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ABSTRACT 
Factor graphs basically work on the idea of marginalization i.e. sub-dividing a larger function into a number of 

smaller functions whose contribution to the solution of the problem are considered accordingly. This paper uses 

Forney factor graph, which is a bipartite graph that models a system into function nodes and variable nodes. The 

messages are passed to and fro the two sets of nodes via specific message update rules chosen beforehand and 

the phenomena may be based on sum product or the max product algorithm. The algorithm converges to a 

decoded output after either a fixed number of iterations or is made to terminate after a threshold is achieved.  

Keywords: Factor graphs, Maximum Likelihood Decoding, Max-product algorithm, Reed Muller Codes, Sum-
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I. INTRODUCTION 
Graphical models have always been an 

important part of the works of an engineer as they 

are easy to manipulate and self-descriptive. The 

different graphical models that have been popularly 

used to describe the events and experiments are 

circuit diagrams, signal flow graphs; several block 

diagrams and trellis diagrams. The graph 

theory[1][6] comprises of the relevant algorithms 

which allow easy and systematic use of graphical 

models. In artificial intelligence, statistics and neural 

networks, Bayesian networks and Markov random 

fields are have been used to describe the non-

probabilistic models. The formulation of Viterbi 

decoding algorithm is done by a trellis diagram and 

the Gibbs sampling is required for prediction and 

projection for Markov fields. 

Graphical models have been popular 

because of the ease with which they provide the 

solution to a large number of signal processing 

problems and mainly coding theory from which the 

factor graph find their origin. The use of graph in 

solving the signal processing problems results in 

reduction of complexity. The algorithms involved 

use minimum knowledge and give approximate 

results by a simple phenomenon of message passing 

between the different parts of the factor graph. 

Factor graphs have been commonly used for 

decoding Low Density Parity Check codes with the 

help of a series of steps known as Sum-Product 

algorithm. The algorithm was invented by 

Gallager[6][8] in 1970s and is still the standard 

decoding algorithm for such codes.The two main 

algorithms operated on factor graphs are sum-

product (or belief or probability propagation) 

algorithm and the min-sum (or max product 

algorithm). These operations mainly find use in error 

correcting codes as these codes are mostly used in 

modern communication systems. The main reason 

behind the popularity of the Low Density Parity 

Check codes is the accessibility of the coding 

scheme round the globe. Previously, the Turbo codes 

were being used in the communication and 

transmission systems but they were patented in the 

western regions and soon got to be outshined by the 

LDPC codes with the advent of the simple decoding 

technique introduced. 

Another scientist Tanner introduced rather 

modified the factor graph describing LDPC codes 

thereby replacing the parity checks with generalized 

components. He further introduced the min-sum 

algorithm which is similar to the sum-product 

algorithm but the cumulative technique is slightly 

modified which will be described in this paper. The 

sum product and max product algorithm [4][5] 

originate from the coding theory. For decoding the 

turbo codes Trellis diagrams use the BCJR algorithm 

and the Viterbi algorithm which was the main 

technique to decode the practical coding schemes. 

Factor graphs had been reinvented a number of times 

and with successive input the full potential of the 

theory was exposed to the coding world. Whether it 

was the decoding of turbo codes or Low Density 

Parity Check codes the operations involved take a 

fixed path of solution i.e. the message passing 

phenomena over the relevant graph. The Viterbi and 

BCJR algorithms are examples of the same 

algorithm and involve message passing over the 

generalized graph. Berrou[6][8][10] invented the 

turbo codes and made the method of iterative 

decoding famous for the coding world. Factor graphs 

after the ideas of Wiberg could be used for iterative 

decoding over channels with memory. Moreover, the 
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sum-product algorithm which was earlier being used 

for cycle free factor graphs could now be used for 

the factor graphs with cycles.  

The basic algorithm for the message passing 

phenomenon comprises of three different parts [5][7] 

i.e. the forward-backward algorithm, RLS algorithm 

and fast Fourier (FFT) algorithm. The forward-

backward algorithm and Kalman filtering are found 

to be the same idea in two different representations. 

They find use in a variety of applications from 

sequential processing to iterative operations that 

involve a number of parameter alteration and yield 

mostly accurate results with reduced complexity. 

Earlier a common communication system had 

sequentially arranged subtasks of synchronization, 

equalization and decoding which were now designed 

to interact via multiple feedback loops with the 

advent of the turbo codes. The state space models 

[7][11] follow the trends of the Factorial hidden 

Markov modelsand operated on the product of 

several state spaces. A variety of signal processing 

problems can be pictorially represented using a 

suitable factor graphs and can be solved with the 

message passing algorithm such as the summary 

propagation algorithm.Coding out of all the signal 

processing problems happens to be the most 

important field which finds its use in the factor 

graphs along with the use in machine learning, 

statistics and statistical physics. There have been 

many algorithms introduced operated by message 

passing over a generalized factor graph which later 

were found to be special cases of sum product and 

max-product algorithm.Factor graph finds use in the 

functions involving a large number of discrete 

and/or continuous variables. A large variety of 

model based detection and estimation problems 

involve the usage of factor graphs via non trivial 

algorithm based on local computations that can 

easily be merged with the building blocks of the 

system model. The classical Gaussian and gradient 

techniques over expectation maximization to 

sequential Monte Carlo [11][12] method which is 

also known as particle filters, can be easily mixed 

and matched along with the models based on factor 

graphs. 

