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Abstract 
Singular Value Decomposition (SVD) is of great significance in theory development of mathematics and 

statistics. In this paper we propose the SVD for 3-dimensional (3-D) matrices and extend it to the general 

Multidimensional Matrices (MM). We use the basic operations associated with MM introduced by Solo to 

define some additional aspects of MM. We achieve SVD for 3-D matrix through these MM operations. The 

proposed SVD has similar characterizations as for 2-D matrices. Further we summarize various 

characterizations of singular values obtained through the SVD of MM. We demonstrate our results with an 

example and compare them with the existing method. We also develop Matlab functions to perform SVD of 
MM and some related MM operations. 
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I. Introduction 
Solo introduces a new branch of mathematics 

called Multidimensional Matrix (MM) mathematics 

and its new subsets, MM algebra and MM calculus in 

series of papers Solo (2010 A-F). Solo (2010 A) 

introduces MM terminology, notations, representation 

etc. MM equality as well as the MM algebra 
operations like addition, subtraction, multiplication by 

a scalar and multiplication of two MM are defined by 

Solo (2010 B). Solo (2010 C) defines the 

multidimensional null matrix, identity matrix and 

other MM algebra operations for outer and inner 

products. MM algebra operations such as transpose, 

determinant, inverse, symmetry and anti-symmetry are 

defined by Solo (2010 D). Solo (2010 E) describes the 

commutative, associative and distributive laws of MM 

algebra. Dealing with system of linear equations 

through MM and solution of it has been discussed by 
Solo (2010 F). 

The basic concept of the General 

Multidimensional Matrix and General Operation of 

Matrices is developed by Claude (2013). Claude refers 

an elementary matrix as the smallest matrix that has 1 

or 2 dimensions (rows and columns which is similar to 

the traditional matrix) and defines the general MM 

that combines many elementary matrices into a single 

matrix which contains the same properties of all other 

combined matrices. The definition of MM by Claude 

is more general in the sense that each dimension of the 

MM is independent from other dimensions. Thus if the 

first elementary matrix has 𝑚1 rows and 𝑛1 columns 

then the second elementary matrix can have another 

number of rows and columns and the same is for other 

dimensions of the MM. According to Claude his 

concept of MM is more generalized than that 

introduced by Solo (2010). 

Now we briefly review the literature on 

various generalizations of concept of SVD. Loan 

(1976) introduces two generalizations of singular 

value decomposition (SVD) by producing two matrix 

decompositions for a 2-D matrix. Paige and Saunders 

(1981) gave a constructive derivation of the 

generalized SVD of any two matrices having the same 

number of columns. An interesting survey on SVD is 

given by Stewart (1993). Mastorakis (1996) extends 

the method of SVD to multidimensional arrays by 

using indirect method. We discuss method by 

Mastorakis (1996)  in detail in section 3. Leibovici 

(1998) establishes SVD of 𝑘-way array by employing 

tensorial approach. Lathauwer et al (2000) propose a 

multilinear generalization of the SVD based on 

unfolding the higher order tensor into 2-D matrix. This 

generalization of SVD is referred as higher order SVD 

(HOSVD) and is achieved through the concept of 𝑛-

mode product of tensor by a matrix. Okuma et al 

(2009) compared third-order orthogonal tensor 

product expansion to HOSVD in terms of accuracy of 

calculation and computing time of resolution. Okuma 
et al (2010) propose improved algorithm for 

calculation of the third-order tensor product expansion 

by using SVD. The improvement in the method is in 

the sense of smaller residual as compared to their 

previous method. 

In this paper we propose SVD of MM by 

using MM operations. For this we adopt the definition 

of MM and basic operations (addition, multiplication, 

transpose, inverse) on the MM as introduced by Solo 

(2010) and propose definition of multidimensional 

unitary matrix. In short the paper is organized as 
follows. In Section 2, we briefly review some basic 

MM operations given by Solo (2010) and introduce 

some more concepts for MM. In Section 3 we discuss 

the method of SVD of MM given by Mastorakis 

(1996), Lathauwer et al (2000) and propose our 

method of SVD based on MM operations. Various 

characterizations of singular values of MM are stated 

in Section 4. In Section 5 we demonstrate our method 

with the numerical example and compare with the 
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existing methods. Finally in Section 6 we conclude 

our results. 

 

II. Notations and basic operations on MM 
Let 𝐴 be 𝑑-dimensional matrix and the 

number of elements in the 𝑘𝑡ℎ  dimension be 𝑚𝑘 , 

𝑘 = 1,2,… , 𝑑, then the MM 𝐴 is said to be of order  

𝑚1 × 𝑚2 × …× 𝑚𝑑 . Let 𝑎𝑖1 𝑖2…𝑖𝑑
 be the 

 𝑖1 , 𝑖2 , … , 𝑖𝑑 
𝑡ℎ  element of the 𝑑-dimensional 

matrix 𝐴.  

