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ABSTRACT 
This paper focuses on free vibration analysis of an edge cracked pile with circular cross section. The soil 

medium is modelled as Winkler-Pasternak elastic foundation approach. The governing differential equations of 

motion are obtained by using Hamilton’s principle. The pile–soil system is modeled as Euler–Bernoulli beam 
resting on Winkler-Pasternak foundation. The considered problem is solved by using finite element method. The 

cracked pile is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. 

In the study, the effects of the location of crack, the depth of the crack and the soil stiffness on the natural 

frequencies and mode shapes the piles are investigated in detail. 
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I. INTRODUCTION 
Piles are a type of deep soil foundation that 

commonly used in the civil engineering. The purpose 

of piles is to transmit the loads of a superstructure to 
the underlying soil, when the strength of soil base is 

insufficient to support the load from the 

superstructures. Piles are also used in the construction 

of offshore platforms, marine application and other 

structures that are situated over water. 

Piles are not subjected to only gravity loads, 

but also lateral loads due to earthquakes, wind, wave 

attack and vehicle impact loads, among others. Piles 

are subjected to destructive effects in the form of 

initial defects within the material or caused by fatigue 

or stress concentration. Especially, piles can suffer 
extreme damage and failure under earthquake loading 

and various the ground motions. Also, friction piles 

can be subjected to more destructive effects under the 

construction. As a result of destructive effects, cracks 

occur in the piles. 

It is known that a crack in structure elements 

introduces a local flexibility, becomes more flexible 

and its dynamic and static behaviors will be changed. 

Cracks cause local flexibility and changes in structural 

stiffness. Therefore, understanding the mechanical 

behavior and the safe performance of cracked piles are 

importance in designs. After the construction, damage 
assessment and repair of the piles are very difficult in 

comparison with other structural elements. Therefore, 

the effect of the crack must be considered in the safe 

design of the piles. 

In the literature, the vibration and dynamic 

behavior of the piles have been extensively studied. 

Valsangkar and Pradhanang [1] studied free vibration 

of partially supported piles with Winkler soil model. 

Xie and Vaziri [2] studied response of nonuniform 

piles to vertical vibrations. Lin and Al-Khaleefi [3] 

suidied torsional behavior of cracked reinforced  

 

Concrete piles by using A finite element method. 

Khan and Pise [4] studied the dynamic behaviour of 

curved piles embedded in a homogeneous elastic half-

space and subjected to forced harmonic vertical 

vibration. Lee et al. [5] investigated the natural 

frequencies and the mode shapes of the tapered piles 
embedded partially in the Winkler type foundations. 

Çatal [6] investigated free vibration of partially 

supported piles with the effects of bending moment, 

axial and shear force with the Winkler model. Filipich 

and Rosales [7] analysed the natural vibrations and 

critical loads of foundation beams embedded in a soil 

simulated with two elastic parameters through the 

Winkler–Pasternak model. Wang et al. [8] studied the 

dynamic response of pile groups embedded in a 

homogeneous poroelastic medium and subjected to 

vertical loading. Kim et al. [9] investigated vertical 

vibration analysis of soil-pile interaction systems 
considering the soil-pile interface behavior. Cairo et 

al. [10] analysed of vertically loaded pile groups under 

dynamic conditions.  Yu-Jia et al. [11] nonlinear 

dynamical characteristics of piles under horizontal 

vibration based on continuum mechanics. Çatal [12] 

studied free vibration of semi-rigid connected and 

partially embedded piles with the effects of the 

bending moment, axial and shear force. Padron et al. 

[13] studied the dynamic analysis of piles and pile 

groups embedded in an elastic half-space with finite 

element metho- boundary element method coupling 
model. Dynamic behavior of group-piles in liquefied 

ground are investigated by Uzuoka et al. [14] using 

three-dimensional soil–water-coupled analysis with a 

soil–pile-building model. Masoumi and Degrande [15] 

investigated a numerical model for the prediction of 

free field vibrations due to vibratory and impact pile 

driving using a dynamic soil-structure interaction 

formulation. Tsai et al. [16] studied the screening 

effectiveness of circular piles in a row for a massless 
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square foundation subject to harmonic vertical loading 

with the three-dimensional boundary element method 

in frequency domain. Yeşilce and Çatal [17] 

investigated free vibration of piles embedded in soil 

having different modulus of subgrade reaction. Hu et 

al. [18] investiagted the nonlinear transverse vibration 
of piles under the assumption of that both the 

materials of pile and soil obey nonlinear elastic and 

linear viscoelastic constitutive relations. Yesilce and 

Çatal [19] investigated free vibration of semi-rigid 

connected piles embedded in elastic soil within 

Reddy-Bickford beam theory where the soil is 

modeled as  Winkler model. Lu et al. [20] investigated 

the isolation of the vibration due to moving loads 

using pile rows embedded in a poroelastic half-space. 

