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ABSTRACT 
Thermosolutal convection in Maxwellian viscoelastic fluid under the simultaneous effects of uniform vertical 

magnetic field and suspended particles through porous medium is mathematically investigated. A sufficient 

condition for the invalidity of the ‘principle of exchange of stabilities’ is derived, in the context, which states 

that the exchange principle is not valid provided the thermal Rayleigh number R , solutal Rayleigh number 

SR , the medium permeability 
1

P  and the suspended particles parameter B  are restricted by the inequality 

  1
2

1
 SRR

BP



. 
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I. INTRODUCTION 

The study of onset of convection in a 

porous medium has attracted considerable interest 

because of its natural occurrence and of its intrinsic 

importance in many industrial problems, 

particularly in petroleum-exploration, chemical and 

nuclear industries. The derivation of the basic 

equations of a layer of fluid heated from below in 

porous medium, using Boussinesq approximation, 

has been given by Joseph [1]. The study of a layer 

of fluid heated from below in porous media is 

motivated both theoretically and by its practical 

applications in engineering disciplines. Among the 

applications in engineering disciplines one can find 

the food process industry, chemical process 

industry, solidification and centrifugal casting of 

metals. The development of geothermal power 

resources has increased general interest in the 

properties of convection in porous medium. 

Lapwood [2] has studied the stability of convective 

flow in a porous medium using Rayleigh’s 

procedure. The Rayleigh instability of a thermal 

boundary layer in flow through a porous medium 

has been considered by Wooding [3]. 

A detailed account of the theoretical and 

experimental results of the onset of thermal 

instability (Bénard convection) in a fluid layer 

under varying assumptions of hydrodynamics and 

hydromagnetics has been given in the celebrated 

monograph by Chandrasekhar [4]. Veronis [5] has 

investigated the problem of thermohaline 

convection in a layer of fluid heated from below 

and subjected to a stable salinity gradient. The 

buoyancy forces can arise not only from density 

differences due to variations in temperature but 

also from those due to variations in solute 

concentration. Thermosolutal convection problems 

arise in oceanography, limnology and engineering. 

The investigation of thermosolutal convection is 

motivated by its interesting complexities as a 

double diffusion phenomena as well as its direct 

relevance to geophysics and astrophysics. Stomell 

et al. [6] did the pioneering work regarding the 

investigation of thermosolutal convection. This 

work was elaborated in different physical situations 

by Stern [7] and Nield [8]. Examples of particular 

interest are provided by ponds built to trap solar 

heat (Tabor and Matz [9]) and some Antarctic lakes 

(Shirtcliffe [10]). The physics is quite similar in the 

stellar case in that Helium acts like salt in raising 

the density and in diffusing more slowly than heat. 

The conditions under which convective motion in 

thermosolutal convection are important (e.g. in 

lower parts of the Earth’s atmosphere, astrophysics 

and several geophysical situation) are usually far 

removed from the consideration of a single 

component fluid and rigid boundaries and therefore 

it is desirable to consider a fluid acted on by a 

solute gradient and free boundaries. A double-

diffusive instability that occurs when a solution of 

a slowly diffusing protein is layered over a denser 

solution of more rapidly diffusing sucrose has been 

explained by Brakke [11]. Nason et al. [12] found 

that this instability, which is deleterious to certain 

biochemical separations, can be suppressed by 

rotation in the ultra centrifuge. 

The problem of thermosolutal convection 

in fluids in a porous medium is of importance in 
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geophysics, soil sciences, ground water hydrology 

and astrophysics. The development of geothermal 

power resources has increased general interest in 

the properties of convection in porous media. The 

scientific importance of the field has also increased 

because hydrothermal circulation is the dominant 

heat-transfer mechanism in young oceanic crust 

(Lister [13]). Generally it is accepted that comets 

consists of a dusty ‘snowball’ of a mixture of 

frozen gases which in the process of their journey 

changes from solid to gas and vice- versa. The 

physical properties of comets, meteorites and 

interplanetary dust strongly suggest the importance 

of porosity in the astrophysical context (McDonnel 

[14]). The effect of a magnetic field on the stability 

of such a flow is of interest in geophysics, 

particularly in the study of Earth’s core where the 

Earth’s mantle, which consists of conducting fluid, 

behaves like a porous medium which can become 

convectively unstable as a result of differential 

diffusion. The other application of the results of 

flow through a porous medium in the presence of a 

magnetic field is in the study of the stability of a 

convective flow in the geothermal region. 