For simplicity of the development of results, 

we deal with 3-D matrices. A 3-D matrix 𝐴 of order 

 𝑚1 × 𝑚2 × 𝑚3 is an array of 𝑚1𝑚2𝑚3  scalars 

arranged in 𝑚1 rows, 𝑚2 columns and 𝑚3 layers. A 3-

D matrix of dimension  𝑚1 × 𝑚2 × 𝑚3 thus consists 

of 2-D matrices of dimension 𝑚1 × 𝑚2 arranged in an 

array of size 𝑚3.  Thus 𝐴 can be represented in the 

form of an array of matrices 𝐴 : , : , 𝑖3  of 

dimension 𝑚1 × 𝑚2 and the elements of 𝐴 : , : , 𝑖3  are 

as follows.  

𝐴 : , : , 𝑖3 =  

𝑎11𝑖3
𝑎12𝑖3

… 𝑎1𝑚2 𝑖3

𝑎21𝑖3
𝑎22𝑖3

… 𝑎2𝑚2𝑖3

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 1𝑖3

𝑎𝑚12𝑖3
… 𝑎𝑚1𝑚2𝑖3

 , 𝑖3

= 1,2,… ,𝑚3 . 
 

We describe the matrix 𝐴 completely as 

 𝐴 =   𝑎𝑖1𝑖2𝑖3
  , with 𝑖𝑗 = 1,2,… ,𝑚𝑗  and 𝑗 = 1,2,3. 

Now we introduce some basic operations on MM. 

 

Definition 2.1 If  𝐴 =   𝑎𝑖1𝑖2𝑖3
   and 𝐵 =   𝑏𝑖1𝑖2𝑖3

   

are 𝑚1 × 𝑚2 × 𝑚3 matrices then 

i) 𝛼𝐴 is the 𝑚1 × 𝑚2 × 𝑚3 matrix   𝛼𝑎𝑖1𝑖2 𝑖3
  , 

ii) 𝐴 ± 𝐵 is the 𝑚1 × 𝑚2 × 𝑚3 matrix   𝑎𝑖1𝑖2𝑖3
±

𝑏𝑖1𝑖2𝑖3  . 

 

Definition 2.2 Let  𝐴 =   𝑎𝑖1𝑖2𝑖3
   and 𝐵 =

  𝑏𝑖1𝑖2𝑖3
   be the 3-D matrices of dimension 𝑚1 ×

𝑚2 × 𝑚3 and 𝑛1 × 𝑛2 × 𝑛3 respectively. Then 

multiplication of 𝐴 and 𝐵 is defined only if 𝑚2 = 𝑛1 

and 𝑚3 = 𝑛3 and  𝐶 = 𝐴𝐵 is of dimension 𝑚1 × 𝑛2 ×
𝑛3. The elements of 𝐶 matrix are given by, 

𝑐𝑖1𝑖2 𝑖3
=  𝑎𝑖1𝑙 𝑖3

𝑏𝑙𝑖2𝑖3

𝑚2
𝑙=1 , 𝑖1 = 1,2,… ,𝑚1 , 𝑖𝑗 =

1,2,… , 𝑛𝑗 , 𝑗 = 2,3 

 

The multiplication defined in the Definition 

2.2 satisfies associative property (Solo (2010 E)). Note 
that, this multiplication is with respect to the third 

dimension and in this multiplication the first and 

second dimension of the MM are being multiplied. 

Solo (2010 B) defines multiplication of MM with 

respect to different dimensions. But multiplication 

defined with reference to other than first and second 

dimensions do not satisfy the associative property 

(Solo (2010 E)). 

Definition 2.3 The matrix 𝐴 of dimension 𝑚1 × 𝑚2 ×
𝑚3 is said to be square with respect to its first two 

dimensions if 𝑚1 = 𝑚2. 

 

Definition 2.4 A square matrix 𝐴 of dimension 

𝑚 × 𝑚 × 𝑚3 is an identity matrix if, for 𝑖3 =
1,2,… , 𝑚3 , 

𝑎𝑖1 𝑖2𝑖3
=  

1    𝑖𝑓 𝑖1 = 𝑖2 , 𝑖1 , 𝑖2 = 1,2,… , 𝑚   
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

 . 

   

In general we denote the identity matrix of 

dimension 𝑚 × 𝑚 × 𝑚3 × …× 𝑚𝑑  

by 𝐼𝑚
(𝑚3×𝑚4 ×…×𝑚𝑑)

, while the usual 2-D identity 

matrix of dimension 𝑚 × 𝑚 is denoted by 𝐼𝑚 . 

 

Definition 2.5 For the matrix 𝐴 of dimension 𝑚1 ×
𝑚2 × 𝑚3, its transpose with respect to its first and 

second dimension is denoted by 𝐴𝑇 = 𝐵(say) and is 

of dimension  𝑚2 × 𝑚1 × 𝑚3 such that, 

  𝑏𝑖1𝑖2𝑖3
= 𝑎𝑖2 𝑖1𝑖3

,    for 𝑖1 =

1,2,… , 𝑚2 , 𝑖2 = 1,2,… ,𝑚1 , 𝑖3 = 1,2,… ,𝑚3 . 
 

Definition 2.6 A square matrix 𝐴 of dimension 

𝑚 × 𝑚 × 𝑚3 is said to be symmetric if 𝐴𝑇 = 𝐴. That 

is, for 𝑖3 = 1,2,… , 𝑚3 , 
  𝑎𝑖1 𝑖2𝑖3

= 𝑎𝑖2 𝑖1𝑖3
,  𝑖1 , 𝑖2 = 1,2,… ,𝑚. 

