
P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1355 | P a g e

Performance Comparison of Physical Clock Synchronization

Algorithms

D.Adithya Chandra Varma, Praveen Kumar Reddy.M, Prof.Gopinath.
School of Computing Science Engineering, VIT University, Vellore - 632014, TamilNadu, India.

Abstract
This project mainly focuses on comparing and analyzing clock synchronization algorithms in distributed system.

Clock synchronization is required for transaction processing applications, process control applications etc. This

generates transmission delays and synchronization errors for processes and the clock synchronization algorithms
try to synchronize the clocks in the system under the effect of these barriers. Two centralized clock

synchronization algorithms are used for testing Cristian’s and Berkeley clock synchronization algorithms, and

the third, the distributed clock synchronization algorithm, Network time protocol for synchronization of clocks

in the internet.

Keywords: Clock Synchronization, Coordinator, Distributed System, Global Time, Transmission Delay, Time

Server.

I. INTRODUCTION
The three clock synchronization algorithms

used for experiment in this report are Cristian’s and

Berkeley clock synchronization algorithms and

Network Time Protocol. A distributed system consists
of set of processes and these processes communicate

by exchanging messages. In distributed system

synchronization between processes is required for

various purposes, for example in transaction

processing and process control operations. For

processes to be synchronized and have a common

view of global time, clock synchronization algorithms

are applied for ensuring that physically dispersed

processes have a common knowledge of time. The

clock synchronization algorithms are of following

types:

1) Distributed Algorithm: NTP (Network Time
Service Protocol)

2) Centralized Algorithm:

a) Cristian’s clock synchronization algorithm.

b) Berkeley clock synchronization algorithm.

II. LITERATURE SURVEY
 Clock Synchronization Problem:

Cristian’s algorithm and Berkeley algorithm

are for the relative clock synchronization. Cristian’s
algorithm suffers from implementations using single

server. In Cristian’s algorithm we use centralized time

server where as in Berkeley’s, we can’t establish it,

and synchronizes all clocks to average and machines

run time daemon. In Berkeley’s master send offset by

which each clock needs adjustment to each slave.

When skew is too great, we ignore readings

from those clocks. The third one to synchronize the

physical clocks, NTP, having goals of enable clients

across Internet to be accurately synchronized to UTC

despite message delays, enabling clients to

synchronize frequently. NTP has synchronization

models, multicast mode, procedure call mode,

symmetric mode. NTP calculates offset for each pair

of messages, delay and filter dispersion.

In this report we will analyze and compare

performances of Cristian’s and Berkeley clock

synchronization algorithms on a set of processes

having same set of variables and instructions and are
asynchronous (each process execute actions with

arbitrary speeds). The synchronization algorithms try

to minimize effect of these delays and errors. The

experiment is done on the basis of these parameters on

varying number of processes in the system. Algorithm

runs for a finite number of iterations in order to

minimize the effect of delays and errors.

Cristianʼs algorithm:

Figure 1: Cristian algorithm client-server model

The simplest algorithm for setting the time

would be to simply issue a remote procedure call to a

time server and obtain the time. That does not account

for the network and processing delay. We can attempt

to compensate for this by measuring the time (in local

system time) at which the request is sent (T0) and the

time at which the response is received (T1). Our best
guess at the network delay in each direction is to

RESEARCH ARTICLE OPEN ACCESS

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1356 | P a g e

assume that the delays to and from are symmetric (we

have no reason to believe otherwise). The estimated

overhead due to the network delay is then (T1- T0)/2.

The new time can be set to the time returned by the

server plus the time that elapsed since the server

generated the timestamp:

 Cristian's algorithm suffers from the problem
that afflicts all single-server algorithms: the server

might fail and clock synchronization will be

unavailable. It is also subject to malicious interference.

Berkeley algorithm

The Berkeley algorithm, developed by

Gusella and Zatti in 1989, does not assume that any

machine has an accurate time source with which to

synchronize. Instead, it opts for obtaining an average

time from the participating computers and

synchronizing all machines to that average.
The machines involved in the

synchronization each run a time daemon process that

is responsible for implementing the protocol. One of

these machines is elected (or designated) to be the

master. The others are slaves. The server polls each

machine periodically, asking it for the time. The time

at each machine may be estimated by using Cristian's

method to account for network delays. When all the

results are in, the master computes the average time

(including its own time in the calculation).

