
Y. Laxmi Prasanna et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.334-337

www.ijera.com 334 | P a g e

An Approach for Usage and Dataflow Coverage in Regression

Testing

Y. Laxmi Prasanna*
*(Department of Computer Science, Anurag Engineering College, Kodad)

ABSTRACT
Regression testing is the activity of retesting a program after it has been modified to gain confidence that

existing, changed, and new parts of the program behave correctly. This activity is typically performed by

rerunning, completely or partially, a set of existing test cases (i.e., its regression test suite).In this thesis we
proposed a frame work based approach that covers the component usage and data flow variations between two

versions. The approach of proposed model is a frame work that monitors the applications activities and flow of

execution. This approach shows the statistical information of both versions such as execution flow statistics,

execution time statistics, and coverage statistics.

Keywords: Regression testing , Regression Test Selection, Software Maintenance.

I. INTRODUCTION
Software maintenance is an activity which

includes enhancements, error corrections, optimization

and deletion of obsolete capabilities. These
modifications in the software may cause the software

to work incorrectly and may also affect the other parts

of the software, so to prevent this Regression testing is

performed. Regression testing is used to revalidate the

modifications of the software. Regression testing is an

expensive process in which test suites are executed

ensuring that no new errors have been introduced into

previously tested code. In section 2 of this paper we

have broadly shown various types of regression testing

techniques and further discussed classifications of

these types given by various authors, then moving into
the details of selective and prioritizing test cases for

regression testing, discussing search algorithms for

test case prioritization. In section 3 we have discussed

the approaches which may be used to compare various

regression testing techniques and challenges faced by

these approaches.

II. REGRESSION TESTING
Regression testing is defined [1] as “the

process of retesting the modified parts of the software

and ensuring that no new errors have been introduced

into previously tested code”. Let P be a program [2],

let P′ be a modified version of P, and let T be a test

suite for P. Regression testing consists of reusing T on

P′, and determining where the new test cases are

needed to effectively test code or functionality added

to or changed in producing P′. There are various

regression testing techniques (1) Retest all; (2)

Regression Test Selection; (3) Test Case

Prioritization; (4) Hybrid Approach. Figure 1 shows

various regression testing techniques.

Fig1 Regression Testing Techniques

1. Retest

Retest all technique is very expensive as

compared to techniques which will be discussed

further as regression test suites are costly to execute in

full as it require more time and budget.

2. Regression Test Selection (RTS)
Due to expensive nature of “retest all”

technique, Regression Test Selection is performed. In
this technique instead of rerunning the whole test suite

we select a part of test suite to rerun if the cost of

selecting a part of test suite is less than the cost of

running the tests that RTS allows us to omit. RTS

divides the existing test suite into (1) Reusable test

cases; (2) Retestable test cases; (3) Obsolete test cases.

In addition to this classification RTS may create new

test cases that test the program for areas which are not

covered by the existing test cases. RTS techniques are

broadly classified into three categories [1].

1) Coverage techniques: they take the test coverage

criteria into account. They find coverable program
parts that have been modified and select test cases that

work on these parts.

RESEARCH ARTICLE OPEN ACCESS

Y. Laxmi Prasanna et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.334-337

www.ijera.com 335 | P a g e

2) Minimization techniques: they are similar to

coverage techniques except that they select minimum

set of test cases.

3) Safe techniques: they do not focus on criteria of

coverage, in contrast they select all those test cases

that produce different output with a modified program
as compared to its original version.

3. Test Case Prioritization
This technique of regression testing prioritize

the test cases so as to increase a test suite„s rate of

fault detection that is how quickly a test suite detects

faults in the modified program to increase reliability.

This is of two types:(1) General prioritization[3]

which attempts to select an order of the test case that

will be effective on average subsequent versions of

software .(2)Version Specific prioritization which is

concerned with particular version of the software.