 

Solo (2010 B, D) defines transpose of MM 

with respect to different pairs of dimensions and prove 

various laws based on the proposed definition of 

transpose of MM. 

 

Definition 2.7 For matrix 𝐴 of dimension 𝑚1 × 𝑚2 ×
𝑚3, rank of 𝐴 with respect to the third dimension is a 

𝑚3-dimensional vector of ranks of 𝐴 : , : , 𝑖3 , 𝑖3 =
1,3,… , 𝑚3. That is, 

𝜌 𝐴 =  𝜌1 𝜌2 ⋯ 𝜌𝑚3 , 
 

where 𝜌𝑖3
= 𝜌 𝐴 : , : , 𝑖3  ,    𝑖3 = 1,2,… ,𝑚3 . 

 

Along with the basic operations for MM, the 

other important concepts such as determinant, inverse 

of MM, commutative, associative, distributive laws of 
MM algebra, solution of system of linear equations 

with MM etc are also studied by Solo (2010 A-F).  

 We now introduce the concept of complex 

conjugate of MM, unitary matrices, orthogonal 

matrices and trace.  

 

Definition 2.8 A square matrix 𝐴∗ =   𝑎𝑖1𝑖2𝑖3

∗    of 

dimension 𝑚2 × 𝑚1 × 𝑚3 is said to be complex 

conjugate of 3-D matrix 𝐴 of dimension 𝑚1 × 𝑚2 ×
𝑚3 if, for 𝑖3 = 1,2, … ,𝑚3 , 
 

  𝑎𝑖1 𝑖2𝑖3

∗ = 𝑎 𝑖2 𝑖1𝑖3
,  𝑖1 =

1,2,… , 𝑚2 , 𝑖2 = 1,2,… ,𝑚1 , 
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where 𝑧  is the complex conjugate of 𝑧. (Briefly 

complex conjugate 𝐴∗ of 𝐴 is 𝐴
𝑇
 as in case of 2-D 

matrices) 

 

Definition 2.9 A square matrix 𝐴 of dimension 

𝑚 × 𝑚 × 𝑚3 is said to be unitary if, 
 

   𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼𝑚
 𝑚3 

.  

Particularly if 𝐴 is a real matrix then the unitary 

matrix reduces to orthogonal matrix which has a 

property 𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼𝑚
 𝑚3 .  

  

Definition 2.10 For a square matrix 𝐴 of 

dimension 𝑚 × 𝑚 × 𝑚3, trace of 𝐴 with respect to its 

third dimension is defined as, 

 

  𝑡𝑟𝑎𝑐𝑒 𝐴 =   𝑎𝑖𝑖 𝑖3
.𝑚

𝑖=1
𝑚3
𝑖3=1  

 

 Now with all the above notations and 

definitions, we proceed to develop SVD for 3-D 

matrix in the next section. The proposed theory can be 

easily extended to MM.  
 

III. SVD for 3-dimensional matrix 

A SVD of a 𝑚1 × 𝑚2 matrix 𝐵 =   𝑏𝑖1𝑖2
   

with rank 𝑟 is a representation of 𝐵 in the form,  

  𝐵 = 𝑈Σ𝑉𝑇   
 

where 𝑈 and 𝑉 are unitary matrices  𝑖. 𝑒. 𝑈𝑈∗ =

𝐼𝑚1
, 𝑉𝑉∗ = 𝐼𝑚2

   and Σ is a rectangular diagonal 

matrix of dimension 𝑚1 × 𝑚2 with non-negative real 

numbers 𝜎1 , 𝜎2 ,… , 𝜎𝑟  on its diagonal which are known 

as singular values of 𝐴. We denote sum of squared 

singular values of  𝐵 by 𝑆𝑆 𝐵 . That is 𝑆𝑆 𝐵 =
 𝜎𝑠

2𝑟
𝑠=1 . The singular values of matrix have many 

interesting properties. Some of the properties are as 

follows. 

i) 𝑆𝑆 𝐵 = 𝑡𝑟𝑎𝑐𝑒(𝐵𝑇𝐵) 

ii) 𝑆𝑆 𝐵 =   𝑏𝑖1𝑖2

2𝑚2
𝑖2=1

𝑚1
𝑖1=1  

iii) If 𝐵 is partitioned (along each of its dimensions) 

in 𝑝𝑞 sub-matrices 𝐵𝑖𝑗  of dimension  𝑝𝑖 × 𝑞𝑗 , 

𝑖 = 1,2,… , 𝑝, 𝑗 = 1,2,… , 𝑞 (with  𝑝𝑖
𝑝
𝑖=1 =

𝑚1 ,  𝑞𝑗
𝑞
𝑗=1 = 𝑚2), then   

  

  𝑆𝑆(𝐵𝑖𝑗 )
𝑞
𝑗=1

𝑝
𝑖=1 = 𝑆𝑆(𝐵). 