Figure 2: Berkley algorithm design

 The hope is that the average cancels out the

individual clock's tendencies to run fast or slow.

Instead of sending the updated time back to the slaves,

which would introduce further uncertainty due to

network delays, it sends each machine the offset by
which its clock needs adjustment. The operation of

this algorithm is illustrated in Figure 7. Three

machines have times of 3:00, 3:25, and 2:50. The

machine with the time of 3:00 is the server (master).

 It sends out a synchronization query to the

other machines in the group. Each of these machines

sends a timestamp as a response to the query. The

server now averages the three timestamps: the two it

received and its own, computing (3:00+3:25+2:50)/3 =

3:05. Now it sends an offset to each machine so that

the machine's time will be synchronized to the average

once the offset is applied. The machine with a time of

3:25 gets sent an offset of -0:20 and the machine with
a time of 2:50 gets an offset of +0:15. The server has

to adjust its own time by +0:05.

The algorithm also has provisions to ignore

readings from clocks whose skew is too great. The

master may compute a fault-tolerant average –

averaging values from machines whose clocks have

not drifted by more than a certain amount. If the

master machine fails, any other slave could be elected

to take over.

Network Time Protocol (NTP)

The Network Time Protocol [1991, 1992] is
an Internet standard (version 3, RFC 1305) whose

goals are to:

1. Enable clients across the Internet to be accurately

synchronized to UTC (universal coordinated time)

despite message delays. Statistical techniques are

used for filtering data and gauging the quality of

the results.

2. Provide a reliable service that can survive lengthy

losses of connectivity. This means

having redundant paths and redundant servers.

3. Enable clients to synchronize frequently and
offset the effects of clock drift.

4. Provide protection against interference;

authenticate that the data is from a trusted source.

Figure 3: NTP Protocol server strata

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1357 | P a g e

The NTP servers are arranged into strata. The

first stratum contains the primary servers, which are

machines that are connected directly to an accurate

time source. The second stratum contains the

secondary servers. These machines are synchronized

from the primary stratum machines. The third stratum
contains tertiary servers that are synchronized from the

secondary servers, and so on. Together, all these

servers form the synchronization subnet. A machine

will often try to synchronize with several servers,

using the best of all the results to set its time. The best

result is a function of a number of qualities, including:

round-trip delay, consistency of the delay, round-trip

error, and server’s stratum, the accuracy of the server’s

clock, the last time the server’s clock was

synchronized, and the estimated drift on the server.

Because a system may synchronize with multiple

servers, its stratum is dynamic: it is based on the
server used for the latest synchronization. If you

synchronized from a secondary NTP server then you

are in the third stratum. If, next time, you used a

primary NTP server to synchronize, you are now in the

second stratum.

Machines synchronize in one of the following modes:

 1. Symmetric active mode:

In this mode, a host sends periodic messages

regardless of the reachability state or stratum of its

peer

 2. Symmetric passive:

This mode is created when a system receives

a message from a peer operating in symmetric active

mode and persists as long as the peer is reachable and

operating at a stratum less than or equal to the host.

This is a mode where the host announces its

willingness to synchronize and be synchronized by the

peer. This mode offers the highest accuracy and is

intended for use by master servers. A pair of servers

exchanges messages with each other containing timing

information. Timing data are retained to improve
accuracy in synchronization over time.

3. Procedure call mode:

This call mode is similar to Cristian’s

algorithm; a client announces its willingness to by

synchronize by the server, but not to synchronize the

server.

4. Multicast mode:

This mode is intended for high speed LANs;

relatively low accuracy but fine for many applications.

All messages are delivered unreliably via UDP. In

both the procedure call mode and symmetric mode,

messages are exchanged in pairs. Each message has

the following timestamps:

Ti-3: local time when previous NTP message was sent.

Ti-2: local time when previous NTP message was

received.

Ti-1: local time when current NTP message was sent.

The server notes its local time, Ti. For each

pair, NTP calculates the offset (estimate of the actual
offset between two clocks) and delay (total transit time

for two messages). In the end, a process determines

three products:

1. Clock offset: this is the amount that the local clock

needs to be adjusted to have it correspond to a

reference clock.

