
M. Kaliyappan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1496-1502

www.ijera.com 1496 | P a g e

Sage Package for Symbolic Computation of Series Solution of

Ordinary Differential Equations

M.Kaliyappan*, A.Vanav Kumar**, S.Hariharan***
*(School of Advanced Science, VIT University, Chennai)

** (School of Advanced Science, VIT University, Chennai)

*** (School of Advanced Science, VIT University, Chennai)

ABSTRACT
The ordinary linear differential equations with constant coefficients can be solved by the algebraic methods and
the solutions are obtained by elementary functions called the fundamental solutions. Most of the differential

equations met in mathematics, physics and engineering sciences remain out of this class. In such cases, it is

natural to search the solutions in the form of infinite series. The power series method is a well known procedure

to solve ODEs with variable coefficients. The resulting series can be used to analyze and visualize the nature of

the solutions of ODE’s for which direct calculation is difficult. Manually solving a series solution using power

series method is tedious and time consuming. In this paper a special package using SAGE (an open source

software) have been developed, which can calculate any number of coefficients with no restriction to obtain the

series solutions of up to third order ODE at an ordinary point. Also the well known Legendre and Hermite

polynomials of any order can be generated and visualized by the way getting series solutions, In addition,

Frobenius method for finding series solution around regular singular point cases are discussed.

Keywords - Ordinary Differential Equations, Power Series Solutions, SAGE for Differential Equations

I. INTRODUCTION
Many differential equations arising in

practical applications are linear with variable

coefficients which are not reduced by a differential

equation with constant coefficients, needs a method to

obtain classical solutions. Power series method is a

standard strategy to solve linear differential equations

with variable coefficients. The procedure to obtain
power series solutions are well known and it is

discussed in many differential equations book and

some of the advanced engineering Mathematics

books[1,2,4,5]. Manually solving these kind of

equations can be tedious and in order to get more

coefficients of the series it takes lot more time and

mainly it is not possible to visualize the solutions

without the existing mathematical packages.

In this paper, a package through SAGE, to

obtain the series solutions of second order ODE with

ordinary point and Frobenius method for the case of

solutions of the indicial equations not differ by
integers through symbolic computation have been

developed. The Legendre and Hermite differential

equations have been solved and obtained their

polynomials from their series solutions. Section II

describes theoretical structure of solving second order

ODE through power series method. A package through

SAGE using symbolic computation have been given

in Section III in order to solve third order ordinary

differential equations using series solution. Section IV

& V describes the Legendre and Hermite differential

equations and visualizing their

polynomials respectively. The method of Frobenius

for regular singular points are discussed in Section VI.

Section VII describes the computation time

comparison with MATLAB.

II. SERIES SOLUTION FOR SECOND

ORDER ODE HAVING VARIABLE

COEFFICIENTS
Consider the linear second-order differential

equation

0)()()(012  yxayxayxa … (1)

which can be converted to the following standard form

0)()( yxQyxPy …… (2)

by dividing the leading coefficient)(0 xa .

A point 0x is said to be an ordinary point of the

differential equation (1) if both P(x) and Q(x) are

analytic at 0x . A point that is not an ordinary point is

said to be a singular point of the equation.

Assume that 0x is an ordinary point (2), so that

solutions in powers of)(0xx  actually do exists. Let

...)()(2

02010  xxcxxccy (3)

be the solution of (2). Since the series (3) converges

on an interval Rxx  0
 about 0x , it may be

differentiated term by term on this interval twice in

RESEARCH ARTICLE OPEN ACCESS

M. Kaliyappan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1496-1502

www.ijera.com 1497 | P a g e

succession to obtain

...)(3)(2 2

02021  xxcxxcc
dx

dy
 (4)

...)(12)(62 2

040322

2

 xxcxxcc
dx

yd (5)

respectively. By substituting the series in the right

members of (2), (3) and (4) for y and its first two

derivatives ,respectively, in the differential equation

(1), one can get the series solution. Simplifying the
resulting expression it takes the following form

0...)()(2

02010  xxKxxKK (6)

Where the coefficients ...)3,2,1,0(iK i
 are functions

of certain coefficients of the solution (3).