 

iv) Frobenius matrix norm  𝐵  is defined as, 

 𝐵 =    𝑏𝑖1𝑖2

2𝑚2
𝑖2=1

𝑚1
𝑖1=1 . 

v) If 𝐵1 and 𝐵2 are the matrices of same dimension, 

then the mapping < 𝐵1 , 𝐵2 >= 𝑡𝑟𝑎𝑐𝑒(𝐵2
∗𝐵1 ) 

forms an inner product on ℂ 𝑚1×𝑚2 . 

vi) The mapping  .  : ℂ𝑚×𝑚 → ℝ defined as   𝐵 =

   𝑏𝑖1𝑖2
 

2𝑚
𝑖1 ,𝑖2=1  forms a norm on the vector 

space of all complex 𝑚 × 𝑚 matrices. 

 Extending the theory of usual 2-D matrices to 

MM is not an easy task. Solo (2010 A-E) has dealt 

with this problem. Mastorakis (1996) extends the 

method of SVD to MM. We summarize the method 

given by Mastorakis (1996) in the form of an 

algorithm in the following. 

 

3.1  Review of SVD for MM proposed by 

Mastorakis (1996) 

Mastorakis (1996) propose the SVD of MM 

by indirect method. Mastorakis transforms the 3-D 

array to 2-D array by unifying the two dimensions into 

one and apply SVD to it. Finally reforming the 

manipulated matrix, SVD for 3-D array is achieved. 

Thus SVD for MM is achieved indirectly through 

SVD of 2-D matrices. A systematic algorithm of SVD 

of 3-D matrix (by unifying second and third 

dimension) given by Mastorakis (1996) is as follows. 

a) From 3-D matrix 𝐴 =   𝑎𝑖1𝑖2𝑖3
   of 

dimension 𝑚1 × 𝑚2 × 𝑚3, obtain a new 

equivalent 2-D matrix 𝐵 =   𝑏𝑖𝑗    of dimension 

𝑚1 × 𝑚2𝑚3 by the following coordinate 

transformation. For  𝑖 = 1,2,… , 𝑚1 and 𝑗 =
1,2,… , 𝑚2𝑚3, 
 

 𝑏𝑖𝑗 = 𝑎𝑖1𝑖2𝑖3
, if  𝑖 = 𝑖1 and 𝑗 =  𝑖2 − 1 𝑚3 + 𝑖3. 

      

                                                                                  
(3.1) 

where 𝑖𝑘 = 1,2,… , 𝑚𝑘 , 𝑘 = 1,2,3. The inverse 

coordinate transformation required for the 

reconstruction of 𝐴 from 𝐵 is, 

𝑎𝑖1 𝑖2𝑖3
= 𝑏𝑖𝑗 , if 𝑖1 = 𝑖, 𝑖2 = 𝑗 𝑑𝑖𝑣 𝑚3 and 𝑖3 = 𝑗 −

  𝑗 𝑑𝑖𝑣 𝑚3 − 1 𝑚3.                                      (3.2) 

 

Here 𝑖 𝑑𝑖𝑣 𝑗 denotes the quotient of the division 

of the integer 𝑖 by integer 𝑗 where 𝑖 =
1,2,… , 𝑚1 , 𝑗 = 1,2,… , 𝑚2𝑚3. 

b) Obtain SVD of  𝑚1 × 𝑚2𝑚3 matrix 𝐵 as follows. 

 

𝐵 = 𝑈𝐵ΣB𝑉𝐵
𝑇                        (3.3) 

 

where 𝑈𝐵 (of dimension 𝑚1 × 𝑚1) and 𝑉𝐵  (of 

dimension 𝑚2𝑚3 × 𝑚2𝑚3) are unitary matrices 

and 𝛴B  is a rectangular diagonal matrix of 

dimension 𝑚1 × 𝑚2𝑚3 with non-negative real 

numbers 𝜎1𝐵 , 𝜎2𝐵 ,… , 𝜎𝑟𝐵𝐵  on its diagonal. Let 

𝑢𝑠𝐵  and 𝑣𝑠𝐵  be the 𝑠𝑡ℎ  column of 𝑈𝐵 and 𝑉𝐵  

respectively, for 𝑠 = 1,2,… , 𝑟𝐵 . 

c) Apply the inverse transformation in (3.2) to the 

𝑠𝑡ℎ  column of 𝑉𝐵  (of length 𝑚2𝑚3  ) to get 𝐵𝑠𝐵  

matrix of order 𝑚2 × 𝑚3 for 𝑠 = 1,2,… , 𝑟𝐵 . Thus 

we have 𝐵1𝐵 , 𝐵2𝐵 ,… , 𝐵𝑠𝐵  matrices obtained from 

first 𝑟𝐵  columns of 𝑉𝐵 . 

d) For 𝑠 = 1,2,… , 𝑟𝐵  obtain SVD of  𝐵𝑠𝐵  as follows. 

𝐵𝑠𝐵 = 𝑉𝑠𝐵Σ𝑠𝐵 𝑊 𝑠𝐵 𝑇                 (3.4) 

Here Σ𝑠𝐵  is rectangular diagonal matrix of 

dimension 𝑚2 × 𝑚3 with non-negative real 
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numbers 𝜎𝑠1 , 𝜎𝑠2 ,… , 𝜎𝑠𝜏𝑠
 on its diagonal, 𝑣𝑠𝑗  and 

𝑤𝑠𝑗  are the 𝑗𝑡ℎ  columns of 𝑉𝑠𝐵  and  

𝑊 𝑠𝐵respectively for 𝑗 = 1,2,… , 𝜏𝑠 . 
e) SVD of 𝐴 is achieved through the following 

representation. (Substituting 𝐵𝑠𝐵  for 𝑠𝑡ℎ  column 

of 𝑉𝐵  since 𝑠𝑡ℎ  column of 𝑉𝐵  is equivalent 

to 𝐵𝑠𝐵). 

