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ABSTRACT 
We are given the historical data of inflow of river observed on Karjan Dam near Vadodara with sampling time 

interval of a month. We are required to know the inflow of the river in future time using this available historical 

data. That is to generate inflow of river for future time using the model namely 'Single Site Seasonal Thomas 

Fiering Model'. Also, we want to find the Statistical Parameters like mean, standard deviation and Correlation 

coefficient of generated data and compare it with historical data. Once we have the predicted inflow data we 

may use these prediction of inflow into a storage reservoir for planning the operation of the reservoir to ensure 

maximum benefit from a limited quantity of stored water. 
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I. INTRODUCTION 

Water is one of man’s basic and precious 

resources. It plays a vital role in agriculture, industry, 

navigation and production of energy. The main 

problem is not often found when and where it is 

needed, and it may not be of good quality. So, the 

prediction of inflow into a storage reservoir is needed 

for planning the operation of the reservoir to ensure 

maximum benefit from a limited quantity of stored 

water. The development of a runoff prediction model 

to assess monthly and yearly inflows in advance 

allows an operational procedure to be formulated 

which can be modified on the basis of inflows 

observed subsequently.The monthly flow series are 

non-stationary and therefore complicated 

mathematical models are employed in their 

simulation. The first model that appeared in the 

hydrology literature for the generation of synthetic 

monthly flow sequences is that due to Thomas & 

Fiering (1962). Basically, this model is having 

periodic parameters, namely, the monthly means, 

standard deviations and the lag-zero cross 

correlations between successive months. The model 

implicitly allows for the non-stationarity observed in 

monthly flow data. 

 

1.1 Single Site Seasonal Model 

Any hydrologic series observed with a sampling 

time interval of less than year would inevitably be 

non-stationary in structure because of cyclic 

component with a period of one year introduced into 

it. Therefore seasonal models have to take care of this 

non-stationarity. 

  

The essential procedure in generation of model is 

selecting correct type of model for describing the 

process and its parameter are to be properly estimated  

 

 

 

so that important stochastic structure noticed in the 

observed function is preserved in the generation 

model. 

If the model is used to generate synthetic 

sequence such a sequence should be identical in a 

statistical sense with corresponding parameters like 

mean, standard deviation etc, with its historical 

sequence. 

Apart from preserving the important statistical 

parameter, the model should also preserve the 

probability distribution of observed flows. 

When a model is built to satisfy all the above 

conditions it can be used to generate any number of 

sequence and there is no difference between the 

generated sequence and observed sequence and they 

are likely to occur as the observed sequence and can 

be used wherever an observed sequence is used. 

 

1.2 Quality of the synthetic flow record 

A Synthetic flow record is only as good as the 

flow statistics used to produce it. A user of a 

synthetic flow record should be satisfied that the 

statistics comply with the following conditions: 

(1)They should be adequately defined 

(2)They should describe the characteristics of flow 

(3)They should be modified if necessary to account 

for any future changes in the hydrological properties 

of the catchment. 

 

1.3 Adequate definition 

If the statistics of an observed record are not 

adequately defined, the synthetic flows recode may 

not adequately represent the behavior of the river. 

For this reason mean monthly flows rather than 

mean daily flows are generated, since daily flows for 

a given date will show more variation from year to 
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tear than corresponding mean monthly flows. For 

example, the standard error of mean flow on the first 

day of January will be greater than the standard error 

of the mean January flow.  

These types of models can also be used to 

generate monthly inflows by using the monthly 

historical inflow records. 

Statistics of monthly flow of the river for which a 

record is to be generated may be obtained by one of 

three methods, given in decreasing order of probable 

reliability: 

(1) By analysis of an observed flow record for the 

river, 

(2) By analysis of similar rivers in the region, 

(3) By analysis of the monthly water balance. 

We will use first Method as it is more reliable.  

 

II. SYNTHETIC FLOW GENERATION 
2.1 Construction of the model 

In order to realize the two relationships required 

from a multiplicative ARIMA model, it is helpful to 

arrange the monthly flows in a two dimensional array 

as is shown in Following Fig. 1.  

