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ABSTRACT 
Software engineering is a field of engineering, for designing and writing programs for computers or other 

electronic devices. A software engineer, or programmer, writes software (or changes existing software) and 

compiles software using  methods  that make  it better quality. Is the application of engineering to 

the design, development, implementation, testingand main tenance of software in a systematic method. Now a 

days the robotics are also plays an important role in present automation concepts. But we have several challenges 

in that robots when they are operated in some critical environments. Motion planning and task planning are two 

fundamental problems in robotics that have been addressed from different perspectives. For resolve this there are 

Temporal logic based approaches that automatically generate controllers have been shown to be useful for 

mission level planning of motion, surveillance and navigation, among others. These approaches critically rely on 

the validity of the environment models used for synthesis. Yet simplifying assumptions are inevitable to reduce 

complexity and provide mission-level guarantees; no plan can guarantee results in a model of a world in which 

everything can go wrong. In this paper, we show how our approach, which reduces reliance on a single model by 

introducing a stack of models, can endow systems with incremental guarantees based on increasingly 

strengthened assumptions, supporting graceful degradation when the environment does not behave as expected, 

and progressive enhancement when it does. 

Keywords: Robot Mission, Software Engineering, Temporal Logic Based Approaches, Automatic  ntrollers.

  

 

I. INTRODUCTION 
Software engineering is a field of 

engineering, for designing and writing programs for 

computers or other electronic devices. A software 

engineer, or programmer, writes software (or 

changes existing software) and compiles software 

using methods that make it better quality. Is the 

application of engineering to the design, 

development, implementation, testingand main 

tenance of software in a systematic method. Now a 

days the robotics are also plays an important role in 

present automation concepts. Motion planning and 

task planning are two fundamental problems in 

robotics that have been addressed from different 

perspectives. Bottom-up motion planning 

techniques concentrate on creating control inputs or 

closed loop controllers that steer a robot from one 

configuration to another [1], [2], while taking into 

account different dynamics and motion constraints. 

Controller synthesis and planning approaches based 

on temporal logic have proven useful for generating 

discrete event-based robot behaviors from high-

level specifications (e.g. [4, 30, 29]). Such 

approaches rely on finite-state models that purport 

to represent the operating environment and how the 

robot can interact with it. However, any such model 

is by definition an abstraction of the real 

environment and its dynamics, and any such model 

entails a risk that it is not a true representation of the 

environment as encountered at runtime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: The Fundamental Steps in Software 

Engineering. 
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In some scenarios, this risk, when materialized, may 

lead to catastrophic failure of the mission. One 

means to cope with this uncertainty [12] is to use 

machine learning techniques that revise (or indeed 

generate from scratch) the models on which 

synthesis relies so that, over a period of time, the 

models converge upon a \realistic" description of the 

environment [27, 11, 14]. One drawback of using 

such techniques is the computational cost of 

learning, and the delay before the mission can begin 

in earnest, which may be prohibitive in some 

domains (e.g. safety-critical systems).Another 

drawback is that the learned model may be of such 

complexity that synthesis becomes computationally 

infeasible, and in the worst case nothing can be 

guaranteed in a world where anything can go wrong. 

There is therefore a benefit in having an element of 

manual abstraction involved in synthesizing robotic 

behaviors. To that end, we have proposed an 

approach [7] in which models at different levels of 

abstraction are used to synthesize a controller 

capable of gracefully degrading its guarantees when 

the runtime environment diverges from one of the 

more abstract models, and progressively enhancing 

its guarantees when the environment behaves as 

envisaged in the more idealized models. 

Our approach uses a stack of models where 

higher models are more idealised and can be 

simulated by the lower models. A mission 

requirement is associated with each tier of the stack. 

Higher tiers allow to produce controllers 

guaranteeing stronger requirements, while lower 

tiers only allow for controllers with weaker 

requirements because of their more realistic 

description of the environment dynamics. Each tier 

of the stack can be regarded as an independent 

controller synthesis problem, but our approach 

combines the resulting controllers in such a way that 

a failure in a higher controller can be handled by a 

graceful degradation to the controller of a lower tier, 

resulting in a lower guaranteed `service level’. 

