
K. Shuma Roshini et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.338-341

www.ijera.com 338 | P a g e

Implementation of Diamond Search Algorithm Using Parallel

Processing Architecture

K. Shuma Roshini
1
, M. Tejaswi

2
,

1M.Tech in Embedded Systems, Gudlavalleru Engineering College, Gudlavalleru, A.P.INDIA.
2Assistant Professor in ECE Department, Gudlavalleru Engineering College, Gudlavalleru, A.P.INDIA.

Abstract
In video communication whole content of video cannot be stored without processing. So there is a need to

compress the video before transmission and storage this process is called as video compression. Video
compression plays an important role with regard to real-time scouting/video conferencing applications.

Regarding the entire motion based video compression process, movement estimation is the most

computationally expensive and time consuming process. Motion estimation is the key element in video

compression. The Motion Estimation is a process which determines motion between two or more frames and

finds best possible macro block. There are several algorithms on block matching to name a few, Full Search

Motion estimation [FS], Three Step Search Motion Estimation [TSS], New Three Step Search Motion

Estimation [NTSS], Four Step Search Motion Estimation [FSS], Diamond Search Motion Estimation

[DS].Instead of trying to further reduce computational complexity of these algorithms it is better to implement

these algorithms on parallel processing architecture. In this paper Diamond Search Algorithm is implementation

on CPU and GPU.

Key Words: Motion Estimation, video compression, DS, GPU,CUDA.

I. INTRODUCTION
A raw video requires 2 to 3 GB of memory

for one minute depending on resolution of the frame,

it is impractical to store and transfer this much

amount of video, for this purpose video compression

is used. By using the technique of motion estimation

video can be encoded, motion estimation is the process

which determines motion between two or more frames

and it is used to find best possible macro block. Video

sequences consists of high level of redundancy

between consecutive frame it means changes between

frames are very less. In temporal redundancy the
reduction of redundancy involves encoding of a first

reference frame and the current frame, while the

current frame encodes only the difference from the

reference frame so this require a lot of computational

complexity. In order to reduce computational

complexity of ME [1] algorithms, a number of Block

Matching Algorithms (BMA)[2] came into existences.

At some point huge Computational complexity for all

the algorithms is going to increase. So, Diamond

Search algorithm is implemented on GPU to reduce

compression time of a video.
A Graphics Processing Unit (GPU)[3] is a

electronic circuit designed to rapidly manipulate and

alter memory to accelerate the creation of images in a

frame buffer intended for output to a display. The

exhaustive motion search is implemented on GPU,

instead of other fast ME algorithms, because of its

regular memory access pattern. Although other fast

ME algorithm can certainly be implemented, need an

additional layer of texture to specify the target

searching position and this results in random memory

access pattern and dependent texture read. The

repercussion of these are quite significant in modern
graphics architecture.

Motion Estimation

Mainly in video editing motion estimation [4]

is a type of video compression scheme. The motion

estimation process is done by the coder to find the

motion vector pointing to the best prediction macro

block in a reference frame. For compression

redundancy between adjacent frames can be exploited

where a frame is selected as a reference and

subsequent frames are predicted from the reference
using motion estimation. The motion estimation

process analyzes previous or future frames to identify

blocks that have not changed, and motion vectors are

stored in place of blocks.

Figure 1: Comparing two Frames

Figure 1 shows an example of a frame with 2
stick figures and a tree. The second half of this figure

is an example of a possible next frame, where panning

has resulted in the tree moving down and to the right,

RESEARCH ARTICLE OPEN ACCESS

K. Shuma Roshini et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.338-341

www.ijera.com 339 | P a g e

and the figures have moved farther to the right because

of their own movement outside of the panning. The

problem for motion estimation to solve is how to

adequately represent the changes, or differences,

between these two video frames.

It will probably worth mentioning that
although motion estimation is also employed in many

other disciplines an example would be computer

vision, target tracking, and industrial monitoring, the

techniques developed particularly for image coding a

variety of in certain respects. The intention of image

compression would be to lessen the total transmission

bit rate for reconstructing images for the receiver.

