
David Solomon Raju Y et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.775-781

www.ijera.com 775 | P a g e

Implementation of Pipeline Architecture for High-Speed

Computation of the Discrete Wavelet Transform Using HDL

G. Pavan Kumar
1
, T. Vishnu Murthy

2
, David Solomon Raju Y

3

1PG Student, M. Tech (VLSI) Pragathi Engineering College, Kakinada, East Godavari Dt.-533 437 A.P
2Assoc.Prof.ECE, Pragathi Engineering College, Kakinada, East Godavari Dt.-533 437 A.P
3Assoc. Prof. ECE, Holy Mary Institute of Technology & Science, Keesara, R. R. Dt.- 501 301, A.P

Abstract
In this paper, a scheme for the design of a high-speed pipeline VLSI architecture for the computation of the 2-D
discrete wavelet transform (DWT) is proposed. The main focus in the development of the architecture is on

providing a high operating frequency and a small number of clock cycles along with efficient hardware

utilization by maximizing the inter-stage and intra-stage computational parallelism for the pipeline. The inter-

stage parallelism is enhanced by optimally mapping the computational task of multi decomposition levels to the

stages of the pipeline and synchronizing their operations. The intra-stage parallelism is enhanced by dividing the

2-D filtering operation into four subtasks that can be performed independently in parallel and minimizing the

delay of the critical path of bit-wise adder networks for performing the filtering operation. To validate the

proposed scheme, a circuit is designed, simulated, and implemented in FPGA for the 2-D DWT computation.

The results of the implementation show that the circuit is capable of operating with a maximum clock frequency

of 80.749MHz and processing 1022 frames of size 512 × 512 per second with this operating frequency. It is

shown that the performance in terms of the processing speed of the architecture designed based on the proposed

scheme is superior to those of the architectures designed using other existing schemes, and it has similar or
lower hardware consumption.

Keywords - Computational parallelism, Discrete Wavelet Transform FPGA implementation, Image Processing,

Multi-resolution filtering, Non-separable approach, Parallel architecture.

I. INTRODUCTION
The 2-D discrete wavelet transforms (DWT)

have been widely used in many engineering

applications because of their multi-resolution

decomposition capability [1]. However, processing

large volumes of data of various decomposition

levels of the transform makes their computation

computationally very intensive. In the past, many
architectures have been proposed aimed at providing

high-speed 2-D DWT computation with the

requirement of utilizing a reasonable amount of

hardware resources. These architectures can be

broadly classified into separable and non-separable

architectures. In a separable architecture, a 2-D

filtering operation is divided into two 1-D filtering

operations, one for processing the data row-wise and

the other column-wise. In the previous papers it was

proposed a low-storage short-latency separable

architecture in which the row-wise operations are
performed by systolic filters and the column-wise

operations by parallel filters. This architecture

requires complex control units to facilitate the

interleaved operations of the output samples of

different decomposition levels by employing a

recursive pyramid algorithm (RPA). Architecture has

been introduced in which each of the row- and

column-wise filtering operations are decomposed

using the so called lifting operations into a cascade of

sub-filtering operations. The scheme leads to low-

complexity architecture with a large latency. The

separable architectures, in which a 1-D filtering

structure is used to perform the 2-D DWT, have an

additional requirement of transposing the

intermediate data between the two 1-D filtering

processes. This increases the memory size as well as

the latency of the architectures. The non-separable

architectures do not have this problem, since in these

architectures, the 2-D transforms are computed
directly by using 2-D filters. It has been proposed

that two non-separable architectures, one using

parallel 2-D filters and the other an SIMD 2-D array,

both based on a modified RPA. In the former

architecture, a high degree of computational

parallelism is achieved at the expense of less efficient

hardware utilization, whereas the latter architecture

requires a reconfigured organization of the array as

the processing moves on to higher decomposition

levels. But the processing speed of this architecture is

low in view of the fact that the same architecture is
utilized recursively to perform the tasks of successive

decomposition levels. As the processing units

employed in this architecture differ from one another,

the complexity of the hardware resources is high and

the design of the architecture is complicated. Most

existing non-separable architectures aim at providing

fast computation of the DWT by using pipeline

RESEARCH ARTICLE OPEN ACCESS

David Solomon Raju Y et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.775-781

www.ijera.com 776 | P a g e

structures and a large number of parallel filters.

However, these existing architectures have not

exploited the computational parallelism inherent in

the DWT operation to the extent possible in order to

provide a high speed.