In geophysical situations, more often than 

not, the fluid is not pure but may instead be 

permeated with suspended (or dust) particles. The 

effect of suspended particles on the stability of 

superposed fluids might be of industrial and 

chemical engineering importance. Further, 

motivation for this study is the fact that knowledge 

concerning fluid-particle mixtures is not 

commensurate with their industrial and scientific 

importance. Scanlon and Segel [15] have 

considered the effect of suspended particles on the 

onset of Bénard convection and found that the 

critical Rayleigh number was reduced solely 

because the heat capacity of the pure gas was 

supplemented by that of the particles. Sharma et al. 

[16] have studied the effect of suspended particles 

on the onset of Bénard convection in 

hydromagnetics. The effect of suspended particles 

was found to destabilize the layer whereas the 

effect of a magnetic field was stabilizing. 

Palaniswamy and Purushotham [17] have studied 

the stability of shear flow of stratified fluids with 

fine dust and found the effect of fine dust to 

increase the region of instability. Recently 

spacecraft observations have confirmed that the 

dust particle play an important role in the dynamics 

of atmosphere as well as in the diurnal and surface 

variations in the temperature of the Martian 

weather. It is, therefore, of interest to study the 

presence of suspended particles in astrophysical 

situations. The fluid has been considered to be 

Newtonian in all the above studies. 

With the growing importance of 

viscoelastic fluids in geophysical fluid dynamics, 

chemical technology and petroleum industry, the 

investigations on such fluids are desirable. The 

stability of a horizontal layer of Maxwell’s 

viscoelastic fluid heated from below has been 

investigated by Vest and Arpaci [18]. The nature of 

the instability and some factors may have different 

effects on viscoelastic fluids as compared to the 

Newtonian fluids. For example, Bhatia and Steiner 

[19] have considered the effect of a uniform 

rotation on the thermal instability of a Maxwell 

fluid and have found that rotation has a 

destabilizing effect in contrast to the stabilizing 

effect on Newtonian fluid. Sharma and Kumar [20] 

have studied the thermosolutal instability in a 

Maxwellian fluid in porous medium under the 

effect of Hall current. In another study, Kumar and 

Singh [21] have studied the superposed 

Maxwellian viscoelastic fluids through porous 

medium in hydromagnetics. Linear stability 

analysis of Maxwell fluid in the Be′nard problem 

for a double-diffusive mixture in a porous medium 

based on the Darcy Maxwell model has been 

studied by Wang and Tan [22]. The problem of 

double-diffusive convection and cross-diffusion in 

a Maxwell fluid in a horizontal layer in porous 

media by using the modified Darcy-Brinkman 

model has been considered by Awad et al. [23] and 

analytical expression of the critical Darcy-Rayleigh 

numbers for the onset of stationary and oscillatory 

convection are derived. Wang and Tan [24] have 

studied the double-diffusive convection of 

viscoelastic fluid with Soret effect in a porous 

medium by using a modified-Maxwell-Darcy 

model and have shown that for oscillatory 

convection the system is destabilizing in the 

presence of Soret effect. The relaxation time also 

enhances the instability of the system. The thermal 

instability of Maxwellian heterogeneous 

viscoelastic fluid through porous medium has been 

investigated by Kumar [25] and found that for 

stationary convection, the medium permeability 

and density distribution have destabilizing effect.    

