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ABSTRACT 
The ordinary linear differential equations with constant coefficients can be solved by the algebraic methods and 
the solutions are obtained by elementary functions called the fundamental solutions. Most of the differential 

equations met in mathematics, physics and engineering sciences remain out of this class. In such cases, it is 

natural to search the solutions in the form of infinite series. The power series method is a well known procedure 

to solve ODEs with variable coefficients. The resulting series can be used to analyze and visualize the nature of 

the solutions of ODE’s for which direct calculation is difficult. Manually solving a series solution using power 

series method is tedious and time consuming. In this paper a special package using SAGE (an open source 

software) have been developed, which can calculate any number of coefficients with no restriction to obtain the 

series solutions of up to third order ODE at an ordinary point. Also the well known Legendre and Hermite 

polynomials of any order can be generated and visualized by the way getting series solutions, In addition, 

Frobenius method for finding series solution around regular singular point cases are discussed.  

Keywords - Ordinary Differential Equations, Power Series Solutions, SAGE for Differential Equations 

 

 

I. INTRODUCTION 
Many differential equations arising in 

practical applications are linear with variable 

coefficients which are not reduced by a differential 

equation with constant coefficients, needs a method to 

obtain classical solutions. Power series method is a 

standard strategy to solve linear differential equations 

with variable coefficients. The procedure to obtain 
power series solutions are well known and it is 

discussed in many differential equations book and 

some of the advanced engineering Mathematics 

books[1,2,4,5]. Manually solving these kind of 

equations can be tedious and in order to get more 

coefficients of the series it takes lot more time and 

mainly it is not possible to visualize the solutions 

without the existing mathematical packages. 

In this paper, a package through SAGE, to 

obtain the series solutions of second order ODE with 

ordinary point and Frobenius method for the case of 

solutions of the indicial equations not differ by 
integers through symbolic computation have been 

developed. The Legendre and Hermite differential 

equations have been solved and obtained their 

polynomials from their series solutions. Section II 

describes theoretical structure of solving second order 

ODE through power series method. A package through 

SAGE using symbolic computation  have been given 

in Section III in order to solve third order ordinary 

differential equations using series solution. Section IV 

& V describes the Legendre and Hermite differential 

equations and visualizing their  

 

polynomials respectively. The method of Frobenius 

for regular singular points are discussed in Section VI. 

Section VII describes the computation time 

comparison with MATLAB. 

 

II. SERIES SOLUTION FOR SECOND 

ORDER ODE HAVING VARIABLE 

COEFFICIENTS 
Consider the linear second-order differential 

equation  

0)()()( 012  yxayxayxa …                  (1) 

which can be converted to the following standard form   

0)()(  yxQyxPy   ……                               (2) 

by dividing the leading coefficient )(0 xa . 

A point 0x  is said to be an ordinary point of the 

differential equation (1) if both P(x) and Q(x) are 

analytic at 0x .  A point that is not an ordinary point is 

said to be a singular point of the equation.  

Assume that 0x  is an ordinary point (2), so that 

solutions in powers of )( 0xx  actually do exists. Let 

...)()( 2

02010  xxcxxccy                    (3) 

be the solution of  (2).  Since the series (3) converges 

on an interval Rxx  0
 about 0x , it may be 

differentiated term by term on this interval twice in 
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succession to obtain 

...)(3)(2 2

02021  xxcxxcc
dx

dy
           (4) 

...)(12)(62 2

040322

2

 xxcxxcc
dx

yd          (5)  

 

respectively. By substituting the series in the right 

members of (2), (3) and (4) for y and its first two 

derivatives ,respectively, in the differential equation 

(1), one can get the series solution.  Simplifying the 
resulting expression it takes the following form 

0...)()( 2

02010  xxKxxKK               (6)                                    

Where the coefficients ...)3,2,1,0( iK i
 are functions 

of certain coefficients  of the solution (3). 

By equating the coefficients to zero of each power of 

(x-x0) in the left member of (6) leads to a set of 

conditions that must be satisfied by the various 

coefficients  in the series (3). If the  are chosen 

to satisfy the set of conditions that thus occurs, then 

the resulting series (3) is the desired solution of the 

differential equation (1). 