 

II. FACTOR GRAPHS 
A FORNEY FACTOR GRAPH [1] is a 

diagram as in Figure 1 that represents the 

factorization of a function of several variables. 

Assume, for example, that some function f (u, w, x, y 

, z ) can be factored as 

)(),,(),,(),,,,( 321 effdcfcbafedcbaf 
 

(1)

 
This factorization is expressed by the 

Forney Factor Graph shown in Figure 1. In general, 

an FFG [18][19]consists of nodes, edges and half 

edges that are connected only to one node and the 

Forney Factor graph is defined by the following 

rules: 

 There is a unique node for every factor. 

 There is a unique edge or half edge for 

every variable. 

 The node representing some factor g is 

connected with the edge, or half edge 

representing some variable x if and only if g 

is a function of x. 

The factors i.e. the sub-functions with 

smaller number of variables are known as local 

functions whereas product of all the local functions 

is known as the global function [13]. The 

assumption that has been taken care of in here is that 

the maximum number of factors in which a variable 

can appear is two. But the assumption can be by-

passed to the application comfort. In the following 

figure the local functions are f1, f2 and f3 while the 

global function is fwhich is the product of the local 

functions. 

1f 2f

3f

a b c

d e

 
Fig 1: Forney Factor Graph 

 

All the variables are assigned particular 

values before the message passing starts. All the 

possible configurations are made into the set which 

make up the domain of the global function f. In 

Figure 1 the global function represented by the 

Forney factor graph consists of five variables and 

thus the configuration set consists of five tuple 

configurations. If the variables are chosen to be 

binary then the configuration space is the set {0, 1}. 

The configuration space consists of non-negative 

real numbers i.e. R
5
. A configuration is called valid 

[6][15] if satisfy the condition to be non-zero. In a 

fixed configuration, every variable has some definite 

value denoted by small letters while the functions 

are denoted by capital letters. If a variable takes 

some values in a set then it can be denoted as 

follows: 

)(::  XxYY 
  

( 2 ) 

An alphabet is the collective set of any 

block codes comprising of all the possible code 

words. Any error correcting code word of block 

length n is a subset of that alphabet. Let X be some 

alphabet of the error correcting code word of length 

n and S be the subset of An. The code is said to be 

linear if the alphabet set is a field, usually a finite 

field and S is a subspace of the vector space F
n
. If 

the code is binary then the field is denoted as F
2
 i.e. 

the set {0,1} with modulo-2 arithmetic. By 

  c 

 

X3 X4 X5 X6 X7 
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elementary linear algebra, any linear code cab be 

written as  

C = {x ε F n : x*H
T
= 0}   ( 3 ) 

And as  

C = {u*G :u ∈F 
k
}  ( 4 ) 

whereH and G are matrices over F and where k is 

the dimension of C (as a vector space over F ). A 

matrix H as in (5) is called a parity-check matrix 

[16][17] for C, and a k × n matrix G is called a 

generator matrix for C. It is to state that as per the 

encoding rule a vector u of the information symbols  

belonging to the field F is mapped to the 

corresponding code word x. 

In case of a binary (7,4,3) Hamming code, the code 

has length n=7, dimension k=4 and minimum 

Hamming distance 3. The parity check matrix H of 

the code may be defined as follows: 



















1011100

0101110

0010111

H

 

( 5 

)

Thus a code word needs to satisfy the following 

𝑭𝒏→ {0, 1} :x →   
𝟏, 𝒊𝒇 𝒙 ∈ 𝑪
𝟎, 𝒆𝒍𝒔𝒆

  ( 6) 

From the parity check matrix, the check equations 

can be written as follows: 

F (x1, . . . ,xn)  = δ(x1x2 x3 x5) 

= δ(x2x3 x4 x6) 

= δ(x3  x4  x5 x7) 

 

Here each row of the parity check matrix is 

depicted by each factor and the symbol stands for 

modulo 2 additions. The Forney factor graph for 

(7,4,3) binary Hamming code is shown in figure 2 in 

which both the check nodes and variable nodes are 

shown.The connections between the two sets are 

determined by the parity check matrix.  

The summary product algorithm is 

applicable for cyclic as well as non-cyclic factor 

graphs. The decoding algorithms of a typical trellis 

based factor graphs implement sum product rule. In 

particular, when applied to a trellis, the sum-product 

algorithm becomes the BCJR algorithm and the 

max-product algorithm (or the min-sum algorithm 

applied in the logarithmic domain) becomes a soft-

output version of the Viterbi algorithm. The sum-

product, the max-product algorithm as well as 

various guesstimates of these algorithms is used for 

decoding a typical Low Density Parity Check Codes.  