Comodromos et al. [21] investigated effect of 

Cracking on the Response of Pile Test under 

Horizontal Loading. Bhattacharya et al. [22] 
investigated a unified buckling and free vibration 

analysis of pile-supported structures in seismically 

liquefiable soils that The pile–soil system is modelled 

as Euler–Bernoulli beam resting against an elastic 

support with axial load and a pile head mass with 

rotary inertia. The vertical dynamic response of an 

inhomogeneous viscoelastic pile embedded in layered 

soil subjected to axial loading has been investigated 

by Wang et al. [23]. Manna and Baidya [24] 

investigated dynamic response of cast-in-situ 

reinforced concrete piles subjected to strong vertical 
excitation. Yang and Pan [25] investigated the 

dynamical behavior of vertical vibration of an end-

bearing pile in a saturated viscoelastic soil layer in the 

frequency domain using the Helmholtz decomposition 

and variable separation method. Dash et al. [26]  

investigated bending–buckling interaction as a failure 

mechanism of piles in liquefiable soils using 

numerical techniques. Haldar and Babu [27] 

investiagted the response of piles in liquefiable soil 

under seismic loads with the effects of soil, pile, and 

earthquake parameters on the two potential pile failure 

mechanisms, bending and buckling. Jian-hua et al. 
[28]  investigated the dynamic response of a pile 

group embedded in a layered poroelastic half space 

subjected to axial harmonic loads. Zou et al. [29] 

investigated the influence of pile-soil-structure 

interaction on the vibration control of adjacent 

buildings with pile foundations. Jensen and Hoang 

[30] studied collapse mechanisms and strength 

prediction of reinforced concrete pile caps. 

It is seen from literature that the vibration 

analysis of cracked piles has not been broadly 

investigated. A better understanding of the mechanism 
of how the crack effects change response of vibration 

of a pile is necessary, and is a prerequisite for further 

exploration and application of the cracked piles. 

Therefore, the distinctive feature of this study is the 

effect of location of crack, the depth of the crack on 

natural frequencies in detail.  

Piles can be found in many different sizes 

and shapes in the engineering applications. Circular 

piles are the most used and preferred in the 

applications because of high energy absorbing 

capability and high buckling strength. Hence, 

understanding the mechanical behavior circular piles 

are very important. 

In this study, free vibration analysis of an 
edge cracked piles with circular cross section is 

investigated. The soil that the pile partially embedded 

in is idealized by Winkler-Pasternak model. The 

governing differential equations of motion of the 

circular pile in free vibration are derived using 

Hamilton’s principle. The pile–soil system is modeled 

as Euler–Bernoulli beam resting on Winkler-Pasternak 

foundation. The considered problem is solved by 

using finite element method. The cracked pile is 

modeled as an assembly of two sub-beams connected 

through a massless elastic rotational spring. In the 

study, the effects of the location of crack, the depth of 
the crack and the soil stiffness on the natural 

frequencies and mode shapes the piles are investigated 

in detail. 

 

II. THEORY AND FORMULATIONS 
Consider a pile of length L, diameter D, 

containing an edge crack of depth a located at a 

distance L1 from the bottom end, as shown in Figure 

1. The soil–pile interaction is modeled as Winkler-
Pasternak foundation with spring constant kw and kp. 

When the Pasternak foundation spring constant kp=0, 

the soil–pile interaction model reduces to Winkler 

type. It is assumed that the crack is perpendicular to 

beam surface and always remains open. 

 
Figure 1 A circular pile with an open edge crack with 

Winkler-Pasternak soil model and cross-section. 