In this paper, non-separable pipeline
architecture for fast computation of the 2-D DWT

with a reasonable low cost for the hardware resources

is proposed. The high-speed computation is achieved

by efficiently distributing the task of the

computations of multiple decomposition levels

among the stages of the pipeline, and by optimally

configuring the data and synchronizing the operations

of pipeline so as to maximize the inter-stage and

intra-stage computational parallelism. The paper is

organized as follows. In Section II, a mathematical

formulation of the 2-D DWT computation necessary

for the development of the proposed architecture is
presented. In Section III, a study is conducted to

determine the number of stages of a pipeline

necessary for optimally mapping the task of the DWT

computation onto the stages of the pipeline. Based on

this study, in Section IV, three-stage pipeline

architecture is developed with an efficient structure

of the 2-D input data and an optimal organization of

the processing units in each of the stages. In Section

V, the performance results is assessed and shown in

the form of synthesis by an FPGA implementation.

Section VI summarizes the work of this paper by
highlighting the salient features of the proposed

architecture.

II. Formulations for the Computation of

the 2-D DWT
The 2-D DWT is an operation through

which a 2-D signal is successively decomposed in a
spatial multi resolution domain by low pass and high

pass FIR filters along each of the two dimensions.

The four FIR filters, denoted as high pass-high pass

(HH), high pass-low pass (HL), low pass-high pass

(LH) and low pass-low pass (LL) filters, produce,

respectively, the HH, HL, LH and LL sub band data

of the decomposed signal at a given resolution level.

The samples of the four sub bands of the decomposed

signal at each level are decimated by a factor of two

in each of the two dimensions. For the operation at

the first level of decomposition, the given 2-D signal
is used as input, whereas for the operations of the

succeeding levels of decomposition, the decimated

LL sub band signal from the previous decomposition

level is used as input.

A. Formulation for the 2-D DWT Computation

Let a 2-D signal be represented by an No ×

No matrix S (o), with its (m, n) th element denoted by

S (o) (m, n) (0 ≤ m, n ≤ No-1), where No is chosen to be

2J, J being an integer. Let the coefficients of a 2-D

FIR filter P (P = HH, HL, LH, LL), be represented by

an L×M matrix H (P). The (k, i) th coefficient of the
filter P is denoted by H (P) (k, i) (0 ≤ k ≤ L-1), (0 ≤ i ≤

M-1). The decomposition at a given level j = 1, 2,

….. J can be expressed as

Each 2-D convolution can be seen as a sum

of the products of L×M the filter coefficients and the

elements contained in an L×M window sliding on a

2-D data. The decimation by a factor of two in both

the horizontal and vertical dimensions can be

accomplished by sliding the L×M window by two

positions horizontally and vertically for the

computation of two successive samples. Only the LL

sub band data of decomposition are used as input for

the decomposition at the next level. After iterations,
the 2-D signal S (o) is transformed into J resolution

levels, with HH, HL and LH sub bands from each of

the first J-1 levels and HH, HL, LH and LL sub

bands from the last Jth level. Since Nj = N0/2
j, the

number of samples that need to be processed at each

level is one quarter of that at the preceding level.

B. Formulation for a Four-Channel Filtering

Operation

 In order to facilitate parallel processing for

the 2–D DWT computation, the L×M filtering
operation needs to be divided into multi-channel

operations, each channel processing one part of the 2-

D data. It is seen from (1) that the even and odd

indexed elements are always operated on the even

and odd indexed filter coefficients, respectively. The

matrix S (o) representing the LL sub band at jth the

level can, therefore, be divided into four Nj =

(Nj/2+L/2) × (Nj/2+M/2) sub-matrices, and the

elements are given by as shown below

taking into consideration the periodic padding

samples at the boundary [30]. It is seen from (2) that

the data at any decomposition level are divided into

four channels for processing by first separating the

even and odd indexed rows of S (j), and then

separating the even and odd indexed columns of the

resulting two sub-matrices. The data in each channel

can then be computed by an (L/2×M/2) - tap filtering
operation. In order to facilitate such a 4-channel

filtering operation, the filter coefficients, as used in

(1), need to be decomposed appropriately.

David Solomon Raju Y et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.775-781

www.ijera.com 777 | P a g e

Accordingly, the matrix H (P) needs to be decomposed

into four (L/2×M/2) sub-matrices, and elements are

given by

respectively. By using (2) and (3) in (1), any of the

four sub band signals A(j), B(j), C(j), and S(j), at the j th

decomposition level, can be computed as a sum of
four convolutions using (L/2×M/2) -tap filters. For

example, the LL sub band given by (1d) can now be

expressed as

At any decomposition level, the separation

of the sub band processing corresponding to even and

odd indexed data as given by (4) is consistent with

the requirement of decimation of the data in each

dimension by a factor of two in the DWT

computation. It is also seen from (4) that the filtering

operations in the four channels are independent and

identical, which can be exploited in the design of

efficient pipeline architecture for the 2-D DWT
computation.