Likewise, if the environment conforms to a higher 

tier, we may attempt to synthesise a controller for a 

higher tier and so enhance the guaranteed service 

level. 

In this paper, we show how synthesized 

controller stacks can be used to provide robust 

behavior for robot missions from high-level 

temporal logic specifications. We apply it to an 

existing case study involving a robot engaged in a 

surveillance mission and show how, in addition to 

automatic synthesis for cyclic missions (i.e. 

missions in which the goals are achieved infinitely 

many times, our approach enables the robot to 

handle invalid environment models. Our Paper 

mainly focus on to implement an novel method to 

resolve all these thing in an easy manner. 

 

II. LITERATURE SURVEY 
Software testing, Systematic testing is one 

of the most important and widely used techniques to 

check the quality of software. Testing, however, is 

often a manual and laborious process without 

effective automation, which makes it error-prone, 

time consuming, and very costly. Estimates are that 

testing consumes 30-50% of the total software 

development costs. The tendency is that the effort 

spent on testing is still increasing due to the 

continuing quest for better software quality, and the 

ever growing size and complexity of systems. For 

effective testing of software there are several 

approaches(Steps) are done previously. Such as 

 

1). Labelled Transition Systems 

2). Parallel Composition 

3). Legal LTS 

4). Simulation & LTS Control. 
 

1). Labelled Transition Systems 
Labelled transition system is a structure 

consisting of states with transitions, labelled with 

actions, between them. The states model the system 

states; the labelled transitions model the actions that 

a system can perform. Definition 1. A labelled 

transition system is a 4-tuple hQ, L, T, q0i where – 

Q is a countable, non-empty set of states; – L is a 

countable set of labels; – T ⊆ Q × (L ∪ {τ}) × Q, 

with τ /∈ L, is the transition relation; – q0 ∈ Q is the 

initial state. 
 

2). Parallel Composition 
( P || Q) expresses the parallel composition 

of the processes P and Q. It constructs an LTS 

which allows all the possible interleavings of the 

actions of the two processes. Actions, which occur 

in the alphabets of both P and Q, constrain the 

interleaving since these actions must be carried out 

by both of the processes at the same time. These 

shared actions synchronize the execution of the two 

processes. If the processes contain no shared actions 

then the composite state machine will describe all 

interleavings. In the following example, x is an 

action shared by the processes A and B. 

A = (a -> x -> A). 

B = (b -> x -> B). 

||SYS = (A || B). 

 

 

 

 

 

 

 

 

Fig: Composition Parallel. 
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The diagram depicts the LTS for the 

composite process SYS. It can be easily seen that, in 

this simple example, the two possible execution 

traces are < a,b,x> and <b,a,x>. That is the actions a 

and b can occur in any order. Composite process 

declarations are distinguished from primitive 

process declarations by prefixing with the symbol ||. 

Primitive processes may not contain the parallel 

composition operator and composite processes may 

not use action prefix, choice or recursion. This 

separation is partly to ensure that FSP can only 

generate finite systems. The parallel composition 

operator is n-ary. The following example, with three 

processes, is a system describing the behaviour of a 

garage shared between two cars. 

CAR(I=1) = (car[I].outside -> car[I].enter -> 

car[I].ingarage -> car[I].exit -> CAR). 

GARAGE(N=2) = (car[x:1..N].enter -> car[x].exit -

> GARAGE). 

||SHARE = (CAR(1) || CAR(2) || GARAGE). 
 

Note that an action label may consist of 

more than one identifier (optionally indexed) joined 

by ".". Processes referred to in composite process 

definitions may be either primitive or composite. So, 

for example, SHARE can be constructed in two 

stages: 

||CARS = (CAR(1) || CAR(2)). 

||SHARE = (CARS || GARAGE). 
 