The turbo code encoder consists of two (or 

more) systematic block codes which share message 

data via interleavers. In its most conventional 

realization, the codes are obtained from recursive 

systematic convolutional (RSC) codes - but other 

codes can be used as well. Akey development in 

turbo codes is the iterativedecoding algorithm. In the 

iterative decoding algorithm, decoders for each 

constituent encoder take turns operating on the 

received data. Each decoder produces an estimate of 

the probabilities of the transmitted symbols. The 

decoders are thus softoutput decoders. Probabilities 

of the symbols from one encoder known as extrinsic 

probabilitiesarepassed to the other decoder (in the 

symbol order appropriate for the encoder), where 

they are used as prior probabilities for the other 

decoder. The decoder thus passes probabilities back 

and forth between the decoders, with each decoder 

combining the evidence it receives from the 

incoming prior probabilities [20][21] with the parity 

information provided by the code. After some 

number of iterations, the decoder converges to an 

estimate of the transmitted code word. Since the 

output of one decoder is fed to the input of the next 

decoder, the decoding algorithm is called a turbo 

decoder. 

Fig 2: An FFG for the (7, 4, 3) binary 

Hamming code 

 

A channel model is a family p(y |x) of 

probability distributions over a block y = (y1, . . . ,yn) 

of channel output symbols given any block  

x = (x1, . . . ,xn) of channel input symbols. 

Connecting the factor graph (Tanner graph) of a 

code C with the factor graph of a channel model 

p(y | x) results in a factor graph of the joint 

likelihood function p(y | x)I (x). If we assume that 

the code-words are equally likely to be transmitted, 

we have for any fixed received block y 

)(

)()|(
)|(

yp

xpxyp
yxp 

 

( 7 )

 
)()|( xIxyp C

 
The joint code/channel factor graph thus represents 

the a posteriori joint probability of the coded 

symbols X1, . . . ,Xn. 

So far, we have freely introduced 

supplementary variables to obtain nicely 

structuredgraphical models. Now we will consider 

the elimination of variables [6][23][39]. For 

example, for some discrete probability mass function 
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f (x1, . . . , x8), we might be interested in the marginal 

probability 


765321 ,,,,,

814 ),...,()(
xxxxxx

xxfxp ( 8 ) 

Or, for some nonnegative function ),...,( 81 xxf , 

we might be interested in 

 p(x4)=     max        f (x1, . . . , x8) ( 9 ) 

765321
,,,,, xxxxxx  

The general idea is to get rid of some 

variables by some ―summary operator,‖ and the most 

popular summary operators are summation (or 

integration) and maximization (or minimization). 

Note that only the valid configurations contribute to 

a sum as in the above equation, and (assuming that f 

is nonnegative) only the valid configurations 

contribute to maximization. Now f can be written as 

)))(),,()((),,((

)),,,()()((),...,(

778766556544

43213221181

xfxxxfxfxxxf

xxxxfxfxfxxf 

( 10 ) 

 

Fig 3: Elimination of variables: ―closing the box‖ 

around subsystems 

Fig 4: ‗‗Summarized‖ factors as ―messages‖ in the                        

Forney Factor Graph 

 
 

 

 

 

 

 

 

Fig 5: Messages along a generic edge 

 

Note that the brackets in (10) correspond to the 

dashed boxes in Figure 4. Inserting (8) into (9) and 

applying the distributive law yields (11). 

𝑝 𝑥4 =     
𝑓3 𝑥1, 𝑥2 , 𝑥3 , 𝑥4 

𝑓1 𝑥1 𝑓2 𝑥2 
𝑥3𝑥2𝑥1

 . 

 
  𝒇𝟒 𝒙𝟒, 𝒙𝟓, 𝒙𝟔 𝒇𝟓 𝒙𝟓 𝒙𝟔𝒙𝟓

   𝒇𝟔 𝒙𝟔, 𝒙𝟕, 𝒙𝟖 𝒇𝟕 𝒙𝟕 𝒙𝟖𝒙𝟕  
  ( 11 ) 

 

This expression can be interpreted as 

enclosing the dashed boxes in Figure 3 by 

summarizing over their internal variables. The factor 

μf3→x4 is the summary of the big dashed box on the 

left in Figure 4; it is a function of x4 only. The factor 

μf6→x6 is the summary of the small dashed box on the 

right in Figure 4; it is a function of x6 only. Finally, 

the factor μf4→x4 is the summary of the big dashed 

box right in Figure 4; it is a function of x4 only. The 

resulting expression 

p(x4) = μf3→x4 (x4) ・μf4→x4 (x4)  ( 12 ) 

Corresponds to the FFG of Figure 4 with the dashed 

boxes closed. Replacing all sums in (11) by 

maximizations yields an analogous decomposition of 

(10). 

A global marginalization (by 

summation/integration or by maximizationmay be 

obtained by successive local marginalization of 

subsystems. This marginalization makes up an 

integral stage of the summary product algorithm 

[24][40]. Towards this end, the summaries i.e., the 

terms in brackets in (11) are taken to be the 

messages that are sent out of the corresponding box, 

as is illustrated in Figure 5. Message out of a 

terminal node are defined (e.g., f1) as the 

corresponding function itself [e.g., f1(x1)]. Open half 

edges (such as x3) do not carry a message towards 

the (single) node attached to them; alternatively, 

they may be thought of as carrying as message a 

neutral factor 1 i.e. unity. It is then easy to verify 

that allsummaries/messages in Figure 3 are formed 

according to the following general rule. 