By equating the coefficients to zero of each power of

(x-x0) in the left member of (6) leads to a set of

conditions that must be satisfied by the various

coefficients in the series (3). If the are chosen

to satisfy the set of conditions that thus occurs, then

the resulting series (3) is the desired solution of the

differential equation (1).

III. SAGE CODE FOR GETTING SERIES

SOLUTIONS OF AN ODE

THROUGH SYMBOLIC

COMPUTATIONS
SAGE is an open-source mathematical

software system that helps to perform many
mathematical tasks such as plotting curves and

surfaces, symbolic differentiation and integration and

solving ODE etc[3]. SAGE have highly optimized

functions that implement common numerical

operations like integration, solving ordinary

differential equations and solving systems of

equations. It is almost a viable, free, open source

alternative to Magma, Maple, Mathematica, and

Matlab. Mathematician, scientist, or engineer can

spend less time for doing tedious mathematical

calculations by the way of using mathematical
software and visualizing its solutions. Students can

also benefit from mathematical software. The ability to

plot functions and manipulate symbolic expressions

easily can improve the understanding of mathematical

concepts.

The following is the SAGE package

sersol(p1x,p2x,p3x,p4x,x0,i1,i2,i3,N,nh,n) for

obtaining series solution for third order ODE around

the ordinary point x = x0 and visualizing its solutions.

Input:

N (Number of terms of the series)

p1x, p2x , p3x, x0, i1, i2, i3,n & nh
where p1x, p2x, p3x & p4x are the coefficients of

yyyy &,,  respectively, i1, i2& i3 are initial

conditions, n is highest order of the derivative and nh

represents the non homogeneous term.

Output:

Series Solutions with visualization

def sersol(p1x,p2x,p3x,p4x,x0,i1,i2,i3,N,nh,n):

 x = var("x")

 z= var("z")

 cc=[0]*(N+2)

 dd=[0]*(N+1)

 ee=[0]*(N-2)
 aa = list(var('a_%d' % i) for i in (0..N))

 y = sum(a*(x-x0)**i for i,a in enumerate(aa))

 y1=y.substitute((x==z+x0))

 p1z=p1x.substitute((x==z+x0))

 p2z=p2x.substitute((x==z+x0))

 p3z=p3x.substitute((x==z+x0))

 p4z=p4x.substitute((x==z+x0))

 nh1=nh.substitute((x==z+x0))

 dy1=y1.derivative(z)

 d2y1=dy1.derivative(z)

 d3y1=d2y1.derivative(z)

 ode=p1z*d3y1+p2z*d2y1+p3z*dy1+p4z*y1-nh1;
 ode1=ode.simplify_full();

 ode2=ode1.collect(z)

 l2=len(ode2)

 bb=[0]*(l2+1)

 for k in range(1,N+1):

 m=z^k

 bb[k] = (ode2.coefficient(m)==0)

 ode2 = ode2 - ode2.coefficient(m)*m

 for k in range(N+1,l2):

 m=z^(k)
 ode2=ode2 - ode2.coefficient(m)*m

 bb[0]=(ode2==0);

 for k in range(0,N-(n-1)):

 dd[k] = bb[k]

 for k in range(0,N-(n-1)):

 ee[k] = aa[k+3]

 sol=solve(dd,(ee))

 c=sol[0];

 y2=0

 for k in range(0,n):

 y2=y2+aa[k]*z^k

 for k in range(0,N-(n-1)):

 y2=y2+(c[k].right_hand_side())*z**(k+n)

 y3=y2.substitute(z=0)

 y4=y2.derivative(z)

 y5=y4.substitute(z=0)

 y11=y4.derivative(z)

 y12=y11.substitute(z=0)

 y6=solve(y3==i1,a_0)

 y7=solve(y5==i2,a_1)

 y13=solve(y12==i3,a_2)
 y8=y2.substitute(a_0=y6[0].right_hand_side())

 y9=y8.substitute(a_1=y7[0].right_hand_side())

 y14=y9.substitute(a_2=y13[0].right_hand_side())

 y10=y14.substitute((z==x-x0))

 return(y10)