III. PIPELINE FOR THE 2-D DWT

COMPUTATION
In a pipeline structure for the DWT

computation, multiple stages are used to carry out the

computations of the various decomposition levels of
the transform. The computation corresponding to

each decomposition level needs to be mapped to a

stage or stages of the pipeline. It is seen from the

formulation in Section II that the task of computing

the jth decomposition level in a -level DWT

computation consists of computing samples. The

computation of each sample actually performs an

(L×M)-tap HH, HL, LH or LL FIR filtering operation

that comprises the operations of (L×M)

multiplications followed by (L×M) accumulations.

Assuming that these operations for the computation
of one sample are carried out by a unit of filter

processor, the overall task of the DWT computation

would require a certain number of such filter units. In

order to design a pipeline structure capable of

performing a fast computation of the DWT with low

expense on hardware resources and low design

complexity, an optimal mapping of the overall task of

the DWT computation to the various stages of the

pipeline needs to be determined. Any distribution of

the overall task of the DWT computation to stages

must consider the inherent nature of the sequential

computations of the decomposition levels that limit

the computational parallelism of the pipeline stages,

and consequently the latency of the pipeline. The key
factors in the distribution of the task to the stages are

the maximization of the inter-stage and intra-stage

computational parallelism and the synchronization of

the stages within the constraint of the sequential

nature of the computation of the decomposition

levels. The feature of identical operations associated

with the computations of all the output samples

irrespective of the decomposition levels in a DWT

computation can be exploited to maximize the intra-

stage parallelism of the pipeline. Further, in order to

minimize the expense on the hardware resources of

the pipeline, the number of filter units used by each
stage ought to be minimum and proportional to the

amount of the task assigned to the stage. A

straightforward mapping of the overall task of the

DWT computation to a pipeline is one-level to one-

stage mapping, in which the tasks of decomposition

levels are distributed to J stages of the pipeline. In

this mapping, the amount of hardware resources used

by a stage should be one-quarter of that used by the

preceding stage. Thus, the ratio of the hardware

resource used by the last stage to that used by the first

stage has a value of 1/4J-1. For images of typical size,
this parameter would assume a very small value.

Hence, for a structure of the pipeline that uses

identical filter units, the number of these filters units

would be very large. Further, since the number of

such filter units employed by the stages would

decrease exponentially from one stage to the next in

pipeline, it will make their synchronization very

difficult. The solution to such a difficult

synchronization problem, in general, requires more

control units, multiplexers and registers, which

results in a higher complexity of the hardware

resources. A reasonably large value of λ < 1would be
more attractive for synchronization. In this respect,

the parameter can be seen as a measure of difficulty

in that a smaller value of this parameter implies a

greater design effort and more hardware resources for

the pipeline. The parameter can be increased from its

value of 1/4J-1. in the one-level to one-stage pipeline

structure by dividing the large-size stages into a

number of smaller stages or merging the small-size

stages into larger ones. However, dividing a stage of

the one-level to one-stage pipeline into multiple

stages would require a division of the task associated
with the corresponding decomposition level into sub-

tasks, which in turn, would call for a solution of even

a more complex problem of synchronization of the

sub-tasks associated with divided stages. On the other

hand, merging multiple small-size stages of the

pipeline into one stage would not create any

additional synchronization problem. As a matter of

fact, such a merger could be used to reduce the

David Solomon Raju Y et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.775-781

www.ijera.com 778 | P a g e

overall number of filter units of the pipeline. In view

of the above discussion, the synchronization

parameter λ can be increased by merging a number of

stages at tail end of the pipeline. Fig. shows the

structure of a pipeline in which the stages I to J of the

one-level to one-stage pipeline have been merged. In
this structure, the tasks of the decomposition level

from j = 1to j=I - 1are mapped to stage 1 to I - 1,

respectively, whereas those of the decomposition

levels j = I….J, are mapped all together to the I th

stage. Note that the total amount of computations

performed by stage I is

Fig Pipeline structure with stages for -level

computation

IV. DESIGN OF THE ARCHITECTURE
 In the previous section, we advocated a

three-stage pipeline structure for the computation of

the 2-D DWT to realize an optimal combination of

the parameters for the hardware utilization and

pipeline synchronization. In this three-stage structure,

like in any pipeline architecture, the operations in a

given stage depend on the data produced by the

preceding stage. However, because of the way that

the computational load of the various decomposition

levels of the 2-D DWT computation has been
distributed among the three stages, the operations in

the first and second stages of the pipeline do not

depend on the data produced by them, whereas that in

stage 3 does depend on the data produced by itself.

The operations of the three stages need to be

synchronized in a manner so that the three stages

perform the computation of multiple decomposition

levels within a minimum possible time period while

using the available hardware resources maximally. In

this section, we present the design of the proposed 3-

stage pipeline architecture, starting with the

synchronization of the operations of the stages, and
then focusing on the details of the intra-stage design

so as to provide an optimal performance.