𝐴 = 𝜎1𝑢1⨂𝑣1⨂𝑤1 + 𝜎2𝑢2⨂𝑣2⨂𝑤2 + ⋯

+ 𝜎𝑟𝑢𝑟⨂𝑣𝑟⨂𝑤𝑟  

 

where  𝜎1 , 𝜎2 ,… , 𝜎𝑟  are the non-negative 

singular values of 3-D matrix 𝐴,  

 

   𝑟 = 𝜏1 + 𝜏2 + ⋯ + 𝜏𝑟𝐵 , 

 

  𝜎𝑡 = 𝜎𝑡𝐵𝜎𝑡𝜏𝑠
,   

 𝑡 = 1,2,… , 𝑟 and 𝑠 = 1,2,… , 𝑟𝐵 , 

  𝑢𝑗 + 𝜏𝑘
𝑠−1
𝑘=0

= 𝑢𝑠𝐵 ,  𝑗 =

1,2,… , 𝜏𝑠 , 𝑠 = 1,2,… , 𝑟𝐵 , with 𝜏0 = 0, 

 

  𝑣𝑗+ 𝜏𝑘
𝑠−1
𝑘=0

= 𝑣𝑠𝑗 ,  𝑗 =

1,2,… , 𝜏𝑠 , 𝑠 = 1,2,… , 𝑟𝐵 ,  

 

  𝑤𝑗 + 𝜏𝑘
𝑠−1
𝑘=0

= 𝑤𝑠𝑗 ,  𝑗 =

1,2,… , 𝜏𝑠 , 𝑠 = 1,2,… , 𝑟𝐵 .  
 

A SVD of 3-D matrix obtained by unifying 

any other two dimensions instead of second and third 

dimension will lead to other form of decomposition of 
the matrix.  

The difficulty of Mastorakis (1996) method 

is to unify any two dimensions of the 3-D matrix into 

one and to arrange it an equivalent 2-D matrix. To 

achieve SVD of original matrix, one has to obtain the 

SVD of unified equivalent 2-D matrix and then reform 

the 3-D matrix from this SVD.  We propose SVD of 

3-D matrix based on MM operations and this proposed 

SVD have similar characterizations as the SVD of 2-D 

matrices have.  

 

3.2 HOSVD proposed by Lathauwer et al (2000) 
Lathauwer et al (2000) propose the 

multilinear SVD based on 𝑛-mode product of tensors. 

For every complex (𝐼1 × 𝐼2 × …× 𝐼𝑁)-tensor 𝒜 

proposed by Lathauwer et al (2000) is written as the 

product 

𝒜 =  𝒮 ×1 𝑈(1)  ×2 𝑈(2)  ×3 …×𝑁 𝑈(𝑁) 
where, 

𝑈(𝑛): (𝐼𝑛 × 𝐼𝑛) unitary matrix obtained by 

applying SVD to 𝑛-mode unfolding matrix  𝐴(𝑛), 𝑛 =

1,2,… , 𝑁, 
𝒮: a complex (𝐼1 ×  𝐼2 × …× 𝐼𝑁)-tensor 

which is called as a core tensor, 

×𝑛 : 𝑛-mode product of a tensor. 

Here the core tensor is ordered and has a 

characterization of all-orthogonality. The Frobenius-

norms of sub-tensors obtained from the core tensor 𝒮 

by fixing the 𝑛𝑡ℎ  index are the 𝑛-mode singular values 

of 𝒜. 

The 𝑛-mode product of a tensor 𝒜 ∈
ℂ𝐼1 × 𝐼2 ×…×𝐼𝑁   by a matrix 𝑈 ∈ ℂ𝐽𝑛 × 𝐼𝑛  is an  𝐼1 ×  𝐼2 ×
…× 𝐼𝑛−1 × 𝐽𝑛 × 𝐼𝑛+1 × …× 𝐼𝑁  tensor with entries 
given by, 

  𝒜 ×𝑛 𝑈 𝑖1𝑖2…𝑖𝑛−1𝑗𝑛 𝑖𝑛+1…𝑖𝑁
=

 𝑎𝑖1𝑖2…𝑖𝑛−1𝑗𝑛 𝑖𝑛+1…𝑖𝑁
𝑢𝑗𝑛 𝑖𝑛

. 

 

The concept of 𝑛-mode product used to 

propose the above HOSVD of a tensor is quite 

complicated. Further the HOSVD of (𝐼1 ×  𝐼2 × …×
𝐼𝑁)-tensor  𝒜 gives only 𝐼𝑛  𝑛-mode singular values 

and it will be very difficult to give proper 

interpretations to these singular values. 

 

3.3 SVD based on MM operations 

 

Our method for SVD of MM is based on the 

basic MM operations and the concept of 

multidimensional unitary matrix. Through this 

method, we decompose the matrix 𝐴 of dimension 

𝑚1 × 𝑚2 × 𝑚3 as follows. 

