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ABSTRACT 
In this paper we consider a model of fractal parametric oscillator. Conducted a phase analysis of the decision 

model, and built its phase trajectories. 
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I. INTRODUCTION 
In investigation nonlinear dynamical 

systems often use the concept of a fractal, which is 

associated with the study of fractal geometry and 

processes such as, deterministic chaos, which is 

consistent with the theory of physics of open systems 

[1]. 

The development of nonlinear dynamical 

systems has led to develop new methods of analysis. 
One of these is the method of fractional derivatives 

[2]. This method to determine the natural 

phenomenon, in nonlinear dynamic systems, and 

other: economic, social, humanitarian. If in this 

method change the order of the fractional derivative 

confirmed the known results, but also study new 

results. 

Study presents a model of fractal parametric 

oscillation system and its phase trajectories. 

Development the theory of fractal oscillatory systems 

can be a method of Radio physics dynamic processes, 
such as ionosferno-magnetospheric plasma. 

 

II. STATEMENT OF THE PROBLEM AND 

SOLUTION METHOD 
In [3], the Cauchy problem for the fractional 

Mathieu equation: to find a solution,  u t , 

 0,t T : 

     0 cos 0tu t u t

         ,                     

(1) 

   1 20 , 0u u u u  .                                             
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generalized cosine (function of Mittag-Leffler) with a 

parameter1 2  . Put 2  , get the usual cosine, 

i.e.    2cos cost t  . The left side of equation 

(1) is the fractional derivative of order1 2  , 

which is defined as 
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The parameters ,  , 1u , 2u , defined constants. 

If in (1) put 0   and    then it is the well 

known equation of fractional oscillator, which is 

studied in [4]-[6]. In [4] investigated of the fractal 

oscillator was by using the fractional derivatives of 

Riemann-Liouville. In [5] and [6] - by using the 

Caputo operator (3), but the more correct to call it the 

Gerasimov-Caputo operator. Mention of this 

statement can be found in A. Gerasimov (1948) [7]. 

Equation (1) is a generalization of the 

Mathieu equation, which describes the parametric 

excitation of oscillation in mechanical systems, as 

well as the related phenomenon of parametric 

resonance. The system described by equation (1) call 
fractal parametric oscillator. 

The solution of the problem (1-2) is a Volterra 

integral equation of the second kind [3] 

       
0

.

t

u t K t u d g t      

Here the kernel      1

,, ( ) cosK t t E t


            
 

- 

and the right side of (2) 

     1 ,1 2 ,2g t u E t u tE t 

      . 

Note that if in (2) to put 0  , obtain a well-known 

solution to the equation of fractional oscillator. [6]: 

     1 ,1 2 ,2u t u E t u tE t 

       

Solution of the integral equation (2) can be obtained 

using the composite trapezoidal quadrature formula: 
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In (4) needed that the denominator ,
1 0

2

i ihK
  . This 

can always be achieved by reducing the value of the 

step h . 

 

III. THE PHASE TRAJECTORIES OF 

FRACTAL PARAMETRIC OSCILLATOR 
Write the solution (2) as follows: 

     1 ,1 2 ,2u t u E t u tE t 
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This equation can be written in following form: 
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(4) 

Applying [8], there was used the following operator: 
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     cosf u    .                                    

(5) 

Some properties of (5) are considered in [8]. 

Apply the Gerasimov-Caputo operator fractional 

differential form 
1

0t

   to the solution (4), obtain: 
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Consider each of the terms in equation (6). 
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In (7) have used the property [9]: 
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Similarly, obtain for the second term in (6) 
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Consider the last term in (6)  1 ,

0 0 ,t tE f  

  


    . In 

[8] proved the semigroup property of the operator: 
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integration operator. The Gerasimov-Caputo operator 

can be expressed through the fractional integral: 
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0 0 0t t tf D D f
  

   . 

In view of this property and the property (9), obtain: 

     21 , 1 ,

0 0 , 0 0 0 ,t t t t tE f D D E f
    

    
   

 
       

 

   2 1 1 ( 1),

0 0 0 0 ,t t t tD D D E f
  

 
    


                                                                   

      ,1

0

cos .

t

E t u d


                (10) 

Finally, obtain the equation for the derivative of the 

order 1  : 

     2

1 ,2 2 ,3w t u tE t u t E t 

         
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0

cos

t

E t u d


         .    

(11) 

Equation (11) is an integral Volterra equation of 

the second kind, and it can be solved numerically 

using the method (3). Phase trajectories are based on 

the respective pairs of points ,i iu w . 