 

2.1 GOVERNING EQUATION OF FREE 

VIBRATION OF INTACT PILES 
The pile is modeled within the Euler-

Bernoulli beam theory. According to the coordinate 

system (X,Y,Z)  shown in figure 1, based on Euler-
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Bernoulli beam theory, the axial and the transverse 

displacement field are expressed as 

 

                       (1) 

 

                                        (2) 

  

Where u0 and v0 are the axial and the 
transverse displacements in the mid-plane, t indicates 

time. Using Eq. (1) and (2), the linear strain- 

displacement relation can be obtained: 

 

                        (3) 

 

According to Hooke’s law, constitutive equations of 

the pile are as follows: 

 

          (4) 

 

Where E is the Young’s modulus of the pile, 

σXX and εXX are normal stresses and normal strains in 

the X direction, respectively. Based on Euler-Bernoulli 

beam theory, the elastic strain energy (V) and kinetic 

energy (T) of the pile with Winkler-Pasternak soil 

model is expressed as 
 

 

                                          (5) 

 

             (6) 

 

Where ρ is the mass density of the pile, with 

applying Hamilton’s principle, the differential 

equations of motion are obtained as follows: 

 

                                                (7) 

          

 

                                   (8) 

 

Where I  and A are the moment of inertia and the area 

of the cross-section, respectively. 

 

2.2 FINITE ELEMENT FORMULATIONS 
The displacement field of the finite element 

shown is expressed in terms of nodal displacements as 

follows: 

                                   

        (9) 

 

 
      (10) 

 

where ui, vi and θi are axial displacements, transverse 

displacements and slopes at the two end nodes of the 

pile element, respectively.  and are 

interpolation functions for axial and transverse 

degrees of freedom, respectively, which are given in 

Appendix. Two-node pile element shown in Figure 2. 

 
Figure 2 A two-node pile element. 

 

With using the standard procedure of the Galerkin 

finite element method, the stiffness matrix and the 

mass matrix are obtained according to Eqs. (7) and 

(8). The equation of motion as follows: 

                                          (11) 

 

where [K] is the stiffness matrix and [M] is the mass 

matrix. {q} is nodal displacement vector which as 

follows 

 

                                                   (12) 

 

The stiffness matrix [K] can be expressed as a sum of 

three submatrices as shown below: 

                

                        (13) 

 

Where ,  and  are pile stiffness 

matrix, Winkler foundation stiffness matrix and 

Pasternak foundation stiffness matrix, respectively. 

Explicit forms of [K] are given in Appendix. The mass 

matrix [M] can be expressed as a sum of four sub-

matrices as shown below: 

           

                              (14) 

 

Where ,  and  are the contribution of u, 

v and θ degree of freedom to the mass matrix, 

respectively. Explicit forms of [M] are given in 

Appendix.   

 

2.3. CRACK MODELING 
The cracked pile is modeled as an assembly 

of two sub-beams connected through a massless 

elastic rotational spring shown in figure 3. 

 
Figure 3 Rotational Spring Model. 
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The additional strain energy due to the 

existence of the crack can be expressed as 

The bending stiffness of the cracked section 

kT is related to the flexibility G by 

 

                                                                  (15) 

 

Cracked section’s flexibility G can be derived from 

Broek’s approximation [31]: 

                                    

                                               (16) 

 

where M is the bending moment at the cracked 

section, kI is the stress intensity factor (SIF) under 

mode I bending load and is a function of the geometry 

and the loading properties as well. ν indicates 

Poisson’s ratio. For circular cross section, the stress 

intensity factor for kI a single edge cracked beam 
specimen under pure bending M can be written as 

follow (Tada et al. [32]) 

 

                                (17) 

 

Where  
 

   (18) 

 

Where a is crack of depth and  is the height of the 

strip, is shown Fig. 4, and written as 

         

                                             (19) 

 

where R is the radius of the cross section of the beam. 

 
Figure 4 The geometry of the cracked circular cross 

section. 

 

After substituting Eq. (17) into Eq. (16) and 

by integrating Eq. (16), the flexibility coefficient of 

the crack section G is obtained as 
 

(20) 

 

where b and aX  are the boundary of the strip and the 

local crack depth respectively, are shown in Fig. 4, 

respectively, and written as 

 

                                     (21) 

 

                          (22) 

 

The spring connects the adjacent left and right 

elements and couples the slopes of the two pile 

elements at the crack location. In the massless spring 

model, the compatibility conditions enforce the 

continuities of the axial displacement, transverse 

deflection, axial force and bending moment across the 
crack at the cracked section (X=LI), that is, 

 

(23) 

                        (23) 

The discontinuity in the slope is as follows:  

 

        (24) 

 
Based on the massless spring model, the stiffness 

matrix of the cracked section as follows:  

 

           (25) 

 

The stiffness matrix of the cracked section is written 

according to the displacement vector: 
 

                                           (26) 

 

Where θ1 and θ1 are the angles of the cracked section. 