 

𝐴 = 𝑈Σ𝑉𝑇  ,                      3.5) 
 

where 

  Σ is rectangular diagonal matrix of singular 

values of dimension 𝑚1 × 𝑚2 × 𝑚3, 

 𝑈 is unitary matrix of dimension 𝑚1 × 𝑚1 ×
𝑚3 and 

 𝑉 is unitary matrix of dimension 𝑚2 × 𝑚2 ×
𝑚3. 

We refer the SVD proposed in (3.5) as SVD 

of 𝐴 along the first and second dimension and to 

achieve this SVD, we now give a step by step 

procedure. 

a) Obtain the SVD of 𝑚1 × 𝑚2 submatrix 𝐴(: , : , 𝑖3), 

of  𝐴 as follows. 

 

𝐴(: , : , 𝑖3) = 𝑈𝑖3
Σ𝑖3

𝑉𝑖3

𝑇,  𝑖3 = 1,2,… ,𝑚3, 

 

where 𝑈𝑖3
 and 𝑉𝑖3

 are unitary matrices  𝑖. 𝑒. 𝑈𝑖3
𝑈𝑖3

∗ =

𝐼𝑚1
, 𝑉𝑖3

𝑉𝑖3

∗ = 𝐼𝑚2  and 𝜎𝑖3
 is rectangular diagonal 

matrix of dimension 𝑚1 × 𝑚2 with non-negative 

singular values 𝜎𝑖3𝑠
, 𝑠 = 1,2,… , 𝑟𝑖3

 for 𝑖3 =

1,2,… , 𝑚3. 

b) Construct 3-D square matrices 𝑈 and 𝑉 of 

dimension 𝑚1 × 𝑚1 × 𝑚3 and 𝑚2 × 𝑚2 × 𝑚3 

respectively as follows.   

  𝑈(: , : , 𝑖3) = 𝑈𝑖3
,  

  𝑉(: , : , 𝑖3) = 𝑉𝑖3
,  𝑖3 = 1,2,… ,𝑚3. 

c) Also construct 3-D rectangular diagonal matrix Σ 

of dimension 𝑚1 × 𝑚2 × 𝑚3 as follows. 

Σ(: , : , 𝑖3) = Σ𝑖3
,  𝑖3 = 1,2,… ,𝑚3. 

d) To achieve SVD of 𝐴, observe that with reference 

to 3-D matrix operations,  
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  𝑈Σ𝑉𝑇 = 𝐴,   
 

where 𝑈𝑈∗ = 𝐼𝑚1

𝑚3 ,  

 𝑉𝑉∗ = 𝐼𝑚2

𝑚3 . 

 

The non-negative singular values collected 

together in a vector, 𝜎 =  𝜎1  𝜎2 … 𝜎𝑚3  where 

𝜎𝑖3
=  𝜎𝑖31  𝜎𝑖32 … 𝜎𝑖3𝑟𝑖3 , 𝑖3 = 1,2,… , 𝑚3 are 

collectively referred as singular values of 3-D 

matrix 𝐴. 

The proposed SVD can be easily extended to 

the MM by using the MM operations introduced by 

Solo and extending the concept of unitary matrices to 

MM.  

 

IV. Characterizations of Singular Values 

of 3-D matrices 
In this Section we develop some interesting 

characterizations of singular values of 3-D matrix. Let 

𝐴 be a 3-D matrix of dimension 𝑚1 × 𝑚2 × 𝑚3 with 

rank 𝜌 =  𝜌1 𝜌2 ⋯ 𝜌𝑚3  and singular values 

𝜎 =  𝜎1  𝜎2 … 𝜎𝑚3  where 

𝜎𝑖3
=  𝜎𝑖31  𝜎𝑖32 … 𝜎𝑖3𝑟𝑖3 , 𝑖3 = 1,2,… , 𝑚3 . . Let 

𝑆𝑆 𝐴 =   𝜎𝑖3𝑠
2𝜌𝑘

𝑠=1
𝑚3
𝑖3=1 . Now we state the 

characterizations of singular values of 𝐴 as follows.  

i) 𝑆𝑆 𝐴 = 𝑡𝑟𝑎𝑐𝑒 𝐴𝑇𝐴 . 

ii) 𝑆𝑆 𝐴 =    𝑎𝑖1𝑖2𝑖3

2𝑚3
𝑖3=1

𝑚2
𝑖2=1

𝑚1
𝑖1=1 . 

iii) Let the matrix 𝐴 be partitioned (along each of 

the three dimensions in two parts) so that we 

get 8 sub-matrices 𝐴𝑖𝑗𝑘  of dimensions 𝑝𝑖 × 𝑞𝑗 ×

𝑟𝑘  for 𝑖, 𝑗, 𝑘 = 1,2 such that 𝑝1 + 𝑝2 = 𝑚1 , 𝑞1 +
𝑞2 = 𝑚2 and 𝑟1 + 𝑟2 = 𝑚3. Then, 

 

  𝑆𝑆(𝐴𝑖𝑗𝑘 )2
𝑖,𝑗 ,𝑘=1 = 𝑆𝑆(𝐴). 

iv) The matrix norm  𝐴  of 𝐴 is given as, 

 

  𝐴 =     𝑎𝑖1 𝑖2𝑖3

2𝑚3
𝑖3=1

𝑚2
𝑖2=1

𝑚1
𝑖1=1 , 

   

 It can be also seen that  𝐴 =  𝑆𝑆(𝐴).  