 

III. MESSAGE PASSING ALGORITHM 
A. SUM-PRODUCT RULE 

In Figure 3 the message out of some node g (x, y1, . . 

. ,yn) along the branch x is the function 

   
1

1
)()...(),...,,(...)( 11

y y

ngygynxg

n

n
yyyyxgx                               

(13) 

whereμyk→g(which is a function of yk) is the 

message that arrives at g along the edge yk. The 

message out of a factor node g (x, . . . ) along the 

edge x is the product of g (x, . . . ) and all messages 

towards g along all edges except x  summarized over 

all variables except x . 
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We have thus seen the following: 

 Summaries/marginals such as (10) and (11) can 

be computed as the product of two messages as 

in (13). 

 Such messages are summaries of the subsystem 

they are ahead of.  

 Computation of messages involves the 

marginalization of other messages using 

summary-product algorithm. However, the 

messages out of terminal nodes do not require 

such estimations. 

 

It is easy to see that this procedure to 

compute summaries is not restricted to the example 

of Figure 3 but applies whenever the factor graph is 

free of cycles. In its general form, the summary-

product algorithm [3][12] computes two messages 

for each edge in the graph, one in each direction. 

Each message is computed according to the 

summary- product rule [typically the sum-product 

rule (13)]. A sharp distinction divides graphs with 

cycles from graphs without cycles. If the graph has 

no cycles, then it is efficient to begin the message 

computation from the leaves and to successively 

compute messages as their required incoming 

messages become available. In this way, each 

message is computed exactly once. It is then obvious 

from the previous section that summaries/marginals 

as in (9) or (10) can be computed as the product of 

messages as in (11) simultaneously for all variables.  

The final result is the a posteriori probability p(xl|y1, 

. . . , y4) for i = 1,…,4. The channel output symbols 

Ylare binary, and the four nodes in the channel 

model represent the factors                                                














ll

ll

ll
 xy if 0.1,

x y if 0.9,
)x|p(y (14) 

fori = 1, . . . , 4. If (Y1, . . . ,Y4) =(y1, . . . , y4) is 

known (fixed), the factor graphrepresents the a 

posteriori probability p(x1, . . . , x4|y1, . . . , y4), up to 

a scale factor, cf. (12). The messages areas 

computed according to the sum-product rule (13).  

The final result is the per-symbol a posteriori 

probability p(xl|y1, . . . , y4) for i = 1, . . . , 4; 

according to (12), this is obtained as (a suitably 

scaled version of) the product of the two messages 

alongthe edge Xl. 

 

B. MAX PRODUCT RULE 

Assume we wish to maximize some 

function ),,( 1 nxxf  , i.e., we wish to compute 

),,(maxarg)ˆ,,ˆ( 1
,,

1
1

n
xx

n xxfxx
n




          (15) 

where we assume that f has a maximum. Note that  

)(ˆmaxargˆ
kk

x
k xfx

k

                  (16) 

),,(max)(ˆ
1

,,1

n

exceptx
xx

kk xxfxf

k

n




 (17) 

If ),,( 1 nxxf  has a cycle-free factor graph 

[22][24][41], the function (17) can be computed by 

the max-product algorithm. For example, assume 

that ),,( 71 xxf  can be written as  

)(),,(),,()(

),,()()(),,(

777656543544

3213221171

xfxxxfxxxfxf

xxxfxfxfxxf 

(18) 

 
Fig 6: Summarised factors as messages in factor 

graph 

Assume that we wish to compute )(ˆ
33 xf . It is easily 

verified that 

)()()(ˆ
3333 xxxf DC  (19) 

With 


21 ,

321322113 ),,()()()(
xx

C xxxfxfxfx  (20) 

And  


54 ,

55435443 )(),,()()(
xx

FD xxxxfxfx  (21) 

With 


76 ,

7776565 )(),,()(
xx

F xfxxxfx (22) 

except that summation is everywhere replaced by 

maximization. The methodology of determining the 

messages is quite similar for the max-product 

algorithm and the sum-product algorithm. The 

method of computation of messages using max 

product algorithm is as follows. The message out of 

some node/factor fl along some edge Xk is formed as 

the product of fl and all incoming messages along all 

edges except Xk, maximized over all involved 

variables except Xk. Each message is computed in 

both the directions which thereby consists of two 

different messages for all the edges of the factor 

graph. Thus, the marginal using max product 

algorithm )(ˆ
kk xf is obtained concurrently is 

determined as the product of these two messages. It 

is to be noted that the message passing phenomena 

and the computation of the marginal is quite similar 

in sum product and max product algorithm. Indeed, 

the sum-product algorithm can be formulated to 

operate with abstract addition and multiplication 
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operators ― ‖ and― ‖,respectively, and setting ―

 ‖ then yields the max-product algorithm. 