M. Kaliyappan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1496-1502

www.ijera.com 1498 | P a g e

Example 1

Consider the third order initial value problem given

by: 0
11

2
 y

x
y

x
y with 0)1(,1)1( yy

and 1)1(y

Output:

The series solution for N=8 is

−(793/40320)(x−1)
8
+(137/5040)(x−1)

7
−

(29/720)(x−1)
6
+(1/15)(x−1)

5
−(1/8)(x−1)

4

+(1/6)(x−1)
3
+(1/2)(x−1)

2
+1

Figure 1: Visualizing solution and solution curve for

the ordinary differential equation

0
11

2
 y

x
y

x
y with

1)1(,0)1(,1)1( yyy (N=8).

Example 2

Consider the following initial value problem

1)0(,2)0(,0  yyyyxy .

Output:

Figure 2: Visualizing solution curves for the ODE

1)0(,2)0(,0  yyyyxy

for N=7,10 & 50

Example 3

Consider the following ordinary differential equation

0)4(,5)4(,0)1(2)1( yyyxyyx

on the interval  x4 around the ordinary point

x0=4

Output:

The series solution is

(205/163296)(x−4)
8
+(23/6804)(x−4)

7

−(37/972)(x−4)
6
−(2/27)(x−4)

5
+(25/36)(x−4)

4

+(5/9)(x−4)
3
−5(x−4)

2
+5

Figure 3: Visualizing solution and solution curve for

the ODE

0)4(,5)4(,0)1(2)1( yyyxyyx

and  x4

Example 4

Comparison of series and exact solution curves for the

following initial value problem

2

9
)0(,

2

5
)0(,

2

1
)0(

,402422 5





yyy

eeyyy xx

M. Kaliyappan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1496-1502

www.ijera.com 1499 | P a g e

Figure 4: Comparison of series and exact solution of

2

9
)0(,

2

5
)0(,

2

1
)0(

,402422 5





yyy

eeyyy xx

Example 5

Consider the following ordinary differential equation
xeyyxy 3

Output:

The series solution is

(−1/13440)(5a0−148)x
8
+(1/240)(a0+19)x

6

+(53/1680)x
7
−(1/24)(a0−8)x

4
+(7/40)x

5

+(1/2)(a0+1)x
2
+(1/2)x

3
+a1x+a0

Where a0 & a1 are arbitrary constants

Example 6

Consider the following ordinary differential equation

0)sin( yeyxy x

 Output:

The series solution is

(1/40320)(49a0−110a1)x
8
−(1/5040)(37a0+32a1)x

7
−

(1/720)(5a0−14a1)x
6
+(1/20)(a0+a1)x

5
+

(1/12)(a0−a1)x
4
−(1/6)(a0+2a1)x

3
−(1/2)a0x

2+a1x+a0

Where a0 & a1 are arbitrary constants

For the above cases, expand the

trignometrical and exponential terms as a Taylor series

expansion about origin upto the number of terms one

require. Since there are no initial condition given, the

solution will be in terms of arbitrary constants as given
above.

The SAGE package is given for a third order

equations and a simple modification in terms of the

number of initial conditions and with the coefficients

of derivative will give the solution of second order

equations.

IV. LEGENDRE POLYNOMIALS

The Legendre differential equation

0)1(2)1(2  ynnyxyx ...(7) where

n=0,1,2,3,… is frequently encountered in physics and

other technical fields. In particular, it occurs when

solving Laplace's equation (and related partial

differential equations) in spherical coordinates. The

Legendre differential equation may be solved using

the standard power series method. The equation (7)

has regular singular points at x = ±1, its series solution

about the origin will only converge for |x| < 1. When n

is an integer, one of the series solution terminates

depending on the nature of value of n. These solutions

for n = 0, 1, 2,3, ... form a sequence of orthogonal
polynomials called the Legendre polynomials.

The following SAGE Package

legendre(p1x,p2x,p3x,N) solves the Legendre

differential equation 0)1(2)1(2  ynnyxyx

and computes set of Legendre polynomials with
visualization.