The columns of the array represent the months 

whereas the rows represent the years. If an 

observation which is notationally characterized by   is 

considered, then it is possible to express this 

observation in terms of    and     plus a random shock.  

Therefore 

σ = α   + βj + € i,j        (1) 

Where αj and βj are model parameters which 

reflect the relationships between successive months 

of the same year and between successive years of the 

same month, respectively.  

Finally, €i,j is a random variable independent   

and  .Moreover, α, βj and the variance, €j, of the 

random variable €i,j, are all periodic due to the 

periodicity in the monthly data. By considering α = 0 

and ignoring the subscript j in Equation (1), one can 

obtain the lag-one Markov process which is currently 

used in the simulation of annual flow data. On the 

other hand, when βj = 0, Equation (1) reduces to the 

Thomas-Fiering model which takes into account the 

relationship between successive months only. 

 

 
Fig 1: Two-dimensional array of monthly flows 

 

The parameters to be preserved in Equation (1) are as 

follows:  

     

      (1) 12 monthly means, μ;   j = 1, 2. . . 12  

     (2)  12monthly standard deviations, σj   where   j = 

1, 2, 12  

(3) 12 first order serial correlation coefficients, one 

for each month                 

           ρj (l) ;  where j = 1 , 2 , . . . , 12  

     (4) 12 lag-zero cross-correlation coefficients 

between successive 

           Months, ρj, j-1(0)   where   j = 1, 2... 12. 

 

Thus, there are 48 parameters to be estimated from a 

given historic sequence of monthly flows. Apart from 

the means, there are 36 model parameters which must 

be calculated in terms of historic parameters obtained 

from the data available.  The model parameters are α, 

βj and σЄj. 

 

2.2 Calculation of model parameters 

The model parameters must be estimated from 

given data of monthly flows in such a way that the 

generated synthetic sequences yield the same 

parameters in the long run. 

 

In order to preserve the monthly means, it is 

convenient to rewrite Equation (1) as 

xi,j  - µj  = α j (xi,j-1 - µj-1 ) + βj (xi,j - µj ) + € i,j (2) 

 

By assuming E (€ i,j ) = 0 one can obtain E(xi,j) = µj 

, which shows that monthly means are preserved by 

the model. The introduction of a new random 

variable 

 w i,j  =  xi,j  -  µj 

 

Converts Equation (2) into the following form 

wi,j = µj wi,j-1 + βj w i-1,j + € i,j                      (3)                                                                   
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This last expression is quite different from Equation 

(1) in that Equation (3) has an expected value which 

is equal to zero. That is, 

E(wi,j)  =  E(wi,j-1)  =  E( wi-1,j)  =  E(€i,j) =  0 

 

The multiplication of Equation (3) by w i,j  and then 

the application of the expectation operation to both 

sides leads to 

E(w2 i,j)  = µ j E(w i,j-1 w i,j)  +  βj E( w i-1,j w i,j) 

+ E(€ i,j w i,j)                                               (4) 

     

Where  

E(w2 i,j)  =  E(x2i,j  ) - µ j 2  =  σj2  

E(w i,j-1 w i,j )  =  ρj,j-1 (0) σj σj-1 

E( w i-1,j w i,j) =  ρj(1) σj2 

and 

E(€ i,j w i,j) = E(€2 i,j)  = σ2€j 

 

The substitution of these last expressions in Equation 

(4) yields 

σj2 = j ρj,j-1 (0) σj σj-1  + βj ρj(1) σj2 + σ2€j  (5)         

In order to be able to calculate correlation along years 

first of all it is necessary to multiply both sides of 

Equation (3) by wi-1,j and then the application of the 

expectation operation leads to 

E(wi,j wi-1,j) = α E(wi,j-1 wi-1,j) + βj E(wi-1,j wi-

1,j) + E(€ i,j  wi-1,j) 

 

Or in terms of moments after some algebra,    

ρj(l) σj = α ρj,j-1(1) σj-1 + βjσj                         (6)                                   

