of  on ( )   
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Fig.7. Impact of   on ( )   
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Fig. 8. Impact of  on ( )f   
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Fig. 9. Impact of  on ( )   
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Fig. 10. Impact of   on ( )   
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Fig. 11. Impact of   on ( )f   
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Fig. 12. Impact of  on ( )   
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Fig. 13. Impact of   on ( )   
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Fig. 14. Impact of R  on ( )f   
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Fig. 15. Impact of R  on ( )   
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Fig. 16. Impact of R on ( )   
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Fig.17. Impact of Pr on ( )   
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Fig. 18. Impact of Pr on ( )   
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Fig. 19. Impact of Sr on ( )   
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Fig. 20. Impact of Sr  on ( )   

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1




( 

)

0.6 0.7 0.8 0.9

0.12

0.14

0.16

0.18

0.2

0.22




( 

)

Sc=1.3, 1.8, 2.1, 2.5

 
Fig. 21. Impact of Sc  on ( )   
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Fig. 22. Impact of Sc  on ( )   
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Fig. 23. Impact of Kr on ( )   
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Fig. 24. Impact of Kr on ( )   
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Fig. 25. Impact of Du  on ( )   
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Fig.26. Impact of Du  on ( )   

 

Table 1 gives the numerical values of skin 

friction coefficient for various values of , ,M   and 

 . We noticed that the skin friction coefficient 

decreases with the increasing values of magnetic 

field parameter ( M ) and fluid parameter ( ). But 

an opposite result is noticed with fluid parameter 

(  ) and mixed convection parameter (  ). 

Table 2 and 3 depict the variation in local 

Nusselt and Sherwood numbers for various values of 

governing parameters. We see that Soret number has 

a tendency to enhance the heat transfer rate and 

depreciate the mass transfer rate. But we observe 

opposite results to the above in the presence of 

Dufour number.  

 

Table 1. Influence of various parameters  on skin 

friction coefficient 

M        (0)f   

1    -1.3335 

2    -1.6116 

3    -1.8557 

4    -2.0764 

 0.1   -1.6116 

 0.4   -1.4585 

 0.7   -1.3399 

 1.0   -1.2454 

  0.1  -1.6116 

  0.3  -1.6305 

  0.5  -1.6513 

  0.7  -1.6742 

   0.1 -1.7911 

   0.5 -1.6116 

   1.0 -1.3980 

   1.5 -1.1934 
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Table 2. Impact of  various parameters on  local 

Nusselt number and Sherwood number 

 

The local Nusselt number increases and local 

Sherwood number decreases with an increase in the 

magnitude of the Schmidt number ( Sc ). An 

increase in the Prandtl number ( Pr )
 

causes an 

enhancement in the rate of heat transfer and reduces 

the rate of mass transfer. The reason behind that is, 

the smaller values of the Prandtl number gives rise 

to higher thermal conductivities therefore, heat is 

able to diffuse away from the heated surface more 

rapidly in fluids with high Prandtl number. It is also 

noted that an increase in the values of chemical 

reaction parameter ( Kr )
 
leads to a decrease in the 

rate of heat transfer and increase in the rate of mass 

transfer. It is also examined that nusselt number is a 

decreasing function of radiation parameter ( R ) 

where as Sherwood number is an increasing function 

of the same parameter. 

 

IV. CONCLUSION 
In the present investigation, we examined 

the Soret and Dufour effects on MHD heat and mass 

transfer flow of an Eyring-Powell fluid over an 

exponential stretching sheet. The governing 

equations are transformed into a system of non-

linear ordinary differential equations and then solved 

numerically by using Runge-Kutta fourth order 

method with shooting technique. The main 

observations of present research are given below. 

i)  The velocity and momentum boundary layer 

thickness are decreased with the rise of 

magnetic field parameter ( M ), whereas an 

opposite trend in the temperature and 

concentration distributions is observed. 

ii)  Raising the values of one fluid parameter (  ) 

increases the fluid velocity, but decreases the 

temperature and concentration. Increasing the 

values of another fluid parameter ( ) decreases 

the fluid velocity but increases the temperature 

and concentration. 

iii)  An increase in the mixed convection parameter 

(  ) increases the velocity field, but decreases 

the temperature and concentration fields. 

iv)  With the increasing values of chemical reaction 

parameter ( Kr ), the temperature distribution 

increases and concentration decreases. 

v)  The velocity and temperature increases and 

concentration decreases with increasing values 

of the radiation parameter ( R ). 

vi)  Soret and Dufour number plays prominent role 

in the heat and mass transfer performances. 
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