Input:

 N (Number of terms of the series)

 p1x= 1-x
2,

 p2x= -2x & p3x=n
2
+n

 (Coefficients of yyy &,  respectively)

Output:

 Legendre polynomials with visualization

def legendre(p1x,p2x,p3x,N):

 x = var("x")

 n = var("n")

 N1= int(N/2)

 aa = list(var('a_%d' % i) for i in (0..N))

 bb = [0]*(N+2)

 cc = [0]*(N-1)

 dd = [0]*(N+1)

 ee = [0]*(N-1)
 ff = [0]*(N-1)

 gg = [0]*(N1)

 hh = [0]*(N1)

 y = sum(a*x**i for i,a in enumerate(aa))

 dy=y.derivative(x)

 d2y=dy.derivative(x)

 ode=p1x*d2y+p2x*dy+p3x*y;

 ode1=ode.simplify_full()

 ode2=ode1.collect(x)

 for k in range(1,N+1):

 m=x^k
 bb[k] = (ode2.coefficient(m)==0)

 ode2 = ode2 - ode2.coefficient(m)*m

 bb[0]=(ode2==0);

 for k in range(0,N-1):

 ee[k]=bb[k]

 cc[k]=aa[k+2]

 sol=solve(ee,(cc))

 d=sol[0]

 y2=aa[0]+aa[1]*x;

 for k in range(0,N-1):

 y2=y2+(d[k].right_hand_side())*x**(k+2)

 i=0
 for k in range(0,N-1 ,2):

http://www.wikipedia.org/wiki/Physics
http://www.wikipedia.org/wiki/Laplace%27s_equation
http://www.wikipedia.org/wiki/Partial_differential_equation
http://www.wikipedia.org/wiki/Partial_differential_equation
http://www.wikipedia.org/wiki/Spherical_coordinates
http://www.wikipedia.org/wiki/Power_series
http://www.wikipedia.org/wiki/Regular_singular_point
http://www.wikipedia.org/wiki/Polynomial_sequence
http://www.wikipedia.org/wiki/Orthogonal_polynomials
http://www.wikipedia.org/wiki/Orthogonal_polynomials

M. Kaliyappan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1496-1502

www.ijera.com 1500 | P a g e

 y3=y2.substitute(a_1=0,n=k)

 y4=y3.substitute(x=1)

 y5=solve(y4==1,a_0)

 gg[i]=y3.substitute(a_0=y5[0].right_hand_side())

 i=i+1

 i=0
 for k in range(1,N,2):

 y3=y2.substitute(a_0=0,n=k)

 y4=y3.substitute(x=1)

 y5=solve(y4==1,a_1)

 hh[i]=y3.substitute(a_1=y5[0].right_hand_side())

 i=i+1

 for k in range(0,N1):

 plot_list.append(plot(gg[k],(x,-1,1)))

 for k in range(0,N1):

 plot_list.append(plot(hh[k],(x,-1,1)))

 gr=sum(plot_list)

 gr.show()
 return(gg,hh)

Output:

([1, (3/2)x
2
 - 1/2, (35/8)x

4
 – (15/4)x

2
+ 3/8, (231/16)x

6

– (315/16)x
4
 + (105/16)x

2
 - 5/16, (6435/128)x

8
 –

(3003/32)x
6
 + (3465/64)x

4
 – (315/32)x

2
 + 35/128],

[x, (5/2)x
3

– (3/2)x, (63/8)x
5
 – (35/4)x

3
+ (15/8)x,

(429/16)x
7
- (693/16)x

5
 + (315/16)x

3
 – (35/16)x,

(12155/128)x
9
 – (6435/32)x

7
 +(9009/64)x

5
 –

(1155/32)x
3
 + (315/128)x])

Figure 3. Visualizing Legendre polynomials for N=10

V. HERMITE POLYNOMIALS
The Hermite differential equation

022  nyyxy is frequently encountered in

physics and other technical fields. In particular,

Hermite polynomials)(xH n
 arise in solving the

Schrodinger equation for a harmonic oscillator.

However, it also shows one way in which special

functions arise from differential equations, so in that

sense it is of interest to all.

The following SAGE Package

hermitesol(p1x,p2x,p3x,N) solves the Legendre

differential equation 022  nyyxy and

computes set of Hermite polynomials for n=1,2,3…

with visualization.