 

III. SAGE CODE FOR GETTING SERIES 

SOLUTIONS OF AN ODE  

THROUGH  SYMBOLIC 

COMPUTATIONS 
SAGE is an open-source mathematical 

software system that helps to perform many 
mathematical tasks such as plotting curves and 

surfaces, symbolic differentiation and integration and 

solving ODE etc[3]. SAGE have highly optimized 

functions that implement common numerical 

operations like integration, solving ordinary 

differential equations and solving systems of 

equations. It is almost a viable, free, open source 

alternative to Magma, Maple, Mathematica, and 

Matlab. Mathematician, scientist, or engineer can 

spend less time for doing tedious mathematical 

calculations by the way of using mathematical 
software and visualizing its solutions. Students can 

also benefit from mathematical software. The ability to 

plot functions and manipulate symbolic expressions 

easily can improve the understanding of mathematical 

concepts.  

The following is the SAGE package                         

sersol(p1x,p2x,p3x,p4x,x0,i1,i2,i3,N,nh,n) for 

obtaining series solution for third order ODE around  

the ordinary point x = x0 and visualizing its solutions. 

Input: 

N ( Number of terms of the series ) 

p1x, p2x , p3x, x0, i1, i2, i3,n & nh 
where p1x, p2x, p3x & p4x are the coefficients of 

yyyy &,,   respectively, i1, i2& i3 are initial 

conditions, n is highest order of the derivative and nh 

represents the  non homogeneous term. 

Output: 

Series Solutions with visualization 

 

def sersol(p1x,p2x,p3x,p4x,x0,i1,i2,i3,N,nh,n): 

      x = var("x") 

      z= var("z") 

     cc=[0]*(N+2) 

     dd=[0]*(N+1) 

     ee=[0]*(N-2) 
     aa = list(var('a_%d' % i) for i in (0..N)) 

     y = sum(a*(x-x0)**i for i,a in enumerate(aa)) 

     y1=y.substitute((x==z+x0)) 

     p1z=p1x.substitute((x==z+x0)) 

     p2z=p2x.substitute((x==z+x0)) 

     p3z=p3x.substitute((x==z+x0)) 

     p4z=p4x.substitute((x==z+x0)) 

     nh1=nh.substitute((x==z+x0)) 

    dy1=y1.derivative(z) 

    d2y1=dy1.derivative(z) 

    d3y1=d2y1.derivative(z) 

    ode=p1z*d3y1+p2z*d2y1+p3z*dy1+p4z*y1-nh1; 
    ode1=ode.simplify_full(); 

    ode2=ode1.collect(z) 

    l2=len(ode2) 

    bb=[0]*(l2+1) 

    for k in range(1,N+1): 

          m=z^k 

          bb[k] = (ode2.coefficient(m)==0) 

          ode2 = ode2 - ode2.coefficient(m)*m 

 

    for k in range(N+1,l2): 

          m=z^(k) 
          ode2=ode2 - ode2.coefficient(m)*m 

   bb[0]=(ode2==0); 

   for k in range(0,N-(n-1)): 

         dd[k] = bb[k] 

   for k in range(0,N-(n-1)): 

         ee[k] = aa[k+3] 

   sol=solve(dd,(ee)) 

   c=sol[0]; 

   y2=0 

  for k in range(0,n): 

        y2=y2+aa[k]*z^k 

  for k in range(0,N-(n-1)): 
 

       y2=y2+(c[k].right_hand_side())*z**(k+n) 

 

  y3=y2.substitute(z=0) 

  y4=y2.derivative(z) 

  y5=y4.substitute(z=0) 

  y11=y4.derivative(z) 

  y12=y11.substitute(z=0) 

  y6=solve(y3==i1,a_0) 

  y7=solve(y5==i2,a_1) 

  y13=solve(y12==i3,a_2) 
  y8=y2.substitute(a_0=y6[0].right_hand_side()) 

  y9=y8.substitute(a_1=y7[0].right_hand_side()) 

  y14=y9.substitute(a_2=y13[0].right_hand_side()) 

  y10=y14.substitute((z==x-x0)) 

  return(y10) 
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Example 1 

Consider the third order initial value problem given 

by: 0
11

2
 y

x
y

x
y  with 0)1(,1)1(  yy  

and 1)1( y  

Output: 

The series solution for N=8 is 

−(793/40320)(x−1)
8
+(137/5040)(x−1)

7
− 

(29/720)(x−1)
6
+(1/15)(x−1)

5
−(1/8)(x−1)

4 

+(1/6)(x−1)
3
+(1/2)(x−1)

2
+1 

 
Figure 1: Visualizing solution and solution curve for 

the ordinary differential equation 

0
11

2
 y

x
y

x
y  with 

1)1(,0)1(,1)1(  yyy ( N=8). 