With adding crack model, the equations of motion for 

the finite element and by use of usual assemblage 

procedure the following system of equations of motion 

for the whole system can be obtained as follows: 

           (27) 

 

If the global nodal displacement vector {q} is assumed 

to be harmonic in time with circular frequency ω, i.e 

 becomes, after imposing the 

appropriate end conditions, an eigenvalue problem of 

the form: 

 (28) 

 

Where  is a vector of displacement 
amplitudes of the vibration. The dimensionless 

quantities can be expressed as 
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,  ,    

 (29) 

 

Where  is the dimensionless frequency,  is the 

dimensionless Winkler parameter,  is the 

dimensionless Pasternak parameter, 

 

III. NUMERICAL RESULTS 
In the numerical examples, the natural 

frequencies and the mode shapes of the piles are 

calculated and presented in figures for various the 
effects of the location of crack, the depth of the crack 

and foundation stiffness. In the numerical examples, 

the physical properties of the pile are Young’s 

modulus E=206 GPa, Poisson’s ratio ν=0,3 and mass 

density  ρ=7800 kg/m3. The geometrical properties of 

the pile are length L=30m and the diameter D= 1 m. In 

the numerical calculations, the number of finite 

elements is taken as n =100 and five-point Gauss 

integration rule is used. 

In figure 5, the effect of crack locations 

(L1/L) on the dimensionless fundamental frequency 

of edge cracked piles is shown for different crack 

depth ratios (a/D=0.1, 0.2, 0.35) for   and  

. 

 
Figure 5 The effect of crack locations (L1/L) on the 

dimensionless fundamental frequency  for different 

crack depth ratios (a/D=0.1, 0.2, 0.35). 

 
Fig. 5 shows that the crack locations get 

closer to the bottom end, the fundamental frequency 

decreases. This is because the crack at the fixed end 

(bottom end) has a most severe effect in the pile. So, 

the crack locations get closer to the bottom end, the 

pile gets more flexible. Also, It is seen Figure 5 that 

the crack locations get closer to the top end (lower 

values of L1/L), the differences of the crack depth ratio 

a/h   decrease seriously and the cracked pile seems 

like intact pile. It is seen from Fig. 5 that almost all of 

the curves have horizontal asymptotes approximately 
after the crack location L1/L=0.6. 

In figure 6, the effect of crack depth ratio a/D 

on the dimensionless fundamental frequency  of 

edge cracked pile is shown for different crack 

locations (L1/L=0.05, 0.2, 0.4, 0.8) for  and 

. 

 
Figure 6 The effect of crack depth ratio a/D on the 

dimensionless fundamental frequency   for different 

crack locations (L1/L=0.05, 0.2, 0.4, 0.8). 

 

It is observed from Fig. 6 that with increase 

in the crack depth ratio (a/D), the fundamental 

frequency decreases seriously. This is because 

increasing the crack depth ratio (a/D), the pile 

becomes flexible. Also, It is seen Figure 6 that there is 

a significant difference of the crack locations in the 

high values of crack depth ratios a/D.  

 

In Fig. 7, the effect of crack depth ratio (a/D) on the 
first, second and third normalized vibration mode 

shapes is shown for L1/L=0.05, , .  

 

In fig. 8, the effect of the crack location L1/L on the 
first, second and third normalized vibration mode 

shapes is shown for a/D=0.35, and . 

 

 
Figure 7 The effect the crack depth ratio a/D on the a) 

first, b) second and c) third normalized vibration mode 

shapes. 
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Figure 8 The effect the crack location L1/L on the     

a) first, b) second and c) third normalized vibration 

mode shapes. 

 

It is seen from Fig. 7 and Fig. 8 that the crack 

depth ratio a/D and the crack location L1/L play 

important role on the vibration mode shapes.  

 

In figure 9, the effect of the dimensionless Winkler 

parameter  on the dimensionless fundamental 

frequency   of edge cracked pile (a/D =0,35, =0) 

is shown for different  crack location L1/L.  