Translating the max-product algorithm into the 

logarithmic domain yields the max-sum (or min-

sum) algorithm. All the information bits are analysed 

for the calculation of the a posteriori marginal 

probability p(b | y) of every branch b of the factor 

graph. This technique of sum-product algorithm 

[21][25] is quite similar to the BCJR rule of message 

computation.If the max-product rule is used, the 

forward recursion is essentially identical with the 

Viterbi algorithm, except that no paths are stored, 

but all messages (branch metrics) must be stored; the 

backward recursion is formally identical with the 

forward recursion; and we can obtain the quantity 

p(b |y ) ≜maxω ε µ: b fixed p(ω | y ) for every 

branch b of the trellis (and hence for every 

information bit). The max-product algorithm may 

thus be viewed as a soft-output Viterbi algorithm, 

and the Viterbi-algorithm [2][28] itself may be 

viewed as an efficient hard-decision only version of 

the max-product algorithm.In the beginning the 

edges are initialized with unity i.e. μ(.) = 1. It is 

commonly known as neutral factor or neutral 

message. Iterative decoding algorithm is required for 

the computation of messages in factor graphs with 

cycles. All messages are then repeatedly updated, 

according to some schedule. The computation stops 

when the available time is over or when some other 

stopping condition is satisfied (e.g., when a valid 

codeword was found). This technique is used to 

determine the marginal in case of a factor graph 

without cycles for each node while in case of the 

graph with cycles the summary requires certain 

approximations. If rule (13) [or (15)] is implemented 

literally, the values of the messages/functions μ(.) 

typically tend quickly to zero (or sometimes to 

infinity). 

In practice, therefore, the messages often need to be 

scaled or normalized instead of the message μ(.), a 

modified message 

μ(.) ≜γμ(.)                 (23) 

is computed, where the scale factor γ may be chosen 

freely for everymessage. The final result (21) will 

then be known only up to a scale factor, which is 

usually no problem. It is quite popular to write these 

messages in terms of the single parameters                              

LX≜log 
𝜇𝑋 (0)

𝜇𝑋 (1)
             (24) 

Or△ ≜ (μ(0) − μ(1))/(μ(0) + μ(1)) 

For the decoding of LDPC codes [29][30] the 

typicalupdate schedule alternates betweenupdating 

the messages out of equality constraintnodes and 

updating the messages outof parity-check nodes. 

 

 

 

 

IV. REED MULLER CODES 
A. ENCODING  

A generalised Boolean function is defined by 

mapping f:{0,1}
m
→Zq of {0,1}- valued variables 

110 ,,, mxxx  . A straightforward counting 

argument shows that every such function can be 

written in algebraic normal form as a sum of 

monomials of the form 
110 rjjj xxx   where 

110 ,, rjjj   are distinct. With each generalised 

Boolean function f, a length 2
m

Zq-valued vector 

 
1210 mfff   is defined in which  

),,,( 110  mi iiiff 
  

(25) 
 

Where  110 miii   is the binary expansion of the 

integer 





1

0

2
m

j

j

jii . Henceforth, a generalized 

Boolean function is defined and their corresponding 

vectors using f to refer to both. The generator matrix 

to the Reed Muller codes can be obtained using the 

Hadamard transform. The Hadamard[6][11] matrix 

is defined for different dimensions, the basic being  

2X2 matrix.  











01

11
2H

  

(26)  

The Hadamard transform for higher dimensions is 

obtained by repetition in a pattern as shown below: 













22

22

4
HH

HH
H

  

(27) 

And 


























1111

1111

1111

1111

4H

 

(28)  

Also  













44

44

8
HH

HH
H

  

(29) 

The Hadamard matrix of 8X8 dimensions is then 

obtained as follows: 
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















































11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8H

(30) 

 

The Hadamard matrix is used to obtain the 

generator matrix of the Reed Muller Codes. There 

happen to be eight different rows in the Hadamard 

matrix out of which the ones with more number of 

ones are picked. 

Thus the generator matrix so obtained 

consists of eight columns and four rows as the code 

word length is eight and the data word length is four. 

Following is the generator matrix for the Reed 

Muller (1, 3) code: 

 


























11111111

11111111

11111111

11111111

G (31)  

 

 It can be written in unipolar form as follows: 

 





















00101010

11001100

11110000

11111111

G (32)  

 

The code word so obtained is a matrix multiplication 

of the data word and the generator matrix. 

aGC    (33) 

The generator matrix can be written in the standard 

form as follows: 





















01111000

11010100

11100010

11110001

G

 

(34) 

The Reed-Muller codes were first 

introducedby Muller in 1954. These codes were 

presented with good distance parameters but 

efficient method of decoding this group of codes was 

not announced.  

The naïve method of decoding the RM (m; 

r) code is to enumerate all the code words, compute 

their distance to the received word and to output the 

one with the minimum distance. The running time of 

the naïve decoding algorithm is therefore quasi-

polynomial (but not polynomial) in the block length 

n. however, shortly after introduction of Reed-

Muller codes[12][25] the first efficient algorithm for 

decoding Reed-Muller codes was presented by 

Muller. Reed's algorithm also corrects up to half the 

minimum distance (i.e., up to 12 1 rm
errors) and 

further runs in time polynomial in the block length n. 