 

To look at to some other characterizations, 

we define the following elementary layer operations 

on the MM. 

 𝐸𝑘1𝑘2
: Interchange of 𝑘1

𝑡ℎ  layer with 𝑘2
𝑡ℎ  layer 

of 𝐴, 𝑘1 , 𝑘2 = 1,2,… , 𝑚3 and 𝑘1 ≠ 𝑘2 . 

 𝛼 𝐸𝑘1
 : Multiplying 𝑘1

𝑡ℎ  layer of 𝐴 by 

scalar 𝛼 ∈ ℝ, 𝑘1 = 1,2,… ,𝑚3. 

 𝐸𝑘1𝑘2
(𝛽): Adding 𝛽-multiple of 𝑘2

𝑡ℎ  layer to 

𝑘1
𝑡ℎ  layer of 𝐴 where 𝑘1 ≠ 𝑘2 , 𝛽 ∈ ℝ. 

 
With reference to the above elementary 

operations we continue with the next characterizations 

of singular values. 

v) The 𝑆𝑆(𝐴), Sum of squared singular values of 

𝐴 is invariant to the first elementary layer 

operation. That is if matrix 𝐵 is obtained by 

performing 𝐸𝑘1𝑘2
 on 𝐴 then sum of squared 

singular values of 𝐵 are same as 𝑆𝑆(𝐴).  

vi) If matrix 𝐵 is obtained by performing second 

elementary layer operation 𝛼 𝐸𝑘1
  on 𝐴 then,  

 𝑆𝑆 𝐵 = 𝑆𝑆 𝐴 + (𝛼2 − 1) 𝜎𝑘1𝑠
2𝜌𝑘1

𝑠=1 . 

 

vii) If matrix 𝐶 is obtained by performing third 

elementary layer operation 𝐸𝑘1𝑘2
(𝛽) on  𝐴 

then,  

 

   𝑆𝑆 𝐶 ≤ 𝑆𝑆 𝐴 +

 𝛽 ( 𝜎𝑘2𝑠
2𝜌𝑘2

𝑠=1 ) 

 

viii) If 𝐷 is the matrix of same dimension as of 𝐴, 

then < 𝐴, 𝐷 >= 𝑡𝑟𝑎𝑐𝑒(𝐷∗𝐴) forms an inner 

product on ℂ 𝑚1×𝑚2×𝑚3 . 

ix) The mapping  .  :ℂ𝑚×𝑚×𝑚3 → ℝ defined as 

 𝐴 =     𝑎𝑖1 𝑖2𝑖3
 

2𝑚3
𝑖3=1

𝑚
𝑖1 ,𝑖2=1  forms a norm 

on the vector space of all complex matrices of 

dimension 𝑚 × 𝑚 × 𝑚3. 

 

V. Numerical Work 
In this section we demonstrate the SVD of 3-

D matrices through an example. To compare the 

method of SVD based on MM operation as proposed 

in this paper with Mastorakis’s method we consider 

the same matrix as in Mastorakis (1996) in the 

following example.  

Consider the 3-D matrix $A$ of dimension 

$2\times 3\times 4$ which can be expressed in the 

form of array of matrices as follows with the notations 

introduced in Section 2. 

 

 𝐴(: , : ,1) =  6.6 9 11.6
11.4 19 23

 ,  

 𝐴(: , : ,2) =  −2 −3 −4
−3.7 −6.1 −8

 ,  

 

 𝐴 : , : ,3 =  4.1 6.5 7.8
8.2 12.5 15.5

 , 

 𝐴 : , : ,4 =  2.13 2.9 3.8
4 5.6 8.2

  

 

By performing SVD on $A$ along the first 

and second dimension, we have the representation of 

$A$ as follows. 

  𝐴 = 𝑈Σ𝑉𝑇   
Where, 𝑈 and 𝑉 are unitary matrices of dimension 2 ×
2 × 4 and 3 × 3 × 4  respectively, and Σ is matrix of 

singular values of dimension  2 × 3 × 4. 

The matrices 𝑈,  𝑉 and Σ are obtained using 

algorithm in Section 3.2 and are as follows.   

 

𝑈(: , : ,1) =  −0.4497  −0.8932
 −0.8932 0.4497

 ,  

 𝑈(: , : ,2) =  
−0.4488 −0.8936
−0.8936  0.4488

 , 
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𝑈 : , : ,3 =  −0.4532 −0.8914
 −0.8914 0.4532

 ,  

 𝑈 : , : ,4 =  
−0.4388 −0.8986
−0.8986  0.4388

  

 

𝑉 : , : ,1 =  
−0.3678 −0.8359 −0.4074
 −0.5879 0.5485 −0.5946
−0.7205 −0.0208 0.6931

 , 

𝑉 : , : ,2 =  
0.3505 0.9057 −0.2386
0.5667 −0.4079 −0.7159
0.7457  −0.1157 0.6562

  

 

𝑉 : , : ,3 =  
−0.3795 0.3856 −0.8410
−0.5832 −0.8054 −0.1061
−0.7183 0.4502  0.5305

 ’ 

𝑉 : , : ,4 =  
−0.3802  −0.5582 −0.7375
−0.5292  −0.5226 0.6684
−0.7585 0.6444 −0.0968

  

 

Σ : , : ,1 =  
35.7524 0 0

0 0.9200 0
 ,

 Σ : , : ,2 =  
11.9950 0 0

0 0.1398 0
  

 

Σ : , : ,3 =  24.1581 0 0
0 0.1600 0

 ’

 Σ : , : ,4 =  11.9124 0 0
0 0.2846 0

  

 

The singular values obtained by this SVD can 

be summarized as follows by using notations 

introduced. 