 

Example 2 

Consider the following initial value problem 

1)0(,2)0(,0  yyyyxy . 

Output: 

 

 

 
 

 
Figure 2: Visualizing solution  curves for the ODE 

 

1)0(,2)0(,0  yyyyxy  

for N=7,10 & 50 

 

Example 3 

 

Consider the following ordinary differential equation 

0)4(,5)4(,0)1(2)1(  yyyxyyx  

on the interval  x4  around  the ordinary point 

x0=4 

 

Output: 

The series solution  is 

(205/163296)(x−4)
8
+(23/6804)(x−4)

7 

−(37/972)(x−4)
6
−(2/27)(x−4)

5
+(25/36)(x−4)

4 

+(5/9)(x−4)
3
−5(x−4)

2
+5 

 
Figure 3: Visualizing solution and solution curve for 

the ODE  

 

0)4(,5)4(,0)1(2)1(  yyyxyyx  

and  x4   

 

 

Example  4 

 

Comparison of series and exact solution curves for the 

following initial value problem 

2

9
)0(,

2

5
)0(,

2

1
)0(

,402422 5





yyy

eeyyy xx
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Figure 4: Comparison of series and exact solution of 

2

9
)0(,

2

5
)0(,

2

1
)0(

,402422 5





yyy

eeyyy xx

 

 

Example  5 

Consider the following ordinary differential equation 
xeyyxy 3  

Output: 

The series solution  is  

 

(−1/13440)(5a0−148)x
8
+(1/240)(a0+19)x

6 

+(53/1680)x
7
−(1/24)(a0−8)x

4
+(7/40)x

5 

+(1/2)(a0+1)x
2
+(1/2)x

3
+a1x+a0 

 

Where a0 & a1 are arbitrary constants 

 

Example  6 

 

Consider the following ordinary differential equation 

0)sin(  yeyxy x
 

 

 Output: 

The series solution  is 

 

(1/40320)(49a0−110a1)x
8
−(1/5040)(37a0+32a1)x

7
− 

(1/720)(5a0−14a1)x
6
+(1/20)(a0+a1)x

5
+ 

(1/12)(a0−a1)x
4
−(1/6)(a0+2a1)x

3
−(1/2)a0x

2+a1x+a0 

 

Where a0 & a1 are arbitrary constants 

 

For the above cases, expand  the 

trignometrical and exponential terms as a Taylor series 

expansion about origin upto the number of terms one 

require.  Since there are no initial condition given, the 

solution will be in terms of arbitrary constants as given 
above.  

The SAGE package is given for a third order 

equations and a simple modification in terms of the 

number of initial conditions and with the  coefficients 

of derivative will give the solution of second order 

equations. 

 

 

 

IV. LEGENDRE POLYNOMIALS 

The Legendre differential equation 

0)1(2)1( 2  ynnyxyx ...(7) where 

n=0,1,2,3,… is frequently encountered in physics and 

other technical fields. In particular, it occurs when 

solving Laplace's equation (and related partial 

differential equations) in spherical coordinates. The 

Legendre differential equation may be solved using 

the standard power series method. The equation (7) 

has regular singular points at x = ±1, its series solution 

about the origin will only converge for |x| < 1. When n 

is an integer, one of the series solution terminates 

depending on the nature of value of  n. These solutions 

for n = 0, 1, 2,3, ... form a sequence of orthogonal 
polynomials called the Legendre polynomials.  

The following SAGE Package 

legendre(p1x,p2x,p3x,N) solves the Legendre 

differential equation 0)1(2)1( 2  ynnyxyx  

and computes set of Legendre polynomials with 
visualization.  