This technique of the decoding algorithm involves a 

majority logic scheme at a very high level. 

Let us now give a self-contained argument 

proving that the distance of the RM (m, r) code is 2
m-

r
. The distance of binary Reed-Muller codes is at 

most 2
m-r

. Since Reed-Muller codes [30] are linear 

codes, we can do so by exhibiting a non-zero code 

word of RM (m; r) with weight 2
m-r

. Consider the 

polynomial 

rm XXXXXf  211 ),,(   

The polynomial  mXXFf ,,12  is a non-zero 

polynomial of degree r, and clearly

  0,,1 mf    only when

121  r  . There are 2
m-r 

choices of 

mF2 that satisfy this condition, so 

   rm

F mfwt 


 2

2
 Let us now show that the 

distance of binary Reed-Muller codes is at least 2
m-r 

by showing that the weight of any non-zero code 

words in RM (m, r) is at least 2
m-r

. Consider any 

non-zero polynomial f(X1, . . .,Xm) of total degree 

at most r. We can write f as f(X1. . . Xm) = X1X2 . . . 

Xs + g(X1; : : : ;Xm) where X1X2 . . . Xsis a 

maximum degree term in f and s   r. Consider any 

assignment of values to the variables Xs+1, . . . ,Xm. 

The polynomial obtained as a result on X1, . . . , Xs is 

a non-zero polynomial, as the cancellation of the 

term X1X2 . . . Xs is not possible. Consequently for 

each of the 2
m-s

likelyallocationof values to the 

variables Xs+1, . . .,Xm, the polynomial so obtained is 

a non-zero polynomial. The non-zero polynomial 

always exhibits at the minimum of one value 

applicable to the variables such that the non-zero 

polynomial cannot be estimated to zero. Therefore, 

for each assignment Xs+1. . . Xm to the variables Xs+1, 

. . . ,Xm, there exists at least one assignment of 

values S ,,1  to X1, . . ., Xs such that 

  0,,1 mf   .This implies that                           
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with    rmsm

F mf 


 22

2
 . In summary, 

when the maximum degree r is constant, binary 

Reed-Muller codes [13][14]  have good distance, but 

a poor rate ( 02  mrm for large m). The code 

rate r is inversely proportional to the distance of the 

code. If the code rate is increased to enhance 

efficiency the distance of the code reduces which in 

turn compromises the reliability of the coding 

scheme. Therefore, it can be said that no code can be 

achieved with constant rate and constant distance. 

 

B. DECODING  
A maximum likelihood, soft-decision 

(MLSD) algorithm can be obtained by combining 

the method of super code decoding with the Fast 

Hadamard Transform (FHT) MLSD decoder 

[15][29] for RM(1,m).  super code decoding is a 

general method applicable to codes formed from a 

union of cosets of a base code. Each coset 

representative is subtracted from the received word 

in turn, and the best result (in some metric sense) 

obtained using a decoder for the base code over all 

these modified words is selected. The corresponding 

coset representative and this best result determine 

the final decoded word. The FHT algorithm gives a 

computationally efficient method for computing the 

correlations between a received word and all 2
m+1

 

words of the code RM(1,m). 

For a length 2
m
 code formed from l cosets, 

the complexity of a soft-decision ‗supercode+FHT‘ 

approach is approximately ln(2
m
)real operations. So 

this maximum likelihood supercode approach is 

computationally feasible only when it is relatively 

small. A convenient method for handling large 

number of binary cosets is to regard a received word 

as a code word of the full second-order code (with 

the addition of noise) and then use the well-known 

Reed Muller decoding algorithm [32][33]. This 

approach is guaranteed only to correct errors whose 

weights are less than half the maximum distance of 

the second-order Reed Muller code RM(2,m) i.e. 

whose weights are less than 2
m
. It is not maximum 

likelihood in general and gives no information when 

the decoded word happens to lie in a coset of 

RM(1,m) inside RM(2,m) that is not in the original 

union of cosets. Moreover, the Reed Algorithm as 

originally described is a hard decision algorithm. In 

other words, it operates on an input vector of binary 

valued components and does not use additional soft 

information that may be available from the 

demodulator.  

A more efficient approach to decoding for 

2
h
-ary codes has been the case of most practical 

interest. Therefore, coding domain decoders for 

RM2
h
(1,m) requiring the computation of only h 

length 2
m

 integer or real FHTs (for hard or soft 

decision decoding) were given. Consequently, the 

complexity of these decoders is on the order of 

hm2
m
 operations. The algorithms are not maximum 

likelihood, but a set of error patterns that can be 

corrected. In particular the algorithms are minimum 

distance decoders for both hamming and lee 

matrices (i.e. they can correct all errors of Hamming 

and Lee weightless [34][37] than half the 

appropriate minimum distance of the first order 

code).  