2. Roundtrip delay: this provides the client with the

capability to launch a message to arrive at the

reference clock at a particular time; it gives us a

measure of the transit time of the mesge to a particular
time server.

3. Dispersion: this is the “quality of estimate” (also

known as filter dispersion) based on the accuracy of

the server’s clock and the consistency of the network

transit times. It represents the maximum error of the

local clock relative to the reference clock.

By performing several NTP exchanges with

several servers, a process can determine which server

to favor. The preferred ones are those with a lower

stratum and the lowest total filter dispersion. A higher
stratum (less accurate) time source may be chosen if

the communication to the more accurate servers is less

predictable.

The Simple Network Time Protocol, SNTP

(RFC 2030), is an adaptation of the Network Time

Protocol that allows operation in a stateless remote

procedure call mode or multicast mode. It is intended

for environments when the full NTP implementation is

not needed or is not justified. The intention is that

SNTP be used at the ends of the synchronization

subnet (high strata) rather than for synchronizing time

servers.

SNTP can operate in either a unicast,

multicast, or anycast modes:

- in unicast mode, a client sends a request to a

designated server

- in multicast mode, a server periodically sends a

broadcast or multicast message and expects no

requests from clients

- in anycast mode, a client sends a request to a local

broadcast or multicast address and takes the first
response received by responding servers.

From then on, the protocol proceeds as in unicast

mode. NTP and SNTP messages are both sent via

UDP (there is no point in having time reports delayed

by possible TCP retransmissions).

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1358 | P a g e

III. RELATED WORK

METHODOLOGY
JAVA RMI

Java RMI is actually the extension of Java

Object Model to support distributed objects. In

particular it allows objects to invoke methods on

remote objects using the same syntax for local

invocations. The object making remote invocation

must handle Remote Exception and must implement

Remote interface. Java implements the RMI

functionality in the java.rmi package. RMI uses object

serialization to marshal and un-marshal parameters

and does not truncate types, supporting true object-

oriented polymorphism.

Java RMI Architecture:

Fig.4. Java RMI Architecture Overview

The design goal for the RMI architecture was

to create a Java distributed object model that integrates

naturally into the Java programming language and the

local object model. RMI architects have succeeded in

creating a system that extends the safety and

robustness of the Java architecture to the distributed

computing world.

Interfaces:
The heart of RMI is the definition of behavior

(method) which is called as the Interface. RMI

considers interface and implementation as separate

concepts. RMI allows the code that defines the method

and the code that implements the method to remain

separate and to run on separate JVMs.

Fig 5: Java RMI Interfaces

In RMI, the definition of a remote service is
coded using a Java interface. The implementation of

the remote service is coded in a class. Therefore, the

key to understanding RMI is to remember that

interfaces define behavior and classes define

implementation.

A Java interface does not contain executable
code. RMI supports two classes that implement the

same interface. The first class is the implementation of

the behavior, and it runs on the server. The second

class acts as a proxy for the remote service and it runs

on the client.

Figure 6. Java RMI Overview

A client program makes method calls on the

proxy object, RMI sends the request to the remote

JVM, and forwards it to the implementation. Any

return values provided by the implementation are sent

back to the proxy and then to the client's program.

Java RMI Detailed Architecture:

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1359 | P a g e

Figure 7: Java RMI Detailed Architecture

RMI implementation is built from three

layers. First Stub or Skeleton layer which lies beneath

the user layer.

Stub:-

A stub for a remote object acts as a client's

local representative or proxy for the remote object.

The caller invokes a method on the local stub which is

responsible for carrying out the method call on the

remote object. In RMI, a stub for a remote object

implements the same set of remote interfaces that a

remote object implements.

When a stub's method is invoked, it does the

following:

 initiates a connection with the remote JVM

containing the remote object,

 marshals (writes and transmits) the parameters to

the remote JVM,

 waits for the result of the method invocation,

 un-marshal (reads) the return value or exception

returned, and

 Returns the value to the caller.

The stub hides the serialization of parameters

and the network-level communication in order to

present a simple invocation mechanism to the caller.

Skeleton:
In the remote JVM, each remote object may

have a corresponding skeleton. The skeleton is

responsible for dispatching the call to the actual

remote object implementation. When a skeleton

receives an incoming method invocation it does the

following:

 un-marshal (reads) the parameters for the remote

method,

 invokes the method on the actual remote object

implementation, and

 Marshals (writes and transmits) the result (return
value or exception) to the caller.