Input:  

   N (Number of terms of the series) 

   p1x= 1-x
2,

 p2x= -2x & p3x=n
2
+n 

   (Coefficients of yyy &,  respectively) 

Output: 

   Legendre polynomials with visualization 

def  legendre(p1x,p2x,p3x,N): 

        x = var("x") 

        n = var("n") 

       N1= int(N/2) 

       aa = list(var('a_%d' % i) for i in (0..N)) 

       bb = [0]*(N+2) 

       cc = [0]*(N-1) 

       dd = [0]*(N+1) 

       ee = [0]*(N-1) 
       ff = [0]*(N-1) 

       gg = [0]*(N1) 

       hh = [0]*(N1) 

      y = sum(a*x**i for i,a in enumerate(aa)) 

      dy=y.derivative(x) 

      d2y=dy.derivative(x) 

      ode=p1x*d2y+p2x*dy+p3x*y; 

      ode1=ode.simplify_full() 

      ode2=ode1.collect(x) 

      for k in range(1,N+1): 

            m=x^k 
            bb[k] = (ode2.coefficient(m)==0) 

     ode2 = ode2 - ode2.coefficient(m)*m 

     bb[0]=(ode2==0); 

    for k in range(0,N-1): 

          ee[k]=bb[k] 

          cc[k]=aa[k+2] 

    sol=solve(ee,(cc)) 

    d=sol[0] 

    y2=aa[0]+aa[1]*x; 

    for k in range(0,N-1):  

          y2=y2+(d[k].right_hand_side())*x**(k+2) 

    i=0 
    for k in range(0,N-1 ,2):     

http://www.wikipedia.org/wiki/Physics
http://www.wikipedia.org/wiki/Laplace%27s_equation
http://www.wikipedia.org/wiki/Partial_differential_equation
http://www.wikipedia.org/wiki/Partial_differential_equation
http://www.wikipedia.org/wiki/Spherical_coordinates
http://www.wikipedia.org/wiki/Power_series
http://www.wikipedia.org/wiki/Regular_singular_point
http://www.wikipedia.org/wiki/Polynomial_sequence
http://www.wikipedia.org/wiki/Orthogonal_polynomials
http://www.wikipedia.org/wiki/Orthogonal_polynomials
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          y3=y2.substitute(a_1=0,n=k) 

          y4=y3.substitute(x=1) 

          y5=solve(y4==1,a_0) 

        gg[i]=y3.substitute(a_0=y5[0].right_hand_side()) 

        i=i+1 

    i=0 
    for k in range(1,N,2):     

          y3=y2.substitute(a_0=0,n=k) 

          y4=y3.substitute(x=1) 

          y5=solve(y4==1,a_1) 

        hh[i]=y3.substitute(a_1=y5[0].right_hand_side()) 

        i=i+1      

    for k in range(0,N1):  

          plot_list.append(plot(gg[k],(x,-1,1) ))     

    for k in range(0,N1):  

          plot_list.append(plot(hh[k],(x,-1,1) ))    

    gr=sum(plot_list) 

    gr.show() 
    return(gg,hh) 

Output: 

 
 

([1, (3/2)x
2
 - 1/2, (35/8)x

4
 – (15/4)x

2 
+ 3/8, (231/16)x

6
 

– (315/16)x
4
 + (105/16)x

2
 - 5/16, (6435/128)x

8
 – 

(3003/32)x
6
 + (3465/64)x

4
 – (315/32)x

2
 + 35/128], 

[x, (5/2)x
3 

– (3/2)x, (63/8)x
5
 – (35/4)x

3 
+ (15/8)x, 

(429/16)x
7
- (693/16)x

5
 + (315/16)x

3
 – (35/16)x, 

(12155/128)x
9
 – (6435/32)x

7
 +(9009/64)x

5
 – 

(1155/32)x
3
 + (315/128)x]) 

Figure 3.  Visualizing Legendre polynomials for N=10 

 

V. HERMITE POLYNOMIALS 
The Hermite differential equation 

022  nyyxy  is frequently encountered in 

physics and other technical fields. In particular, 

Hermite polynomials )(xH n
 arise in solving the 

Schrodinger equation for a harmonic oscillator. 

However, it also shows one way in which special 

functions arise from differential equations, so in that 

sense it is of interest to all.  