The decoding algorithm for quaternary 

codes (q=4) is a maximum likelihood, hard decision, 

coding-domain algorithm which makes neat use of 

the existence of distance-preserving Gray map 

between the length 2
m
 quaternary code ZRM4(1,m) 

and the length 2
m+1

 binary code RM2
h
(1,m+1). Since, 

RM4(1,4) can be represented as a union of 2
m
cosets 

of ZRM4(1,m), this map sends any union of l cosets 

of RM4(1,m) onto a union of 2
m
l cosets of 

RM(1,m+1) and allows the use of binary decoding 

technique (for example, binary FHTs) to be 

applied to a quaternary code. By carefully 

extending the Gray map to soft values, it is also 

possible to develop a soft-decision version of 

this algorithm. On using the standard Gray 

map 

  )0,1(3),1,1(2),1,0(1,0,00:   

then we can extend 0 to a soft Gray map on 

inputs r [0, 4) by writing: 



































43)0,4(

32)3,1(

21)1,1(

10),0(

)(

rforr

rforr

rforr

rforr

r

 

(35) 

 

We can apply this soft 


 to the 

components of real-valued input vectors and then 

use real-input FHTs on the resulting length 2m+1 

vectors. Unfortunately, this decoder requires the 

computation of 2m l FHT‘s and this makes the 

decoder too intensive in all but the simplest of 

instances. 

 

V. ITERATIVE DECODING 

TECHNIQUE 
The factor graph representation of the block 

codes is a convenient graphical representation that is 

very useful in the implementation and understanding 

of the maximum likelihood decoding of the these 

codes using Viterbi algorithm or symbol by symbol 

maximum a posteriori decoding using the BCJR 

algorithm. Representation of codes by more general 

graphical models is a convenient method in studying 

the performance of some decoding algorithms. 

Graph representation [39] is not limited to decoding 

algorithms but has many applications to signal 
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processing, circuit theory, control theory, 

networking and probability theory. In this chapter, 

the design of a general algorithm known as the sum 

product Algorithm is provided. 

The sum product algorithm [14][36][38]was first 

introduced by Gallager (1963) as a decoding method 

for Low Density Parity Check (LDPC) codes. Later 

Tanner (1981) introduced graphical models to 

describe this class of code. Wiberg et al. (1995) and 

Wiberg (1996) showed that the Viterbi and BCJR 

algorithms as well as decoding algorithms for turbo 

and LDPC codes can be unified in a single algorithm 

on certain graphs. The idea of graph representation 

of codes was further developed and generalized by 

Forney (2001).   

The factor graph approach to signal processing 

involves the following steps. 

1. Choose a factor graph to represent the 

systemmodel. 

2. Choose appropriate message passing and 

estimation rules. The message passing requires 

use and maintenance of computational rule 

tables.  

3. Choose a message update schedule. 

In order to draw the graph of the said code we first 

need to know the parity check matrix 

 

 

 

 

 

 

 

 

where rows act as function nodes and columns as bit 

nodes. The rows of the parity check matrix can be 

written in the form of the following equations: 

42101 : ccccf   

53102 : ccccf   

63203 : ccccf   

73214 : ccccf   

 

These check equations can be represented 

in the form of a factor graph. The symbol c in 

equations is analogous to the symbol y in the factor 

graph. 

 
Fig7: Factor graph for the code 

 

Instead of flipping bits, the sum-product 

algorithm (SPA) [31][34][35]propagates soft 

probabilities of the bits between bit nodes and check 

nodes through the Tanner graph, thereby refining the 

confidence that the parity checks provide about the 

bits. The exchange of the soft probabilities is termed 

as messagepassing or belief propagation. When no 

cycles exist in the Tanner graph, SPA computes the 

exact probabilities; when cycles are present, it 

computes only approximate solutions. However, 

even with cycles, the algorithm, given next, can still 

decode very effectively. 

Initialization: 

For bit node j with an edge to check node i: 

Set: 

; 

 

And  

 

 

 

 

whererjis the received bit corrupted by noise, and s2 

= N0/2 is the variance 

of the AWGN channel. 

 

 

 

 

 

 

 

)
4

exp(1

11

O

j
j

N

r
p




10 1 jj pp 

11

jij pP 

10 1 ijij PP 

H



















10001110

01001101

00101011

00010111

(36) 

(37) 

(38) 
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1. From check nodes to bit nodes: For each 

check node i with an edge to bit node j, 

compute  

 

 

 Compute          as a product of  for all           , 

that is 

 

 

Also compute,                                     

                

 

 

           (j‘= 1,2,. . .,n) 

2.  from bit nodes to check nodes: For each bit 

node j with an edge to check node i: 

Compute      as       multiplied by the 

product of      and      as       Multiplied by the 

product of        overall          that is: 

  

 

 

 

And scale      and      by a same factor so that                     

. 

 

 

Compute       as      times the product of       and       

multiplied by the product of       overall i, that is 

 

 

 

 

(i=1,2,. . .,m)    

 

 

 

And scale      and     by a same factor so that                   

. 

 

 

 

Decoding and soft outputs: For j = 1,2,. . .,n: 

 

 

 

 

If               , stop and output hard decision c and/or 

soft likelihood. 