4. Hybrid Approach
The fourth regression technique is the Hybrid

Approach of both Regression Test Selection and Test

Case Prioritization. There are number of researchers

working on this approach and they have proposed

many algorithms for it. For example,

1) Test Selection Algorithm: proposed by Aggarwal et

al. Implementation of algorithm [4]: (a) Input (b) Test

Selection algorithm: Adjust module and Reduce

module (c) output.
2) Hybrid technique proposed by Wong et al which

combines minimization, modification and

prioritization based selection using test history [5].

3) Hybrid technique proposed by Yogesh Singh et al is

based on Regression Test Selection and Test Case

Prioritization. The proposed algorithm in detail can be

studied in [6].

III. EXISTING SYSTEM
Existing approaches like "Incremental

program testing using program dependence graphs",

"Semantics guided regression test cost reduction",

"Program slicing-based regression testing techniques

and "Selecting tests and "identifying test coverage

requirements for modified software" address this

problem by defining criteria that require exercising

single control- or data-flow dependences related to

program changes.

Considering the effects of changes on single

control- and data-flow relations alone does not

adequately exercise either the effects of software
changes or the modified behavior induced by such

changes.

 In the existing system, the tool called recover

takes input as source code of the application .As it

takes source code as input it does not concentrate on

behavioral differences of old and new versions of

softwares. The demerits of existing system are it does

not support polymorphic version of components and

dependency injection, and inversion of control.

Research Objective:

The results gained from empirical study

conducted and claimed in literature "Recomputing

Coverage Information to Assist Regression Testing",

thus, motivate the need for our technique that provides

usage coverage and dataflow coverage as the software
evolves without requiring rerunning of all test cases as

each software change is made. With the motivation

gained from the literature discussed I would like to

propose a frame work based approach that covers the

component usage and dataflow in new version. The

approach of the proposed model is that it is a

framework that monitors the applications activities

and flow of execution during that application‟s

execution time. Where as in the case of tool called

RECOVER discussed in literature “Recomputing

Coverage Information to Assist Regression Testing”

the input will be the source code of the application.
The aim of our proposal is the version differences will

be identified during the runtime that improvises the

evaluation of the component usage coverage and

dataflow coverage.

IV. PROPOSED SYSTEM
We need to concentrate on analyzing two

versions of the same program. The structural

difference between the two programs must be small
relative to the size of the program: only a few lines of

code or a few procedures in the program should be

different. We would like to develop techniques that

take advantage of the similarities between the two

programs, rather than use existing techniques to

analyze the programs independently and compare the

results. Because our goals include finding

unanticipated side effects of changes, we cannot

assume that an existing regression test suite is able to

find all interesting behavioral differences.

Regression testing finds differences in
behavior that were anticipated by the designers (or

testers) and specifically checked. While regression test

selection is a useful technique for reducing the cost of

testing, it cannot reveal new differences that are not

already tested by the suite. We also would like to be

able to analyze undocumented programs that may not

have test suites.

We assume we have a generator capable of

producing a differentiating test case, but that it is not

reasonable to do an exhaustive search of the input

space. It is not necessary for all generated inputs to be

valid; the search will eliminate inputs that both
programs consider to be errors. If the difference in

behavior is small relative to the input space, and we

have a generator that can produce the right inputs, the

analysis problem becomes one of performing a

directed search to find inputs which reveal behavioral

differences.

Proposed Model
Regression testing is the activity of retesting

a program after it has been modified to gain

Y. Laxmi Prasanna et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.334-337

www.ijera.com 336 | P a g e

confidence that existing, changed, and new parts of

the program behave correctly. This activity is typically

performed by rerunning, completely or partially, a set

of existing test cases (i.e., its regression test suite).

Given a program P and a modified version of the

program P, the regression test suite can reveal
differences in behavior between P and Pand, thus, help

developers discover errors caused by the changes or

by unwanted side effects of the changes introduced in

P. There is much research on making regression

testing more efficient by

(1) Identifying test cases in a regression test suite that

need not be rerun on the modified version of the

software,

(2) Eliminating redundant test cases in a test suite

according to given criteria ordering test cases in a test

suite to help find defects earlier.

Little research, however, has focused on the
effectiveness of the regression test suite with respect

to the changes. To evaluate such effectiveness, it is

necessary, when performing regression testing, to

(1) Check whether existing test suites are adequate for

the changes introduced in a program and, if not,

(2) provide guidance for creating new test cases that

specifically target the (intentionally or unintentionally)

changed behavior of the program.