3.(Legal LTS) 

Is defined as ,Given LTSs M = (SM;A,∆M, 

SM0 ) and E = (SE; A; ∆E; sE0 ), where A is 

partitioned into actions controlled and monitored by 

M (A = AC Ủ AM), we say that M is a legal LTS for 

E if for all (SE; SM) € E//M. 
 

4.Simulation 
The simulation is defined as the relation 

between two LTSs is formally defined as 

follows,Let α be the universe of all LTSs with 

communicating alphabet A. Given E and F in α,we 

say that E simulates F, written E ≥F, when (E,F) is 

contained in some simulation relation R Belongs to 

α*α}. 
 

Proposed Method 
The central concept in our approach is that 

of the control stack, which has in each tier a 

controller synthesis problem for a particular mission 

requirement and environment model. 

 

 

 

 

 

 

 

 

Fig: Multi-tier control problem 

Overall the control stack specifies the 

robot's mission. The key requirements the approach 

imposes in order to guarantee graceful degradation 

and progressive enhancement are that (see below 

Figure ): (i) higher-level environment models must 

be simulated by lower-level environment models, 

capturing a notion of idealisation of higher-level 

models; (ii) higher-level controllers used to achieve 

enhanced functionality must be simulated by lower 

levels controllers, ensuring a consistent overall 

strategy; (iii) the runtime infrastructure must be 

capable of detecting when an inconsistency between 

an environment model (in any tier) and the runtime 

environment occurs; (iv) a sound automated 

replanning procedure for each tier that is expressive 

enough to deal with the system requirements for its 

tier must be provided, allowing progressive system 

enhancement after inconsistencies have been 

detected. Our implementation of the approach 

provides the runtime infrastructure (iii) and planning 

procedure (iv), guarantees controller simulation (ii), 

and checks that the models given in a control stack 

specification satisfy (i). 

The environment models are expected to be 

ranked in terms of the degree of idealisation of the 

environment they represent. The environment model 

M0 is the least idealised and require that 

environment models further up the hierarchy allow 

strictly less behaviour. This can be formally 

captured via a simulation relation, Mi M j for i < j. 

We require environment models to have the same 

communicating alphabets partitioned identically into 

con-trolled and monitored actions. Controlled 

actions are those that the robot may choose to 

perform, while monitored ac-tions are events that 

the robot observes in the environment. In summary, 

the less idealised the environment model is, the 

more behaviour (in terms of unexpected actions and 

non-determinism) may arise.Each tier i has an 

associated requirement (Gi) to be achieved by the 

system assuming that the runtime environment con-

forms to the environment model for that tier (Mi). 

Each tier introduces a control problem Ei = 

hMi; Gii. A solution to a control problem (a 

controller) is a deterministic LTS that, when 

composed with its environment, guarantees 

requirement Gi (i.e. MikCi j= Gi). The control stack 

introduces an additional constraint: each controller 

must be simulated by controllers in lower tiers (Ci Cj 

for i j). Intuitively, this requires that a controller 

never do something that a lower-tier controller 

would not do, thus ensuring that if a controller must 

be stopped, because the assumptions for its tier are 

discovered not to hold, decisions made by it up to 

that point have been consistent with lower-tier 

controllers. This allows for graceful degradation, 

falling back to lower-tier controllers when needed. 

Section 4 describes how this constraint is satisfied. 
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Control stack synthesis is executed bottom-up 

through the tiers. The operation attempts to build a 

controller that solves the control problem in a tier 

while being simulated by the controller for the tier 

immediately below. We do not require that control 

problems for all tiers have solution. It is possible 

that the system starts in a degraded mode, with 

controllers solving problems up to level i. The 

system, as the current state evolves, may 

progressively enhance its behavior by synthesizing 

controllers for tiers beyond tier i. 