 

 

Otherwise goto step 1. In the latter case, if the 

iterations exceed a preset number, declare a 

decoding failure. 

 

 

 

 

VI. SIMULATION RESULTS 

Bit error rate Vs Signal to noise Ratio curve has 

been plotted and the results have been compared 

with existing Maximum Likelihood Decoding 

technique for the Reed Muller codes. 

 

 
Fig 8: Bit error rate Vs SNR curve for reed muller 

code using sum-product algorithm and maximum 

likelihood decoding. 

 

 
Fig 9: Bit error rate Vs SNR curve for biorthogonal 

code using sum-product algorithm for different 

iterations. 

 

The plot shows that the performance 

improves with the growing number of iterations. The 

sum-product algorithm is an iterative method of 

decoding. The number of iterations can either be 

user defined or can be limited by using a desired 

threshold value. Biorthogonal codes are the first-

order Reed-Muller codes RM (1,m) with parameters 

(2
m
,m+1,2

m-1
). The hamming distance of 

Biorthogonal codes is n/2. Similarly the Single 

Parity Check Codes is also a subcode of Reed 

Muller Codes with Hamming distance of 2. The 

parameters of the Single Parity Check codes are 

(2
m
,2

m
,1) where 2

m
 is the block length. For a linear 

block code, a maximum-likelihood (ML) decoder 

takes n received bits as input and returns the most 

likely k-bit message among the 2
k
 possible 

messages. Each message is computed for every edge 

in both the directions according to the 
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summaryproductrule in a factor graph. A sharp 

distinction divides graphs with cycles from graphs 

without cycles. For a cycle-free factor graph the 

message computation technique is much more 

efficient. We begin with unity factor nodes or the 

leaves and successively compute messages as their 

required ―input‖ messages become available. In this 

way, each message is computed exactly once. It is 

then obvious from the previous section that 

summaries/marginal can be computed as the product 

of messages simultaneously for all variables. 

Fig 10: Bit error rate Vs SNR curve for Reed Muller 

code using sum-product algorithm for different 

iterations. 

Fig 11: Bit error rate Vs SNR curve for Space Parity 

Check code using sum-product algorithm for 

different iterations. 

 

VII. CONCLUSION 
In this work, popular signal processing 

problem such as decoding block codesis carried out 

using factor graph approach. The graphical theory 

allows ease of manipulation and interpretation. The 

coded signals are represented with the help of factor 

graphs and a network factor graph is created by 

mapping the vertices onto the network topology. The 

encoding of the Reed Muller codes is carried out by 

determining the generator matrix using the 

Hadamard matrix. Using the similar procedure the 

generator matrices of the extended Hamming Codes, 

bi-orthogonal codes and space parity check codes 

are obtained. These happen to be different categories 

of the Reed Muller codes. The decoding of the Reed 

Muller codes is carried out using the sum product 

algorithm as the message passing technique. The 

factor graph of the Reed Muller codes is obtained by 

the parity check matrix, the rows of which represent 

the check equations. The technique involves the 

message passing between the bit nodes and the 

check nodes in the form of a posteriori probabilities. 

The Bit Error Rate Vs Signal to Noise Ratio curves 

for the different coding schemes are obtained at the 

receiver side and significant improvement over SNR 

is observed. The message passing involves several 

iterations which are made to terminate after the 

equation check. As the number of iterations is 

increased the bit error rate reduces and the plots 

have been shown. 

Factor graph approach can apply to many 

efficient algorithms.Factor graph is only a 

simplifying tool to solve the problems suited for 

hierarchical modeling (―boxes within boxes‖) and is 

compatible with standard block diagrams. It has 

simplest formulation of the summary-product 

message update rule and high computational 

efficiency. Instead of dealing with a function as a 

whole, subsequent decomposition is carried out 

which decreases the computational complexity and 

thus the design is simplified. The message update 

methods may be max-product or sum-product 

algorithm where the idea of the marginalization 

remains the same but the method changes from 

integration to comparison. 

Factor graph approach is gradually finding 

its way into a number of communication and 

transmission applications.Location-awareness is a 

key feature of future-generation wireless networks, 

enabling a multitude of applications in the military 

(e.g., blue force tracking), public (e.g., search and-

rescue), and commercial (e.g., navigation) sectors. 

Cooperation among nodes has the potential to 

dramatically improve localization performance 

A vast fieldof coding and signal processing 

problems such as Kalman filtering, recursive least 

squares, joint decoding and parameter estimation, 

the iterative decoding of LDPC codes, turbo codes, 

and similar codes; joint decoding and 

equalization;hidden-Markov models and more 

implement factor graph based models. Factor graph 

based graphical models are found to be can 

characterize practical detection/estimation 

algorithms in a wide area of real time applications 

and other such complex real-world systems. Most 

good known signal processing techniques—

including gradient methods, Kalman filtering, and 

particle methods—can be used as components of 

such algorithms.  Forney factor graphs involve 

hierarchical modeling which made it easy to be used 
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in this work. Moreover, compatibility with standard 

block diagrams provides additional advantage of the 

decoding and estimation technique. 
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