Where ρj,j-1(1) is the lag-one cross-correlation 

coefficient between successive months. Finally, by 

virtue of the correlation along months the following 

expression can be obtained: 

ρj,j-1 (0) σj = ασj-1+ βj ρj,j-1(1) σj                  (7) 

 The three unknown model parameters α , βj and σЄj  

can be obtained from the simultaneous solution of 

Equations (5), (6) and (7) which leads to, 

α= [ ( ρj,j-1 (0) - ρj(l) ρj,j-1(1) )/(1 - ρ2j,j-1(1) ) ] 

1j

j




                    (8) 

 βj =  ρj(1) -
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And 

σ2€j = σj2 - 
)1(1 1,

2

2

 jj

j




[ ρ2j,j-1(0) -2 ρj(l) ρj,j-

1(0)  ρj,j-1(1) + ρ2j(1)] (10) 

The incorporation of these model parameters into 

Equation (1) gives synthetic sequences which 

resemble the historic sequence in terms of    

μj , σj, ρj(1)   and  ρj,j-1(0). 

 

As a result, ρj,j-1(0)  is a dummy parameter which 

can be defined to have an arbitrary but convenient 

value and together with values of α , βj and σ2Єj. 

Obtained, they will still allow the preservation of σj, 

ρj,j-1(0) and , ρj,(1). 

It is interesting to notice various special cases of 

equations (8), (9) and (10). 

For instance, when both ρj,j-1(0) and ρj,j-1(1) are 

equal to zero, i.e. α = 0, then equation (9) and 

equation (10) become 

   

Βj  =  ρj(1)                                                          (11) 

                                                                              and 

σ€j  = σj2  [ l - ρ2j(1)]                                        (12) 

                                          

Respectively. Finally, for this special case Equation 

(1) becomes,  

        

wi,j  = ρj(1)wi-1,j + σj
 
 [ l - ρ

2
j(1)]

1/2
  € i j                (13) 

  

This is the lag-one Markov process provided that the 

subscripts are dropped. 

A second special case can be derived by assuming βj 

= 0. Hence, from Equation (9) it is possible to 

observe that, 

 

ρj(l) = ρj,j-1(0) ρj,j-1(1) 

 

The substitution of which into Equations (7) and (10) 

gives, 

j =   ρj,j-1 (0) 

1j

j




                                         (14) 

 and  

σ2€j = σj2 [1 – ρ2j,j-1 (0)]                                 (15) 

Respectively, the incorporation of these new sets of 

parameters into Equation (1) results in 

 

w i,j  =  ρj,j-1 (0) 

1j

j




 w i,j-1  + σj [1 – ρ2j,j-1 (0)] 

½  € i,j                                                         (16) 

    

 This is in fact the Thomas-Fiering model. A 

third special case is possible when j and βj are all 
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zero in which case the model reduces to a normal 

independent process. 

 

 As a conclusion, it is possible to state that 

the model developed here is a mixture of the 

stationary lag-one Markov model and the periodic 

Thomas-Fiering model. 

 

 By substituting w i,j = xi,j - j  in Equation 

(16) and simplifying, 

We get the Thomas-Fiering Model in the following 

form. 

 

X(i,j) = Xj + bj [X(i,j-1) - Xj-1  ]+ Zt Sj sqrt(1-rj 2 )      

(A)                 

 

Where, 

Xj = Mean flow in j
th

 month 

Sj = Standard deviation of  j
th

 month  

rj = Correlation coefficient between the flows of j
th

 

and  (j-1)
th

  month 

bj = Regression coefficient in j
th

 season of ( j-1)
th

  

month  

X(i,j) = Flow generated in j
th

  month of  i
th

  year  

j = 1,2,……..m 

Zt = N (0, 1) at any time step t 

Q(i,j) =Observed flow in j
th

 month of i
th

 year with 

available record of n years 

Xj = 1/n∑ Q(i,j) 

Sj = sqrt[1/n -1) ∑[Q(i,j) -Xj]2 ] 

rj = (1/n) ∑[[{Q(i,j) -Xj} {Q(i,j) -Xj}]]/ Sj Sj-1 

bj = (rj Sj )/ Sj-1   

III. GENERATION OF SYNTHETIC 

FLOW RECORD 

We have written a computer programme in 

MATLAB for the generation of a synthetic record of 

mean monthly flow by the method of Thomas and 

Fiering (1962). The following statistics of flow for 

each month are required: 

(1) Mean, 

(2) Standard deviation, 

(3) Regression coefficient, 

(4) Correlation coefficient. 