 

 𝜎 =  𝜎1 𝜎2  𝜎3 𝜎4 , 
 

where,   𝜎1 =  35.7524 0.9200 , 
  𝜎2 =  11.9950 0.1398 , 
 

  𝜎3 =  24.1581 0.1600 , 

 𝜎4 =  11.9124 0.2846 . 
 

Mastorakis (1996) perform the SVD of the 

same matrix using indirect method and obtains the 

vector of singular values of 𝐴 as follows.  

𝜎 =
 46.3329 0.8475 0.3853 0.9395 0.3243 0.1221   

 

The singular values obtained by Mastorakis 

(1996) and by our method are different but the 𝑆𝑆(𝐴) 

based on both methods is same and is 2148.6.  
If we perform SVD along the first and 

third/second and third dimension we get the different 

decompositions of 𝐴. Thus SVD with reference to all 

the three pairs of dimensions leads to different 

singular values but in all the three cases 𝑆𝑆(𝐴) is same 

which coincides with  𝐴 2 . 
The matrix of singular values of 𝐴 when 

SVD is performed along the first and third dimension 

are as follows. 

 

 Σ 1, : , :  =  

20.8602 0 0
0 0.4658 0
0 0 0.2016
0 0 0

 , 

Σ 2, : , :  =  

41.3776 0 0
0 0.9199 0
0 0 0.4943
0 0 0

 . 

 

Similarly the 3-D matrix of singular values of 

𝐴 when SVD is performed along the second and third 

dimension are as follows. 

 

Σ : ,1, :  =

 
17.1924 0 0 0

0 0.4662 0 0
 ,  Σ : ,2, :  =

 26.9494 0 0 0
0 0.4589 0 0

 , 

 

 Σ : ,3, :  =  33.5596 0 0 0
0 0.2857 0 0

 . 

 

To obtain the SVD of MM, we developed a 

Matlab function 𝑠𝑣𝑑𝑚(. , . ) which needs two 

arguments, a 𝑑-D matrix 𝐴 and an integer 𝑟 

(representing the dimension with respect to which 

SVD is to be obtained, 𝑟 = 1,2,… , 𝑑). The function 

returns the 𝑑-D matrices 𝑈, Σ and 𝑉 as in (3.5). We 

also developed the other Matlab functions for MM 

operations such as transpose, multiplication, trace, 

norm, complex conjugate of a matrix etc which helped 

us to verify the characterizations of SVD. Briefly we 

extended some Matlab functions for 2-D matrices to 

MM. 
 

VI. Conclusions 
In this paper we propose SVD of MM 

through MM operations. Using the MM operations, 

MM algebra and MM calculus introduced by Solo 

(2010 A-F) we propose the concept of 

multidimensional unitary matrices. We achieve the 

SVD of MM based on MM operations which has the 

similar characterizations as in case of 2-D matrices. 
We developed Matlab functions to deal with MM and 

to give SVD of MM. We bring out some interesting 

characterizations of proposed SVD. All these 

characterizations will lead to many interesting 

applications in theory of Mathematics as well as in 

Statistics. 

Our proposed method of SVD can be 

performed along any pairs of dimension of MM. The 

SVD of 𝑚1 × 𝑚2 × 𝑚3 matrix 𝐴, obtained along the 

first and second dimension gives 𝑚3 × min⁡(𝑚1𝑚2) 
singular values while that of along second and third 

dimension gives 𝑚1 × min(𝑚2𝑚3) singular values 

and so on. The SVD of 3-D matrix 𝐴 proposed by 

Mastorakis (1996) unifying any pair of dimension 

leads to the same number of singular values as in our 

case. While the SVD proposed by Lathauwer et al 

(2000) leads to 𝑚𝑛  𝑛-mode singular values when the 

MM is unfolded along the 𝑛𝑡ℎ  dimension. In statistics 
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singular values have the special interpretations in 

terms of variation/inertia contributed by the pairs of 

attributes associated with rows/columns/layers 

corresponding to MM. Hence more the number of 

singular values, more are the components of total 

variation/inertia. The SVD of MM proposed in this 
paper gives more number of singular values as 

compared to Lathauwer et al (2000). Further since we 

are applying SVD to MM through MM operations, the 

singular values can be given specific meanings. While 

since Mastorakis (1996) unifies dimensions of MM 

and Lathauwer et al (2000) unfolds the MM, the 

singular values obtained through these methods may 

not be given proper interpretations. Specifically the 

proposed SVD for MM will give very promising 

results in Correspondence Analysis and Principle 

Component Analysis in Statistics. We will come up 

with its applications. 
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