Existing approaches like "Incremental

program testing using program dependence graphs",

"Semantics guided regression test cost reduction",
"Program slicing-based regression testing techniques

and "Selecting tests and "identifying test coverage

requirements for modified software" address this

problem by defining criteria that require exercising

single control- or data-flow dependences related to

program changes.

Limits of the solutions exist:

Considering the effects of changes on single

control- and data-flow relations alone does not

adequately exercise either the effects of software

changes or the modified behavior induced by such

changes.
The literature “Recomputing Coverage

Information to Assist Regression Testing” that

considered as motivation proposed a tool called

recover. This tool identifies the version differences to

assist the selection of test cases that covers updates in

new version during the regression testing.

The literature "Recomputing Coverage

Information to Assist Regression Testing" presented a

technique that provides updated coverage data for a

modified program without running all test cases in the

test suite that was developed for the original program
and used for regression testing. The technique is safe

and precise in that it computes exactly the same

information as if all test cases in the test suite were

rerun.

Approach: To conduct empirical study we will

develop a tool using java aspect model that evaluates

the component usage coverage and dataflow coverage

of any java application. The resultant statistical report

would helps to identify the significant version

differences.

Block Diagram

Fig 2 Block diagram for version differentiation

V. CONCLUSION
We conclude that novel framework helps to

identify test case feasibility based on version

differentials under regression testing. Recomputing

coverage information assists regression testing.
Recomputing is a frame work that extracts the

component usage data flow coverage information

from two concurrent versions of the software. This

framework is accurate and scalable when compared to

the tool called recoverage.

VI. FUTURE WORK
Further enhancement can be made by

automating without selecting the updated coverage
manually by the test engineer. By this we can still

reduce the testing budget and maintenance.

In regression testing many techniques are

proposed that provides an efficient way of selecting

regression test suite without rerunning all test cases

that was developed for old version. But still IT

companies are not utilizing these techniques, because

these techniques are not assuring completely and test

engineers are still using manual testing and

automation testing for safety.

REFERENCES
[1] K.K.Aggarwal & Yogesh Singh, “Software

Engineering Programs Documentation,

Operating Procedures,” New Age

International Publishers, Revised Second

Edition – 2005.

[2] Sebastian Elbaum, Praveen Kallakuri, Alexey

G. Malishevsky, Gregg Rothermel, Satya

Kanduri, “Understanding the Effects of

Changes on the Cost-Effectiveness of
Regression Testing Techniques,” Journal of

Software Testing, Verification, and

Reliability, 13(2) pages:65-83, June 2003.

Y. Laxmi Prasanna et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.334-337

www.ijera.com 337 | P a g e

 [3] G. Rothermel, R.H. Untch, C. Chu, and M.J.

Harrold, “Prioritizing Test Cases for

Regression Testing,” IEEE Trans. Software

Eng., vol. 27, no. 10, pages 929-948, Oct.

2001.

[4] K. K. Aggrawal, Yogesh Singh, A. Kaur, “
Code coverage based technique for

prioritizing test cases for regression testing,”

ACM SIGSOFT Software Engineering

Notes, vol 29 Issue 5 September 2004.

[5] W. E.Wong, J. [21] W. E.Wong, J. R.

Horgan, S. London and H.Agrawal, “A study

of effective regression testing in practice,” In

Proceedings of the 8th IEEE International

Symposium on Software Reliability

Engineering (ISSRE' 97), pages 264-274,

November 1997.

[6] Yogesh Singh, Arvinder Kaur, Bharti Suri,
“A new technique for version-specific test

case selection and prioritization for

regression testing,” Journal of the CSI ,Vol.

36 No.4, pages 23-32, October-December

2006.

[7] Pavan Kumar Chittimalli and Mary Jean

Harrold “Recomputing Coverage Information

toAssist Regression testing,” IEEE Trans.

Software Eng., vol. 35, no. 4, pages 452-469,

July/Aug. 2009.