Input:

N (Number of terms of the series)

 p1x=1,p2x = -2x & p3x = 2n

(Coefficients of yyy &,  respectively)

Output:

Hermite polynomial with visualization
def hermitesol(p1x,p2x,p3x,N):

 x = var("x")

 n = var("n")

 N1=int(N/2)

 aa = list(var('a_%d' % i) for i in (0..N))

 bb = [0]*(N+2)

 cc = [0]*(N-1)

 dd = [0]*(N+1)

 ee = [0]*(N-1)

 ff = [0]*(N-1)

 gg = [0]*(N1)
 hh = [0]*(N1)

 y = sum(a*x**i for i,a in enumerate(aa))

 dy=y.derivative(x)

 d2y=dy.derivative(x)

 ode=p1x*d2y+p2x*dy+p3x*y;

 ode1=ode.simplify_full()

 ode2=ode1.collect(x)

 for k in range(1,N+1):

 m=x^k

 bb[k] = (ode2.coefficient(m)==0)

 ode2 = ode2 - ode2.coefficient(m)*m

 bb[0]=(ode2==0);

 for k in range(0,N-1):

 ee[k]=bb[k]

 cc[k]=aa[k+2]

 sol=solve(ee,(cc))

 d=sol[0]

 y2=aa[0]+aa[1]*x;

 for k in range(0,N-1):

 y2=y2+(d[k].right_hand_side())*x**(k+2)

 i=0
 for k in range(1,N,2):

 y3=y2.substitute(a_0=0,n=k)

 y4=y3.coefficient(x^k)

 y5=solve(y4==2**(k),a_1)

 gg[i]=y3.substitute(a_1=y5[0].right_hand_side())

 i=i+1

 i=1

 hh[0]=1;

 i=1

 for k in range(2,N-1,2):
 y3=y2.substitute(a_1=0,n=k)

 y4=y3.coefficient(x^k)

 y5=solve(y4==2**(k),a_0)

 hh[i]=y3.substitute(a_0=y5[0].right_hand_side())

 i=i+1

 plot_list=[]

http://www.wikipedia.org/wiki/Physics

M. Kaliyappan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1496-1502

www.ijera.com 1501 | P a g e

 for k in range(0,N1):

 plot_list.append(plot(gg[k],(x,-2,2)))

for k in range(0,N1):

 plot_list.append(plot(hh[k],(x,-2,2)))

gr=sum(plot_list)

gr.show()

 return(gg,hh)

Output:

[2x,8x
3
−12x,32x

5
−160x

3
+120x,128x

7
−1344x

5

+3360x
3
−1680x, 512x

9
−9216x

7
+48384x

5
−80640x

3

+30240x]

[1,4x
2
−2,16x

4
−48x

2
+12,64x

6
−480x

4
+720x

2
−120,

256x
8
−3584x

6
+13440x

4
−13440x

2
+1680]

Figure 4: Visualizing Hermite polynomials for N=10.

VI. METHOD OF FROBENIOUS FOR

REGULAR SINGULAR POINTS
If the linear equation 0)()( yxQyxPy ...

(8) has an irregular singularity at x=x0 then the
problem of finding series solution is not easy. If,

however the above equation (8) has regular singular

point at x=x0 then one can develop a method for

finding a series solutions, valid in neighborhood of x0.

This procedure is known as the method of Frobenius.

In this article, the package for getting solutions valid

in neighborhood of regular singular points (x0=0) is

developed, whose indicial equations are different and

not differ by integer.

Input

 N (Number of terms of the series)
 p1x, p2x & p3x

 (Coefficients of yyy &,  respectively).