Hence, the motion information should occupy simply

a small amount of the transmission bandwidth

additional onto the picture contents information. So

long as the motion parameters obtain can effectively

reduce the total bit rate, these parameters need not
function as true motion parameters. Besides, the

reconstructed images for the receiving end are

sometimes distorted. Therefore, in case the

reconstructed images are employed for estimating

motion information, an extremely strong noise

component must not be ignored.

The motion estimation problem, involves

two related sub-problems: i) identify the moving

object boundaries, so-called motion segmentation, and

ii) estimate the motion parameters of each one moving

object, so-called motion estimation in strict sense.
Within our use, a moving object is basically a team of

contiguous pels that share the same variety of motion

parameters. This definition does not necessarily equal

the ordinary meaning of object. For instance, within

the videophone scene, the still background may

include wall, bookshelf, decorations, etc. Given that

these merchandise are stationary (sharing the same

zero motion vector), they could be considered as one

single object in the case of motion estimation.

An appealing point in studying the motion

estimation techniques for standards is the fact that the

current video standards specify for only the decoders.
Assuming motion displacement information (motion

vectors) are generated through encoder and transmitted

to the decoder, the decoder only performs the motion

compensation operation—patch the to-be-

reconstructed picture making use of the known

(already decoded) picture(s). The encoder, which

performs the motion estimation operation, is not really

explicitly specified among the standards. Hence, it is

more than possible use different motion estimation

techniques to produce standards-compatible motion

information. At the decoder, excluding the resources
of coded pictures which can be used for motion

compensation, fundamentally the same block-based

motion compensation operation is designed by most of

the popular video standards, H.261, H.263, MPEG-1,

and MPEG-2[5][6].

II. LITERATURE SURVEY
As motion estimation happens to be the most

compute intensive operate in an H.264 encoder,

extensive researches most certainly been completed to

accelerate the motion estimation operate in GPU.

Since full search algorithm has more parallelism

compared to any search algorithm, it's usually used to

parallelize motion estimation in GPU [7]. But can
often obtain huge performance gain in observation to

the JM encoder, it is not clear if their result is yikes

sufficient to be applied practically. In the other search

algorithms, motion vector prediction (MVP) is made

to increase the compression ratio. In MVP, the initial

motion vector (MV) of the current macro block (MB)

is predicted beginning with the MVs of one's neighbor

macro blocks, assuming that they have been already

encoded in a sequential raster order. And so the

motion vector associated with a block cannot be

predicted if MB encoding is performed in parallel.

Since MVP limits parallelism, several approaches are
proposed to extend the parallelism. If simply don't

MVP, it can be observed that the coding efficiency is

significantly degraded, resulting in a larger output

size. Kung has proposed a block-based ME

algorithm which uses 4x4 blocks as a substitute for

16x16 blocks. For being frame is separated into finer

blocks, the total number of blocks that could be

executed in parallel is increased. Since dynamic

behavior like early termination introduces poor

performance in GPU resulting from load imbalance,

they proposed a fresh search algorithm based on three
step search algorithm which has no early termination

technique. Schwalb et al. have proposed a different

approach. They ignored MVP to completely exploit

macro block (MB) level parallelism. Instead, they use

other predictors provided by Forward Dominant

Vector Selection (FDVS) and Split and Merge

techniques. In FDVS, it predicts the motion vector of n

1th frame by reusing the motion vectors of n previous

frames. In Split and Merge, it exploits correlation of

movement vectors between variable block sizes. Their

result separated they will be able to achieve

competitive quality and coding efficiency in
comparison with UMHexagons Search algorithm even

if they use Diamond Search algorithm [8]. These

techniques can easily be applicable to our approach

that if use multiple reference frames. Currently, only

consider one reference frame. Search algorithm that

proposed is the same as our algorithm in making use

of a diamond pattern for search points. While their

algorithm considers only a 3x3 square pattern, Here

assume holistic diamond pattern (nxn) and of course

the value of n that optimizes the performance within a

target GPU is about through measurements. Within
this particular approach, work with early termination

techniques and prevent the load imbalance by

carefully thinking about the underlying GPU

architecture. To fully exploit MB level parallelism,

here do not consider MVP that poses dependencies

among the sequence of MBs encoding. To bypass the

lack of MVP, Propose a new search algorithm fitted to

the GPU architecture, where more computations are

K. Shuma Roshini et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.338-341

www.ijera.com 340 | P a g e

performed yet in along-side maintain as much coding

efficiency as MVP would supply.