Stubs and skeletons are generated by the rmic

compiler.

IV. PROJECT SETUP Cristian

Algorithm:
In Cristian’s algorithm each process sends a

request and a delay is generated at each process, after

which the request will be delivered to the message

queue. The simulation engine removes the message

from queue head, calculates a random transmission

delay and sends a reply message to the destination
message by adding destination identifier to the

message and message delay. The calculated delay is

represented as delay_at_rqst_queue in the equation.

Each process makes 30 requests to the Time

Server and then averages the delay values which it

gets in each “reply message” from the time server. A

difference between the current process and the global

time (Time Server) is calculated. These differences are

displayed in the results.

The run () method for Cristian’s Algorithm:

1. The messages are delivered in the increasing order

of delay, to Time Server.
2. Time Server computes message_queue_delay (states

for which the message was in queue) sends a reply

message to requesting process.

3. Process sends 30 requests to the Time Server and

gets a value for delay at request queue.

4. Calculates the average on 30 delay values and

calculates its local time.

In Cristian’s Algorithm, all the process send

request for synchronizing its time. All processes suffer

transmission delay. Each process makes 30 requests

to Time Server. There are no faulty processes in the
system (Time Server never crashes). Processes are

asynchronous and delays are generated randomly. A

process sends request after waiting random amount of

time. In Berkeley Algorithm, all the processes get

message in each iteration, they are asynchronous. The

Coordinator never crashes. The error calculated by

Coordinator is between 1-2 milliseconds and generated

randomly.

Berkley’s Algorithm:
In Berkeley algorithm the Simulation Engine

(Coordinator) polls processes and measures the clock
difference between its time and time of other process

in the system. It selects a largest set of processes that

do not differ from its value by more than a fixed value

(in the experiment fixed value is selected as 20

milliseconds). It then averages the differences of these

processes. It also calculates a synchronization error for

each process clock. The Coordinator asks each process

to correct its clock by a quantity equal to the

difference between the average value and the

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1360 | P a g e

previously measured difference between the clock of

the Coordinator and that of a process. The run ()

method for Berkeley Algorithm:

1. Coordinator calculates time difference between

itself and other processes in the system.

2. Coordinator polls processes with a bound on
difference (in experiment this value is 20

milliseconds)

3. Calculates the average

4. Calculates an error which represents error in

approximation of other clocks in the system.

5. Inform all the processes about the correction.

6. Does 10 iterations of above step.

V. PROJECT EVALUATION AND

RESULTS
Christian Algorithm:

We can implement using RMI

3 files should be there. Chat.java, Client.java,

Server.java in a directory

STEP 1: START--> cmd --> (OPEN 2 COMMAND

PROMPTS , ONE FOR CLIENT AND ONE FOR

SERVER)

 In the command Prompt, first go to the

directory of files present

STEP 2:
 javac *.java ENTER

 OR

 javac Chat.java Client.java Server.java (all

three executing once)

STEP 3: start rmiregistry ENTER

STEP 4: In one command prompt, java Server

 ENTER (Now server is Up and Running)

STEP 5: In another command prompt java Client

 ENTER Request for time (to server): i.e. give

any string and ENTER Server response time we can

get Give another string for milliseconds and

OVERHEAD etc
 Milli seconds

 We get another response from the server that

is number of milli seconds and overhead etc

Figure 8: Christian Algorithm using RMI – server and client

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1361 | P a g e

Berkley Algorithm:

We can implement using RMI

3 files should be there. Chat.java, Client.java,

Server.java in a directory

STEP 1: START--> cmd --> (OPEN 2 COMMAND

PROMPTS, ONE FOR CLIENT AND
ONE FOR SERVER)

 In the command Prompt, first go to the

directory of files present

STEP 2 :

 :> javac *.java ENTER

 OR

 :> javac Chat.java Client.java Server.java (all

three executing once)

STEP 3:

 :> start rmiregistry ENTER

STEP 4: In one command prompt,

 :>java Server ENTER (Now server is Up

and Running)

STEP 5: In another command prompt

 :>java Client ENTER
 Request for time (to server): i.e. give any

string

 :>Time please and ENTER

 Server response time we can get

 Give another string for milliseconds and

OVERHEAD etc

 :> milli seconds ENTER

 Another Server response time we can get.