 
Figure 9 The effect the dimensionless Winkler 

parameter  on the dimensionless fundamental 

frequency   for different crack location L1/L. 
 

It is seen from Fig. 9 the Winkler parameters 

 play important role on the fundamental frequency. 

With increase in the dimensionless Winkler 

parameter , the fundamental frequency increases. 

This is because, the dimensionless Winkler parameter 

 increase, the pile gets more stiffer. Also, it is 

observed fig. 9 that the differences of the crack 

locations (L1/L) decrease with increase in the Winkler 

parameter . 

In figure 10, the effect of the dimensionless 

Winkler parameter  on the dimensionless 

fundamental frequency   of edge cracked pile 

(L1/L= 0.05, ) is shown for different crack 

depth ratios a/D.  

 
Figure 10 The effect the dimensionless Winkler 

parameter  on the dimensionless fundamental 

frequency   for different the crack depth ratio a/D. 
 

It is observed from Fig. 10 that with the 

increasing the value of the dimensionless Winkler 

parameter , the differences of the crack depth ratio 

(a/D) decrease. With increase in the soil stiffness 

parameter, the effects of the crack reduce.  

 

In figure 11, the effect of the dimensionless Pasternak 

parameter on the dimensionless fundamental 

frequency   of edge cracked piles (a/D=0.35, 

) is shown for different the crack location 

L1/L. In Figure 12, the effect of the dimensionless 

Pasternak parameter  on the dimensionless 

fundamental frequency   of edge cracked piles        

(L1/L=0.05, ) is shown for different the crack 

depth ratio a/D. 

 
Figure 11 The effect the dimensionless Pasternak 

parameter  on the dimensionless fundamental 

frequency   for different the crack location L1/L. 



Dr.Şeref Doğuşcan AKBAŞ et al Int. Journal of Engineering Research and Applications  www.ijera.com 

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.363-371 

 
 

www.ijera.com                                                                                                                              369 | P a g e  

 
Figure 12 The effect the dimensionless Pasternak 

parameter  on the dimensionless fundamental 

frequency   for various the crack depth ratio a/D. 
 

It is seen from Fig. 11 and Fig. 12 that with 

increase in the dimensionless Pasternak parameter , 

the fundamental frequency increases. This is because 

increasing the Pasternak parameter , the pile 

becomes more stiffer. Also, it is observed from the 

results, the effect of Pasternak parameter  on the 

dimensionless fundamental frequency is less than 

Winkler parameter . 
 

IV. CONCLUSIONS 
Free vibration analysis of an edge cracked 

piles with circular cross section is investigated. The 

soil medium is modeled as Winkler-Pasternak elastic 

foundation approach. The differential equations of 

motion are obtained by using Hamilton’s principle. 

The pile–soil system is modeled as Euler–Bernoulli 

beam resting on Winkler-Pasternak foundation. The 

considered problem is solved by using finite element 

method. The cracked beam is modeled as an assembly 

of two sub-beams connected through a massless 

elastic rotational spring. The influences of the location 

of crack, the depth of the crack and foundation 
stiffness on the natural frequencies and the mode 

shapes of the piles are examined in detail.  

It is observed from the investigations that the 

crack locations and the crack depth have a great 

influence on the vibration characteristics of the piles. 

There are significant differences of the mechanical 

behaviour for the cracked and intact piles. Also, it is 

seen from the investigations that, the stiffness 

parameter of soil is very effective for reducing 

disadvantage of cracks. The effect of the crack on the 

piles must be considered at the design stage. 

 

APPENDİX 

The interpolation functions for axial degrees 

of freedom are 

,               (A1) 

 

Where 

 

,                             (A2) 

 

,                                       (A3) 

 

The interpolation functions for transverse degrees of 

freedom are 

 

(A4) 

 

Where 

 

,                         (A5) 

,                       (A6) 

,                                 (A7) 

,                                     (A8) 

  

Where  indicates the length of the finite pile 

element. The components of the stiffness matrix : 

the pile stiffness matrix , Winkler foundation 

stiffness matrix  and Pasternak foundation 

stiffness matrix  are as follows 

 

,                             (A9) 

 

Where 

      (A10) 

 

    (A11) 

 

            (A12) 

 

         (A13) 

 

The components of the mass matrix : ,  

and  [ ]M
q

 are as follows 

 

               (A14) 

 

                (A15) 
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