III. PROPOSED SYSTEM
Compute Unified Device Architecture

(CUDA) CUDA[9][10] serves as a parallel

programming framework for utilizing GPU for general

computing. Typical GPUs consist of hundreds of

processing cores very effective at achieving immense

parallel computing performance.Today all of

NVIDIA's GPUs are CUDA GPUs. CUDA is not

computer architecture in the sense of a definition of an

instruction set and a set of architectural registers;

binaries compiled for one CUDA GPU do not

necessarily run on all CUDA GPUs. More specifically,
NVIDIA defines different CUDA compute capabilities

to describe the features supported by CUDA hardware.

The first CUDA GPUs had compute capability 1.0. In

2011 NVIDIA released GPUs with compute capability

2.1, which is known as Fermi" architecture.

CUDA is based on the SIMD (Single

Instruction Multiple Data) architecture and suited to

exploiting various stages of data parallelism. A CUDA

GPU consists of multiple so-called streaming

multiprocessors (SMs).The threads executing a GPU

program, a so-called kernel, are grouped in blocks.

Threads belonging to one block all run on the same
multiprocessor but one multiprocessor can run

multiple blocks concurrently. Blocks are further

divided into groups of 32 threads called warps; the

threads belonging to one warp are executed in lock

step, i.e., they are synchronized. CUDA is extension to

C/C++ languages and allows programmers to write

parallel programs for GPU.

Graphic Processing Unit is a computer chip

that performs rapid mathematical calculations,

primarily for rendering purpose. NVIDIA’s GT

GeForce 610 GPU has been chosen for implementing
diamond search algorithm. This GPU consist of 48

processor cores where total work is allocated among

all these processors. GPU is connected in a CPU using

PCI slot of DDR3 memory type. It is also provided

with boost clock where GPU can run at higher speed

depending upon number of input factors that are used

to determine whether it is a good idea to run at higher

clock or not. Windows visual studio 2010 is used

which is a Integrated development Environment (IDE)

provides language services for all programming

languages with code editor and debugger. For

debugging purpose NVCC compiler is used which
separate source codes and device code. NVCC

generates both instructions for host and GPU, as well

as instructions to send data back and forward between

them. Device functions are processed by NVIDIA

compiler and Host functions are processed by host

compiler.

Specifications of GT GeForce 610
GPU Engine Specs:

• 48CUDA Cores

• 810Base Clock

• 1620Boost Clock

• 6.5Texture Fill Rate (billion/sec)
Memory Specs:

• 1.8 Gbps Memory Clock

• 1024MBStandard Memory Configuration

• DDR3Memory Interface

• 64-bitMemory Interface Width

• 14.4Memory Bandwidth (GB/sec)
Feature Support:

• 4.2OpenGL

• PCI Express 2.0Bus Support

• Certified for Windows 7

• DirectX 11, CUDA, PhysXSupported
Technologies

Diamond Search Motion Estimation

The diamond search algorithm[8][11] has two

search patterns first pattern consist of large diamond

search pattern which consists of nine points from
which eight points surrounds the center one to form a

diamond shape which is called as Large Diamond

Search Point (LDSP). Second pattern consist of five

search points which forms smaller diamond and it is

called as Small Diamond Search Point (SDSP).

In searching procedure of the DS algorithm,

first LDSP is searched repeatedly until minimum

block distortion (MBD) occurs at the center point. If

MBD occurs at the center point then search pattern is
switched from LDSP to SDSP and search completes.

Points yield from this search represents the motion

vectors of best matching block.

Summary of DS algorithm:

Step 1: Initially LDSP is centered at the origin of the

search window, and the 9 checking points of LDSP are

tested. If MBD is located at the center then go to

step3; otherwise step2.

Step 2: MBD point found in the previous search step

is re-positioned as the center point to form a new
LDSP. If the new MBD point obtained is located at the

center position, go to step3; otherwise, recursively

repeat this step.