The following SAGE Package 

hermitesol(p1x,p2x,p3x,N) solves the Legendre 

differential equation 022  nyyxy  and 

computes set of Hermite polynomials for n=1,2,3… 

with visualization.                                                  

Input:                                                                                      

N (Number of terms of the series)                      

 p1x=1,p2x = -2x & p3x = 2n                                                         

(Coefficients of yyy &,   respectively)        

Output:                                                                     

Hermite polynomial with visualization 
def hermitesol(p1x,p2x,p3x,N): 

      x = var("x") 

      n = var("n") 

      N1=int(N/2) 

      aa = list(var('a_%d' % i) for i in (0..N)) 

      bb = [0]*(N+2) 

      cc = [0]*(N-1) 

      dd = [0]*(N+1) 

      ee = [0]*(N-1) 

      ff = [0]*(N-1) 

      gg = [0]*(N1) 
      hh = [0]*(N1) 

      y = sum(a*x**i for i,a in enumerate(aa)) 

      dy=y.derivative(x) 

      d2y=dy.derivative(x) 

      ode=p1x*d2y+p2x*dy+p3x*y; 

      ode1=ode.simplify_full() 

      ode2=ode1.collect(x) 

      for k in range(1,N+1): 

            m=x^k 

            bb[k] = (ode2.coefficient(m)==0) 

            ode2 = ode2 - ode2.coefficient(m)*m 

      bb[0]=(ode2==0); 
 

      for k in range(0,N-1): 

            ee[k]=bb[k] 

            cc[k]=aa[k+2] 

      sol=solve(ee,(cc)) 

      d=sol[0] 

 

      y2=aa[0]+aa[1]*x; 

      for k in range(0,N-1):     

           y2=y2+(d[k].right_hand_side())*x**(k+2) 

    i=0 
    for k in range(1,N,2):     

          y3=y2.substitute(a_0=0,n=k) 

          y4=y3.coefficient(x^k) 

          y5=solve(y4==2**(k),a_1) 

        gg[i]=y3.substitute(a_1=y5[0].right_hand_side()) 

        i=i+1 

     

    i=1 

    hh[0]=1; 

    i=1 

    for k in range(2,N-1,2):     
          y3=y2.substitute(a_1=0,n=k) 

     

          y4=y3.coefficient(x^k) 

     

          y5=solve(y4==2**(k),a_0) 

     

        hh[i]=y3.substitute(a_0=y5[0].right_hand_side()) 

        i=i+1 

    plot_list=[] 

http://www.wikipedia.org/wiki/Physics
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    for k in range(0,N1):  

       plot_list.append(plot(gg[k],(x,-2,2) )) 

         

for k in range(0,N1):  

      plot_list.append(plot(hh[k],(x,-2,2) )) 

         
gr=sum(plot_list) 

gr.show() 

    return(gg,hh) 

 

Output: 

[2x,8x
3
−12x,32x

5
−160x

3
+120x,128x

7
−1344x

5 

+3360x
3
−1680x, 512x

9
−9216x

7
+48384x

5
−80640x

3 

+30240x]  

 

[1,4x
2
−2,16x

4
−48x

2
+12,64x

6
−480x

4
+720x

2
−120, 

256x
8
−3584x

6
+13440x

4
−13440x

2
+1680]  

 

 
 

Figure 4: Visualizing Hermite polynomials for N=10. 

 

VI. METHOD OF FROBENIOUS FOR 

REGULAR SINGULAR POINTS 
If the linear equation 0)()(  yxQyxPy ...             

(8) has an irregular singularity at x=x0 then the 
problem of finding series solution is not easy.  If, 

however the above equation (8) has regular singular 

point at x=x0 then one can develop a method for 

finding a series solutions, valid in neighborhood of x0.  

This procedure is known as the method of Frobenius. 

In this article, the package for getting solutions valid 

in neighborhood of regular singular points (x0=0) is 

developed, whose indicial equations are different and 

not differ by integer. 

 

Input 

  N (Number of terms of the series) 
  p1x, p2x &  p3x 

 (Coefficients of yyy &,   respectively). 