Regression and correlation coefficients are for the 

regression of one month's flow on the next months. 

 

3.1 Input File 
The data required to be input includes the Historical 

data of monthly inflow at Karjan for 10 years from 

1994-95 to 2003-04 in Million cubic feet. 

 

3.2 Program logic 
The basic software is being developed for 

programming purpose in order to generate the inflow 

for 100 years using historical data. The input taken is 

the historical inflow data from the already existing 

input file for 10 years. 

First monthly historical inflow is considered as root 

for the generation series. The further generation of 

the monthly inflow continues based on the previous 

generated monthly flow. 

 

 Here, using the various parameters like 

regression coefficient, Standard deviation, 

Correlation coefficient between the progressive 

months, the generated monthly flow is obtained from 

the previous generated monthly inflow. The first 

monthly inflow is taken as the first historical monthly 

inflow data. 

 

 This program gives generated monthly 

inflow of all 12 months for 100 years. 

IV. RESULTS 

Table -1: Comparison for Mean values: 

MONTHS 
Historical 

Mean value 

Generated 

Mean value 

JAN 1.479 2.1146 

FEB 0.917 1.0861 

MAR 1.094 1.3931 

APR 0.581 0.6861 

MAY 1.851 1.9881 

JUN 88.843 94.8125 

JUL 254.584 229.9699 

AUG 258.472 263.8052 

SEP 190.872 177.2797 

OCT 32.985 33.5411 

NOV 5.61 6.3891 

DEC 2.352 2.4518 

The graph of monthly inflow at reservoir site from 

historical data is superimposed with the mean 
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monthly inflow from the generation of 100 years as 

shown in following graph. 

It is obvious from the graph that the results are quite 

matching. 
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Table -2: Comparison for Standard Deviation values: 

 

MONTHS 
Historical 

Mean value 

Generated 

Mean value 

JAN 2.7722 2.1455 

FEB 1.1155 0.8754 

MAR 1.8515 1.4176 

APR 0.5214 0.4526 

MAY 3.3075 2.0864 

JUN 84.1869 75.0371 

JUL 226.7015 171.0252 

AUG 191.7979 169.9912 

SEP 159.5455 132.2647 

OCT 23.33 18.6935 

NOV 4.1658 3.6228 

DEC 1.9424 1.7999 
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Table -3: Comparison for Correlation coefficient 

values: 

 

MONTHS 
Historical 

Mean value 

Generated 

Mean value 

JAN 0.393 0.0545 

FEB -0.225 -0.2265 

MAR 0.9281 0.9126 

APR 0.5922 0.5924 

MAY -0.1929 -0.0441 

JUN 0.0972 0.0315 

JUL 0.2054 0.2293 

AUG 0.4755 0.4587 

SEP -0.1002 -0.0187 

OCT 0.5468 0.5281 

NOV 0.6424 0.6159 

DEC -0.0389 0.0187 
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V. CONCLUSION 

The model presented has the advantage of a two-

dimensional relationship between successive 

observations, namely, along months and along years. 

The generated data results show that the model 

used is able to generate sequences of daily flows 

preserving the main parameters of a historic record. 

The model is based on a series of relatively 

simple approximations to the recession limb, in 

conjunction with empirical transition probabilities for 

'wet' and 'dry' days. At the time of writing this model 

has been applied only to the river for which data are 

presented here in and to one other river of very 

different hydrology. This and the fact that some of 

the empirical factors used in the model may not be 

applicable to other rivers should be borne in mind 

when proceeding to use the model elsewhere. 

If we have the future inflow data we can plan for 

agriculture, industry, navigation and production of 

energy. 
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