Keeping in mind the importance and 

applications in chemical engineering, biomechanics 

and various applications mentioned above, the 

effects of magnetic field and suspended particles on 

thermosolutal convection in Maxwellian 

viscoelastic fluid through porous medium has been 

considered in the present paper.  

 

II. FORMULATION OF THE PROBLEM AND 

PERTURBATION EQUATIONS 

Let Tij, ij, eij , , ,  p, ij, i
v , xi and 

dt

d
 denote 

respectively the total stress tensor, the shear  stress 

tensor, the rate-of-strain tensor, the viscosity, the 

stress relaxation time, the isotropic pressure, the 

Kronecker delta, the velocity vector, the position 
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vector and the mobile operator. Then the 

Maxwellian viscoelastic fluid is described by the 

constitutive relations  

 

  Tij = - p ij + ij  ,  

          
ijij

e
dt

d
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Here we consider an infinite horizontal layer of an electrically conducting incompressible Maxwellian 

viscoelastic fluid-particle layer of depth d in porous medium which is acted on by a uniform vertical magnetic 

field  HH ,0,0


 and gravity field g


(0,0, -g).  
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
  denote respectively the perturbations in density  , 

pressure p, temperature T, solute concentration C, fluid velocity (initially zero), particle velocity (initially zero) 

and magnetic field H


. Let 
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 ,,,,,  stand for thermal diffusivity, solute diffusivity, 

thermal coefficient of expansion, an analogous solvent expansion, uniform temperature gradient and uniform 

solute gradient respectively. The linearized thermosolutal hydromagnetic perturbation equations through porous 

medium containing suspended particles, following Boussinesq approximation, are 
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where  txN ,  denote the number density of the suspended particles,   is the medium porosity and   6K  

is the Stokes’ drag coefficient,   being the particle radius.  

Here    
ssf

o

ss
CCand

C

C
Ezyxx ,;,1,,,

0





   stand for density and heat capacity of fluid and 

solid matrix, respectively. E   is an analogous solute parameter, 
f

p

C

tmNC
b

0


 , m is the mass of particles per unit 

volume. eandC ,  stand for speed of light, electrical resistivity and charge of an electron.  

The equation of state is 

     ,1
000

CCTT                                                                                          (9) 

where the suffix zero refers to values at the reference level z = 0, i.e. 
000

, CandT stand for density, 

temperature and solute concentration at the lower boundary z = 0. 

The change in density   , caused by the perturbation  ,  in temperature and solute concentration, 

respectively, is given by 

  
0

.                                                                                                              (10) 
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III. DISPERSION RELATION 

Analyzing the disturbances into normal modes, we assume that the perturbation quantities are of the form 

                 )11(,exp,,,,,,,,,, ntyikxikzzzXzZzKzWhw
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yx

kk ,  are horizontal wave numbers,   2
1

22

yx
kkk  is the resultant wave number and n is, in general, a 

complex constant. 
y

h

x

h
and

y

u

x

v xy



















   are the z-components of the vorticity and current density, 

respectively. 
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and suppressing the superscript. The physical significance of suspended particles parameter B is that it does not 

depend on the model under consideration; however, it does depend upon the porosity of the medium. 

Equations (2)-(9) with the help of equations (10) and (11), in non-dimensional form become 
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Here we consider the case where both the boundaries are free and the medium adjoining the fluid is 

non-conducting. The case of two free boundaries is slightly artificial, except in stellar atmospheres (Spiegel 

[26]) and in certain geophysical situations where it is most appropriate. However, the case of two free 

boundaries allows us to obtain analytical solution without affecting the essential features of the problem. The 

appropriate boundary conditions for this case are 

.100,0,0,0,0
2

 zandzatXDZWDW                                                          (16) 

Further 0K  on both the boundaries if the regions outside the fluid are perfectly conducting or aKDK  on 

both the boundaries if the region outside the fluid are insulating.                                                 (17) 

 

IV. MATHEMATICAL ANALYSIS 

We first prove the following lemma: 