Output

 Series solutions

def frobenius(p1x,p2x,p3x,N):

 x = var("x")

 r = var("r")

 bb=[0]*(N+2)
 bb1=[0]*(N)

 cc=[0]*(N+1)

 dd=[0]*(N)

 y3=[0]*2*(N+1)

 aa = list(var('a_%d' % i) for i in (0..N))

 y = sum(a*x**i for i,a in enumerate(aa))

 Px=p2x/p1x;

 Qx=p3x/p1x;
 px=x*Px;

 p4x=px.simplify_full()

 qx=x^2*Qx;

 q4x=qx.simplify_full()

 a1=p4x.substitute(x=0)

 b1=q4x.substitute(x=0)

 sol=solve(r*(r-1)+a1*r+b1= =0,(r))

 for j in range(1,3):

 c=sol[j-1].right_hand_side()

 yp = y*x^(c)

 y1=yp.simplify_full();
 dy=y1.derivative(x)

 d2y=dy.derivative(x)

 ode1=p1x*d2y+p2x*dy+p3x*y1;

 ode2=ode1.simplify_full();

 ode=ode2/x^c;

 ode3=ode.collect(x)

 for k in range(0,N+1):

 m=x^k

 bb[k] = (ode3.coefficient(m)= =0)

 ode3 = ode3 - ode3.coefficient(m)*m
 bb[0]=(ode3= =0);

 for k in range(0,N):

 bb1[k]=bb[k]

 for k in range(1,N+1):

 dd[k-1]=aa[k]

 sol1=solve(bb1,(dd))

 sol2=sol1[0]

 y2=aa[0]*x^c

 for i in range(0,N-1):
 y2=y2+(sol2[i].right_hand_side())*x**(i+1+c)

 show(y2)

 return()

Example 7

Consider the following ordinary differential equation

)0(,0)1(76 22  xyxyxyx

Since x = 0 is a regular singular points for the

differential equation, output is shown below

The two linear independent solutions are

(1/68078976)a0 x
(15/2)

+ (1/197904)a0 x
(11/2)

+(1/1064)a0 x
(7/2)

+(1/14)a0 x
(3/2)

+ (a0/√x)

(1/411374976)a0 x
(25/3)

+(1/970224)a0 x
(19/3)

+(1/3944)a0 x
(13/3)

+(1/34)a0 x
(7/3)

+a0 x^(1/3)

M. Kaliyappan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1496-1502

www.ijera.com 1502 | P a g e

Where a0 is arbitrary constant

The above code can be modified for other

singular points like one developed in this article and

for other two cases of Frobenius such as the indicial

equation’s equal roots and roots differ by an integer

for getting two independent solutions can be done in a
similar way.

The results are verified for the example problems

with [4], [5] and [6].

VII. COMPUTATION TIME

COMPARISON
 The Computation time comparison for

obtaining the number of terms of the series for the

ODE 1)0(,2)0(,0  yyyyxy using

SAGE (Wall time) and MATLAB (tic-toc time) are

presented in Table 1.

Number of

coefficients

of the series

 SAGE MATLAB

50 1.252263212 3.712966

100 4.277512169 7.363384

150 10.05321922 11.65843

200 21.62953706 17.56204

250 32.45158839 24.66636

300 52.07608185 29.889488

Table 1: The Computation time comparison for
obtaining the number of coefficients of the series for

the ODE 1)0(,2)0(,0  yyyyxy

using SAGE and MATLAB

VIII. Conclusion

This computational tool will help the students

to understand the nature of the solution and study the
behavior of the solution through visualization. The

figures confirm that the behavior of the solution

changes considerably when the number of terms of the

solution increases, which may not be possible without

the use of Mathematical software. This is the first

time a package has been developed through SAGE to

visualize the series solution of any order. The

programs will help not only solving the differential

equations upto order three, Legendre and Hemite

differential equations but also generating and

visualizing solutions around ordinary, regular singular
points, Legendre and Hermite polynomials for any

order. One can extend the same concept for higher

order differential equations of any order.

References

[1] Shepley L . Ross, Differential equations,

Third edition, John Wiley & sons

[2] Erwin Kreyszig, Advanced Engineering

Mathematics,nineth edition, John Wiley &

Sons,Inc, 2006

[3] Craig Finch, Sage Beginner's Guide, Packt

Publishing,2011

[4] Michael D.Greenberg, Advanced engineering

Mathematics, Second edition, Printice

Hall,1998

 [5] Peter V O’neil, Advanced engineering
 Mathematics, International student edition,

 Thomson, 2007.

[6] Morris Tenenbaum, Harry Pollard, Ordinary

Differential Equations, Dover publications,

INC.,NewYork,1963