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1362 | P a g e

Figure 9: Berkley Protocol using RMI – Server and 3 Clients

NTP (Network Time Protocol):

STEP1:

 OPEN 2 COMMAND PROMPTS

 :> javac *.java

STEP2:

 java Primary1.java

 (RETURNS ITS TIME) PRIMARY
SERVER'S TIME

STEP3:

 In One Window,

 java Primary2

(waiting for secondary server)

 In another Window

 java Secondary1

 ENTER YOUR MESSAGE: TIME

PLEASE

 First window (primary server) receives the

request and gives its response back to secondary
server.

 (ITS COMPLETE TIME)

After getting that time, Secondary server synchronizes

to it.

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1363 | P a g e

Figure 10: NTP Protocol using Client Server model

The experiment is conducted on 5, 10, 20 and

30 processes in the system. In Cristian algorithm each

process makes 30 requests to the Time Server and then

calculates an average on these delay values. In results

all the processes of the system are shown and the

difference between them and global time are also

shown. In Berkeley algorithm an average is calculated

by the coordinator on the basis of equation (2). The

graph is generated for one process by showing its

difference at each iteration.

Note: For all diagrams, the Berkeley curve shows the

difference curve for one process on which 10 iterations

of Berkeley algorithm was performed. The value of

the 4 processes on which Berkeley Algorithm were

performed is shown in Table 1. Cristian curve shows

the difference of all the processes in the system from

the global time. Also in a system of five processes one

process is Time Server, therefore only four processes

are shown in the curve.

Comparison of Christian and Berkley in real-time:

P K Reddy. M et al Int. Journal of Engineering Research and Applicationas www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1355-1364

www.ijera.com 1364 | P a g e

Observations:

5 processes:

Observation: In Cristian curve shows

tendency to converge as the global time increases.

Berkeley algorithm converge a process at a very fast

rate with every iteration.

10 processes:

Observation: Cristian curve shows that as the

number of processes increase the difference of each

process from global time varies in a very small

interval. In Berkeley Algorithm the process gets closer

to global time value.

20 processes:

Observation: There is randomness in

processes of Cristian Curve due to variable
transmission delay. But this randomness is in a finite

range. Berkeley curve shows that clock of the process

converges closer to the global time after 10 iterations.

30 processes:

Observation: Cristian curve shows that as the

number of processes increase the difference of each

process from global time varies in a very small

interval. Berkeley curve shows that number of

iterations brings clock value closer to global time.

VI. CONCLUSION
Considering the results by having from RMI

and simulation engine, we can conclude that for

internal clock synchronization, cristian’s algorithm as

well as Berkley algorithm used, in those if we are

using less number of processes (clients) then Berkley

algorithm shows much difference in global time to

synchronize where as cristian’s algorithm not shows

that much. So when less number of clients are there in

out subnet cristian’s algorithm is best where as for
more number of clients are present Berkley algorithm

much efficient. And finally NTP protocol, which is

used for internet clocks synchronization, is best in its

own conditions.

Clock synchronization is required for internal

and external synchronization of clocks for various

transaction processes and process controls. A more

efficient algorithm will lead to a better convergence.

 REFERENCES
[1] F. Cristian Probabilistic clock

synchronization. In Distributed Computing,

volume 3, pages 146-158. Springer Verlag,

1989

[2] R. Gusella and S. Zatti, "TEMPO-A network

time controller for a distributed Berkeley

UNIX system."IEEE Distributed Processing

Tech.Comm. Newslett., vol. 6, no. S1-2, pp.

7-15, June 1984.

[3] J.Y. Halpern et al., "Fault-Tolerant Clock

Synchronization,"Proc. Third Ann. ACM
Symp. Principles of Distributed Computing,

ACM, New York, 1984, pp. 89-102.

[4] T. Clouser, R. Thomas, M. Nesterenko

"Emuli: Emulated Stimuli for Wireless

Sensor Network Experimentation", technical

report TR-KSU-CS-2007-04, Kent State

Univesity.

[5] Distributed Systems ©2000-2009 by Paul

Krzyzanowski, Rutgers University