 

IV. THE RESULTS OF THE CALCULATIONS 
In the numerical simulation, for simplicity, 

put 
2 0u   and 

1 1u   . 

 
Fig. 1. Phase trajectories of: a) a harmonic oscillator 

and a fractal oscillator 0  : curve 1 - 1.8  , curve 

2 - 1.6  , curve 3 - 1.4  ; b): fractal parametric 

oscillator 2, 1   : curve 1 - 1.8  , curve 2 - 

1.6  , curve 3 1.4  ; c) 1.8, 1   : curve 1 -

1.8  , curve 2 - 1.6  , curve 3 - 1.4  . 

 

In Fig. 1 presents phase trajectories with the 

parameters  100, 0,2n t   for the following 

cases: (Fig. 1a) harmonic oscillator - a circle, plot 

with the values of the parameters 2, 0   , the 

fractal oscillator - (Fig. 1b) fractal parametric 

oscillator - and (Fig. 1c). 

Fig. 1a (state trajectory is a circle) 

corresponds to the classical harmonic oscillations of 

the system. The phase trajectories of the fractal 

oscillator are coordinated with phase trajectories 

plotted in [4]. 
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New results are shown in Fig.1b and Fig.1c. 

In the first case, for 1,8   and for different values 

 , the phase trajectories of parametric oscillator are 

similar to the phase trajectories of fractal oscillator 

(Fig. 1a), but have a decaying type view of 

sustainable focus. Seen (Fig. 1b) sometimes are 

regrouping trajectories. This is due to the properties 

of the generalized cosine function, which is included 

in the original equation (1). Phase trajectory in Fig. 

1c was plotted with 2   and different values . In 

this case phase trajectories have a different view. 

In Fig. 2 shows the phase trajectory in Fig. 

2a and the solution of the original Cauchy problem 

(1) - (2) According to [4] for the parameter value, the 

fractional parameter depends on time according to the 

law. Parameters 0   and 0g   define the limits 

of values  t :  1 2t g      and satisfy 

inequality 1g   , m  – any number. 

For the calculations were selected following 

parameters:  

 300, 0,4 , 0,95, 0, 18n t g m      . 

 
In Fig. 2a shows that the phase trajectory has 

multiple return points, which corresponds to the 

results of [4]. In Fig. 2b plotted the calculated curve - 

the shift function. The curve has an oscillating form 

of constant amplitude. This is due to the introduction 

in equation (1) the differentiation operator of 

fractional order  . 

In Fig. 3 shows the phase trajectory and the offset 

 u t  for the fractal parametric oscillator. For the 

calculation put:  

 100, 0,2 , 0.01, 1, 0.95, 18, 1.8n t g k          . 

 
In Fig. 3a shows the difference between the phase 

trajectory of the fractal parametric oscillator and the 

phase trajectory of the fractal oscillator (Fig. 3a). In 
this case the phase trajectory is not closed. An offset 

 u t  (Fig. 3b) has a more complex structure: more 

frequent oscillations with variable amplitude. 

If changing   from 1 to 2, get different fractional 

equation (1), each has a family of solutions and 

properties. This allows us to make the following 
observation. 

Notice. In study [4], the authors concluded that the 

nonlinear signal any oscillating system can be 

parameterized by a solution of a fractal oscillator. 

Similarly, can assume that the complex signal 

represented by a solution of the fractal parametric 

oscillator. Build a model of a signal  f t , then by 

(2) get: 

       
0

t

f t g t K t f d     

   1 ,1 2 ,2u E t u tE t 

        

      1

, ,1

0

( )

t

t E t E f d
 

              
   

Function values  f t  at discrete points in 

time are known from the experiment. Then the 

problem of identification of the model is: to define 

 1 2, , , ,u u t    . In contrast to study [4] the 

value   also depends on the fractional parameter , 

it led more flexibility to present the original signal. 

This problem is quite complex and deserves attention 

in the future study of the properties of fractal 

parametric oscillator. 

 

V. CONCLUSION 
Solution the Cauchy problem (1-2) 

generalizes the well-known solutions for the 

harmonic oscillator and fractal oscillator. Were 

plotted phase trajectories. Calculations confirmed the 

earlier results [4] and led to new results. The phase 

trajectories of the parametric oscillator differ from 

the previous ones and have a more complex structure. 

So there may be non-linear effects in such systems. 
Suggested that the nonlinear signal can be 

represented by a fractal parametric oscillator 

solutions that deserve further study 
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