Step3: Now switch the search pattern from LDSP to

SDSP. The MBD point found in this step is the final

solution of the motion vectors which points to the best

matching block.

K. Shuma Roshini et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.338-341

www.ijera.com 341 | P a g e

Figure 3: Light color dots represents the LDSP in this

case lets us assume that center point contains least

MBD then switch pattern shifts from LDSP to SDSP,

thick color dots represents SDSP center point is final

MBD which is best possible motion vector.

IV. RESULTS
GPU experimental results are compared with

existing results which are taken from [12] in C

environments with different configurations.

Table 1: Comparison of run times on CPU and

GPU

 Simulation experimental video is given to

GPU for implementing Diamond Search Algorithm for

encoding purpose. In the above table run time of

different videos are compared with run time of CPU.

Encoding process of video occur faster in GPU. Table

2 shows by how much factor video can be compressed

a video using this algorithm.

Table 2: Compression Factor of Videos

V. CONCLUSION
In this paper Diamond Search Algorithm is

implemented on parallel processing architecture for

NVIDIA GPU. After observing all the communication

overhead between host and device this proposed

algorithm takes less run time compared to that of CPU

with a 4x speed by only parallelizing motion estimation

block in the encoding side.

VI. ACKNOWLEDGMENT

I am glad to express my deep sense of

gratitude to Dr. M. Kamaraju, HOD of the ECE

Department and entire staff of ECE Department,

Gudlavalleru Engineering College, Gudlavalleru for

their great support and encouragement in completion

of this project.

REFERENCES
[1] Ahamdi, M. M. Azadfar “implementation of

fast motion estimation algorithms & comparsion

with full search method in H.264”, IJCSNS
international journal of computer science &

Network security, vol 8, No.3, pp139-143,
March 2008

[2] S. Immanuel Alex Pandian, Dr.G.josemin
BalaBecky Alma George, / A Study on Block

Matching Algorithms for Motion Estimation
International Journal on Computer Science and

Engineering (IJCSE) ISSN : 0975-3397, Vol. 3
No. 1 Jan 2011.

 [3] John Nickolls, William j.Dally, “ The GPU
Computing Era,” IEEE Annals of the History of

Computing Publication(2010), pp.56-69, ISBN:
0272 -1732.

[4] R. Srinivasan and K. R. Rao, “predictive coding
based on efficient motion estimation,” IEEE

Trans. Commun., vol. COMM-33,pp.888-896,
Aug. 1985.

[5] K.R.Rao and j.j Hwang, techniques and
standards for image, video and audio coding.

Englewood Cliffs, NJ:prentice Hall,1996
[6] “MPEG-4 video verification model, ver. 14.0,”

ISO/IECJTC1/SC29/WG11/N29232, Oct. 1999.
[7] Zhou Jing, Jiao Liang bao, Cao Xuehong, “

implementation of parallel full search algorithm
for motion estimation on multi core

Processors,” (ICNIT) pp 31-35, ISBN 978-1-
4577-0266-2, 2011

[8] D.v.manjunatha and Dr.sainarayanan

“Comparsion and implementation of fast block
matching motion estimation algorithms for

video compression”,ISSN:0975- 5462, Vol.3
No.10 October 2011 .

[9] W.Chen, H.Hang, “H.264/AVC motion
estimation implementation on compute Unified

Device Architecture(CUDA)”, ICME 2008.
[10] Youngsub ko, youngmin yi and soonhoi ha, “an

9efficient parallel motion estimation algorithm
and x264 parallelization in CUDA”, ISBN: 978-

1-4577-0620-2,page.no 91-98, IEEE,(2011).
[11] S.Zhu, K.ma, “ A New Diamond search

Algorithm for Fast Block-matching Motion
Estimation”, IEEE TRANSACTIONS ON

IMAGE PROCESSING, VOL.9, NO.2,
Feb.2000.

[12] D .rukmanidevi, p. rangarajan and j.raja paul,
“A Novel search algorithm for variable block

size motion estimation of H.264/AVC” ISSN:
1450-216X, vol 81 no 2(2012), pp. 160-167.