After synthesis, the enactment procedure 

continuously monitors the environment and 

concurrently executes the stack of controllers giving 

priority to the controller of the upper-most enabled 

tier. It continuously updates the current state based 

on monitored actions and sensed state, disabling 

tiers at level i and above should an inconsistency be 

detected at tier i (Section 4 shows how this is 

achieved). At any point, to progressively enhance 

functionality, a re-planning attempt may be made 

for the lowest disabled tier. Based on the cur-rent 

state of the enabled tier immediately below, the state 

of the disabled tier is automatically approximated 

and an attempt is made to build a controller that will 

work despite the uncertainty about the current state 

of the tier. This demands that the controller 

synthesis procedure be capable of solving problems 

exhibiting non-determinism. Should a controller 

exist, it is put into the controller hierarchy and the 

tier is enabled. The approach does not prescribe 

when re planning must be attempted. In principle 

this can be done at any time, however in practice re 

planning may be associated with a clock or with 

heuristics related to the problem domain. 

 

Implementation 
 

The implementation of our framework consists of 

two main components: 1).planner , 2).Entactor 

 

 
Fig: The Fundamental Steps in the way of 

Implementation. 

 

1) Planner: a planner, which implements the controller 

synthesis algorithms The Modal Transition System 

Analyser (MTSA), is a tool for developing and 

analysing compositional models of concurrent 

systems, using the Finite State Processes (FSP) 

process algebra. Importantly for our approach, 

MTSA implements controller synthesis algorithms 

for Generalized Re-activity(1) (GR(1)) goals, which 

cover an expressive subset of linear temporal logic 

including safety and liveness proper-ties. Our 

general approach is agnostic as regards the synthesis 

procedure, but GR(1) is expressive enough for many 

domains. We extended MTSA to support the 

specification and synthesis of complete control 

stacks A control stack C is specified in MTSA as 

follows. 

 

controlstack ||C@{Controlled} { 

tier(ENV, REQ) 

... 

} 

 

where Controlled refers to a set of 

controlled actions, and where each tier consists of 

environment model ENV and mission requirement 

specification REQ. A control stack may consist of 

any number of tiers ordered such that the last tier 

has the most realistic environment model. 

Environment models and requirements are defined 

using existing support in MTSA for process and 

property specification in FSP and FLTL (fluent 

linear temporal logic),Synthesis of the control stack 

is achieved by solving the controller synthesis 

problem of each tier bottom-up from the lowest tier. 

If no solution is found for the problem in a 

particular tier, synthesis of the stack terminates at 

that tier. The procedure also includes a sanity check 

that the environments of tiers simulate the one 

immediately above. 

 

Synthesis for a single tier i consists of the 

following steps: 

1. Compose the tier's environment model Ei in 

parallel with the controller Ci 1 generated by the tier 

below (if there is a tier below) to create E0 i. This 

ensures that the controller for tier i will be simulated 

by the controller of the tier below. 

2. Solve the GR(1) controller synthesis problem for 

the tier's requirement on E0i, to produce controller 

Ci. 

3. Complete controller Ci to produce C”i. The 

completion consists of considering the monitored 

actions enabled in each state of the controller, and 

adding transitions to a designated exception state for 

any monitored actions which are not enabled. These 

transitions capture behaviors of the environment that 

have not been anticipated in the present tier's 

environment model. If the runtime environment 

does not behave as the model describes, one of these 

transitions will be taken to the exception state. A 

single extra transition, which we call an exception 

marker, is added at the exception state which 

indicates to the enactor that a particular tier has been 

disabled. It is these transitions that enable the 
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enactor to detect inconsistencies The final control 

stack state machine CS is a parallel composition of 

the completed controllers C”i, i.e. CS = 

complete(C1)||…..||complete(Cn)=1
′
||….||  

′
 .This 

composition guarantees the requirements of every 

tier of the stack until the exception marker for tier i 

occurs, at which point it only guarantees the 

requirements of the tiers up to i-1. 