Output 

 Series solutions 

 

def  frobenius(p1x,p2x,p3x,N): 

       x = var("x") 

       r = var("r") 

       bb=[0]*(N+2) 
       bb1=[0]*(N) 

       cc=[0]*(N+1) 

       dd=[0]*(N) 

       y3=[0]*2*(N+1) 

       aa = list(var('a_%d' % i) for i in (0..N)) 

       y = sum(a*x**i for i,a in enumerate(aa)) 

       Px=p2x/p1x;  

       Qx=p3x/p1x; 
        px=x*Px; 

        p4x=px.simplify_full() 

        qx=x^2*Qx; 

        q4x=qx.simplify_full() 

        a1=p4x.substitute(x=0) 

        b1=q4x.substitute(x=0) 

        sol=solve(r*(r-1)+a1*r+b1= =0,(r)) 

      

        for j in range(1,3): 

             c=sol[j-1].right_hand_side() 

             yp = y*x^(c) 

             y1=yp.simplify_full(); 
             dy=y1.derivative(x) 

             d2y=dy.derivative(x) 

             ode1=p1x*d2y+p2x*dy+p3x*y1; 

             ode2=ode1.simplify_full(); 

             ode=ode2/x^c; 

             ode3=ode.collect(x) 

     

             for k in range(0,N+1): 

                   m=x^k 

                 bb[k] = (ode3.coefficient(m)= =0)   

                 ode3 = ode3 - ode3.coefficient(m)*m 
                 bb[0]=(ode3= =0); 

     

            for k in range(0,N): 

                  bb1[k]=bb[k] 

      

            for k in range(1,N+1): 

                  dd[k-1]=aa[k] 

     

            sol1=solve(bb1,(dd)) 

            sol2=sol1[0] 

            y2=aa[0]*x^c 

           for i in range(0,N-1): 
            y2=y2+(sol2[i].right_hand_side())*x**(i+1+c) 

           show(y2) 

      return() 

  

Example 7 

Consider the following ordinary differential equation 

)0(,0)1(76 22  xyxyxyx  

Since x = 0 is a regular singular points for the 

differential equation, output is shown below 

 

The two linear independent solutions are  

 

(1/68078976)a0 x
(15/2)

+ (1/197904)a0 x
(11/2) 

+(1/1064)a0 x
(7/2)

+(1/14)a0 x
(3/2)

+ (a0/√x) 

 

(1/411374976)a0 x
(25/3)

+(1/970224)a0 x
(19/3) 

+(1/3944)a0 x
(13/3)

+(1/34)a0 x
(7/3)

+a0 x^(1/3) 
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Where a0 is arbitrary constant 

The above code can be modified for other 

singular points like one developed in this article and 

for other two cases of Frobenius such as the indicial 

equation’s equal roots and roots differ by an integer 

for getting two independent solutions can be done in a 
similar way. 

The results are verified for the example problems 

with [4], [5] and [6]. 

 

VII. COMPUTATION TIME 

COMPARISON 
    The Computation time comparison for 

obtaining the number of terms of the series for the 

ODE  1)0(,2)0(,0  yyyyxy  using  

SAGE (Wall time) and MATLAB (tic-toc  time) are 

presented in Table 1. 

Number of 

coefficients 

of  the series 

 SAGE MATLAB 

50 1.252263212 3.712966 

100 4.277512169 7.363384 

150 10.05321922 11.65843 

200 21.62953706 17.56204 

250 32.45158839 24.66636 

300 52.07608185 29.889488 

 

Table 1: The Computation time comparison for 
obtaining the number of coefficients of the series for 

the ODE  1)0(,2)0(,0  yyyyxy  

using SAGE and MATLAB 

 

VIII. Conclusion 

This computational tool will help the students 

to understand the nature of the solution and study the 
behavior of the solution through visualization. The 

figures confirm that the behavior of the solution 

changes considerably when the number of terms of the 

solution increases, which may not be possible without 

the use of Mathematical software.  This is the first 

time a package has been developed through SAGE to 

visualize the series solution of any order. The 

programs will help not only solving the differential 

equations upto order three, Legendre and Hemite 

differential equations but also generating and 

visualizing solutions around ordinary, regular singular 
points, Legendre and Hermite polynomials for any 

order.  One can extend the same concept for higher 

order differential equations of any order. 
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