Lemma: If  KWi
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Proof of Lemma: Since 0  is an eigen value, we have from equation (14) 
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Multiplying both sides of equation (18) by *
  (the complex conjugate of  ), integrating the resulting equation 

by parts for sufficient number of times over the vertical range of z by making the use of boundary condition (16) 

and separating the real parts of both sides of the equation so obtained, we get 



Gursharn Jit Singh. Int. Journal of Engineering Research and Application                    www.ijera.com 

ISSN : 2248-9622, Vol. 6, Issue 10, ( Part -4) October 2016, pp.44-51 

 www.ijera.com                                                                                                                               48 | P a g e  

    

1

0

1

0

1

0

*

2

*

2
222

.ReRe Wdz
Bd

Wdz
Bd

dzaD







                                                 (19) 

Now 

  

1

0

1

0

**
Re WdzWdz  

                     

1

0

*
dzW  

                  

1

0

dzW  

                    .

1

0

2

1

0

2

  dzWdz  

               (by Schwartz inequality) 

Equation (18) and inequality (19) implies that 
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which in turn implies that 
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whence we derive from inequality  (21) using Rayleigh-Ritz inequality 
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Inequalities (20) and (23) lead to 
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and hence the lemma. 

The contents of the above lemma when presented otherwise from the point of view of theoretical 

hydrodynamics imply that 

 

Lemma: A necessary condition for the validity of the principle of exchange of stabilities in thermosolutal 

convection configuration of Maxwellian viscoelastic fluid in porous medium in the presence of magnetic field 

and suspended particles is that 
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The essential contents of lemma are true for this case also. 

 

We now prove the following theorem: 
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Theorem: If  KWi
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Proof: Multiplying equation (12) by *
W  (the complex conjugate ofW ) and integrating the resulting equation 
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Integrating equation (26) by parts for sufficient times by making use of boundary conditions (16) and (17) and 

equations (13)-(15), it follows that 
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where *

  is the complex conjugate of   and 
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where the integrals 
71

II   are all positive definite. 

Putting 0
r

  in equation (27) and separating the real and imaginary parts of the resulting equation, we derive 
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and 
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Equations (28) and (29) must be satisfied when 0
r

 . Further since 
i

  is also zero as a necessary condition 

of the theorem, equation (29) is identically satisfied while equation (28) reduces to 
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Now making use of inequalities (24), (25) and the inequality  
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dzWadzWaDW  , (which is always valid), 

we derive from the equation (30) 
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are the thermal Rayleigh number and solutal Rayleigh number, 

respectively.. 

Now if    1
2

1


S
RR

BP



, then the right hand side of inequality (31) is  a positive definite which in turn implies 

that the left hand side of the inequality (31) must also be positive definite and therefore (30) cannot be satisfied. 

Thus a sufficiency condition for the invalidity of zero being an eigen-value for   is that   1
2

1


S
RR

BP



. 

It is clear from above that when regions outside the fluid are perfectly conducting 
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 KKa                                                                                                   (32) 

and hence the above analysis holds good for this case. 

 

Presented otherwise from the point of view of 

theoretical hydrodynamics, we have the 

following theorem:  

Theorem: A sufficiency condition for the 

invalidity of principle of exchange of stabilities in a 

thermosolutal convection configuration of 

Maxwellian viscoelastic fluid in porous medium in 

the presence of suspended particles and magnetic 

field is that the thermal Rayleigh number R , 

solutal Rayleigh number 
S

R , the medium 

permeability 
1

P  and suspended particles parameter 

B are restricted by the inequality   1
2

1


S
RR

BP



, 

or in the context of overstability, we can state 

the above theorem as: 

Theorem: A sufficiency condition for the 

existence of overstability in a thermosolutal 

convection configuration of Maxwellian 

viscoelastic fluid in porous medium in the presence 

of suspended particles is that the thermal Rayleigh 

number R , solutal Rayleigh number 
S

R , medium 

permeability 
1

P  and suspended particles parameter 

B are restricted by the inequality   1
2

1


S
RR

BP



. 
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