 

2. Enactor 
An enactor, which handles run-time 

execution of the control stack. The enactor extends 

[3] to execute control stacks rather than individual 

controllers. It keeps track of the stack's current state, 

executing controlled actions (via domain-

specification implementations as in [3]) and 

responding to monitored environment events. When 

the current state is controlled, the enactor selects an 

enabled action at random. When the state is 

uncontrolled or a mixed controlled/uncontrolled 

state, the enactor waits to receive an environment 

event. In states where the only enabled action is an 

exception marker for some tier i, the enactor notes 

the degradation of the service to i-1 and reports this 

to the rest of the framework. In e ect, this disables 

the controller for tier i. 

The planner may attempt at any point an 

enhancement by re-synthesizing a controller for tier 

i (or above). 

 

Experimental Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: Nao executing mission. 

 

We have experimented with our synthesis 

and enactment infrastructure [3] in various robotic 

settings, including an AR Drone 2.0, a Katana 

robotic arm and a Nao H25 humanoid robot. A 

video of the latter executing a synthesized mission 

control stack similar to the one described above can 

be found at 

XXXXXXXX XXXXXXXX XXXXXXXX 

XXXXXXXXXXXXXXXX XXXXXXXX 

XXXXXXXX XXXXXXX XXXXXXXX 

XXXXXXXX XXXXXXXX XXXXXXXX 

XXXXXXX XXXXXXXX XXXXXXXX 

XXXXXXXX XXXXXXXX XXXXXXX 

XXXXXXXX XXXXXXXX XXXXXXXX 

XXXXXXXX XXXXXXX XXXXXXXX 

XXXXXXXX XXXXXXXX XXXXXXXX 

XXXXXXX XXXXXXXX 

http://www.doc.ic.ac.uk/~das05/naoq3.avi. 

Controller enactment for these settings 

requires implementing each of the controlled actions 

in the control stack specification in terms of the 

existing behaviors provided by the robot's API. For 

instance, for the control of the Nao robot, the 

detection of various types of reward is achieved by 

recognizing balls of different colors using the Nao's 

on-board camera. The balls are presented to the Nao 

upon arrival in each region. The location of the Nao 

within the environment (an o ce) is determined 

using trilateration with respect to a number of 

landmarks in positions known a priory (i.e. a 

structured environment). The landmarks them-selves 

are recognized using the on-board camera. 

Similarly, rewards and locations can be recognized 

on the AR Drone using its front and bottom cameras 

respectively. The synthesized mission control stack 

is executed by the enactor, which starts by assuming 

the runtime environment behaves like the model in 

the upper tier. Initially, in the video, we allow this 

assumption to hold by providing the Nao with the 

reward it is expecting. Later, we break the bound on 

the number of damage events expected in the 

uppermost tier, forcing the enactor to gracefully 

degrade the level of service. Execution continues 

seamlessly such that the Nao immediately seeks a 

repair, as demanded by the lower tier requirement. 

The experiments demonstrate that our general 

approach can be deployed in a robotics setting on 

top of a high-level API that encapsulates the 

complexities of, for instance, con-trol of the system 

dynamics that allows stable movement of the AR 

Drone or the localization of the Nao robot. The 

resulting system can then ensure that mission-level 

guarantees can be gracefully and automatically 

degraded (or enhanced) when necessary to cope 

with unexpected mission-level events in the 

environment. 

 

IV.CONCLUSION & FUTURE SCOPE 

 

In this paper we have presented an 

approach for robust high-level control synthesis for 

robot missions, and applied it in a various scenarios. 

In contrast to the `all or nothing' approach of other 

work based on temporal logic, our approach allows 

a mission specification to include a range of 

requirements of different `strengths' which entail 

different levels of risk when operating in the 

runtime environment. Our implementation ensures 

that when the stronger requirements of higher tiers 
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cannot be met due to environmental uncertainty, the 

level of service degrades gracefully to a level at 

which requirements can be guaranteed. It then 

permits progressive enhancement at a later stage. In 

future work we are interested in quantifying the 

level of risk associated with the tiers of our control 

stack, and combining the approach with techniques 

that can learn appropriate environment models for 

disabled tiers in the stack before progressive 

enhancement. 
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