A. Synchronization of Stages

The distribution of the computational load

among the three stages, and the hardware resources

made available to them are in the ratio 8:2:1.

Accordingly, the synchronization of the operations

between the stages needs to be carried out under this

constraint of the distribution of the computational

load and hardware resources. According to the nature
of the DWT, the computation of a decomposition

level j depends on the data computed at its previous

level j - 1, in which the number of computations is

four times of that at the decomposition level.

Therefore, the stages of pipeline need to be

synchronized in such a way that each stage starts the

operation at an earliest possible time when the

required data become available for its operation.

Once the operation of a stage is started, it must

continue until the task assigned to it is fully

completed. Consider the timing diagram given in Fig.

below for the operations of the three stages, where t1,

t2 and t3 are the times taken individually by stages 1,
2 and 3, respectively, to complete their assigned

tasks, ta and tb are the times elapsed between the

starting points of the tasks by stages 1 and 2, and that

by stages 2 and 3, respectively.

Fig Timing diagram for the operations of three stages

Note that the lengths of the times t1, t2 and t3

to complete the tasks by individual stages are

approximately the same, since the ratios of the tasks

assigned and the resources made available to the

three stages are the same. The average times to
compute one output sample by stages 1, 2 and 3 are

in the ratio 1:4:8. In Fig. above relative widths of the

slots in the three stages are shown to reflect this ratio.

Our objective is to minimize the total computation

time ta+ tb+ t3 by minimizing ta, tb and t3, and

individually. Assume that 2-D output samples for a

decomposition level are computed row-by-row

starting from the upper-left corner sample. Since the

operations in stage 1 are independent of those in the

other two stages, it can operate continuously to

compute all the samples of level 1. The value of t1 is

equal to T8 N
2
1, where T8 is the average time taken by

stage 1 to compute one output sample. Since the

operations of stages 2 and 3 require the output data

computed by stages 1 and 2, respectively, their

operations must be delayed by certain amount of

times so that they can operate continuously with the

data required by them becoming available. We now

give the lowest bound on ta and tb so that once stages

2 and 3 start their operations they could continue

their operations uninterruptedly. Assume that stage 3

computes all the output samples of all remaining

levels (i.e., level 3 to level) in a sequential manner.
We only need to consider the requirement of the data

availability for the computation of level-3, which

uses the level-2 samples computed by stage 2. Then,

in a way similar to that obtaining ta min, by imposing

the condition that at the time instant of starting the

calculation of a level-3 output sample by stage 3, all

the samples in the window of the level-2 output

samples are available, it can be shown that the

minimum value of is given by ta min = T8 [N1 (L-1)

+M]

B. Design of Stages
The three-stage architecture, stages 1 and 2

perform the computations of levels 1 and 2,

David Solomon Raju Y et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.775-781

www.ijera.com 779 | P a g e

respectively, and stage 3 that of all the remaining

levels. Since the basic operation of computing each

output sample, regardless of the decomposition level

or the sub band, is the same, the computation blocks

in the three stages can differ only in the number of

identical processing units employed by them
depending on the amount of the computations

assigned to the stages. As seen, an (L×M)-tap

filtering operation is decomposed into four

independent (L/2×M/2)-tap filtering operations, each

operating on the 2-D L/2×M/2data resulting from the

even or odd numbered rows and even or odd

numbered columns of an L×M window of an LL-sub

band data. A unit consisting of L/2×M/2MAC cells

can now be regarded as the basic processing unit to

carry out an (L/2×M/2)-tap filtering operation. An

L×M window of the raw 2-D input data or that of an

LL-sub band data must be decomposed into four
distinct L/2×M/2sub-windows in accordance with the

four decomposed terms given by the right side of (4).

This decomposition of the data in an L×M window

can be accomplished by designing for each stage an

appropriate data scanning unit (DSU) based on the

way the raw input or the LL-sub band data is

scanned. The stages would also require memory

space (buffer) to store the raw input data or the LL-

sub band data prior to scanning. Since stages 1 and 2

need to store only part of a few rows of raw input or

LL-sub band data at a time, they require a buffer of
size of O (N), whereas since stage 3 needs to store

the entire LL-sub band data of a single

decomposition level, it has a buffer of size of O (N) 2.

Fig. gives the block diagram of the pipeline showing

all the components required by the three stages. Note

that the data flow shown in this figure comprises only

the LL-sub band data necessary for the operations of

the stages. The HH, HL and LH sub band data are

outputted directly to an external memory. Now, we

give details on the structure of the data scanning unit

to scan the 2-D data and establish four distinct

L/2×M/2 sub-windows, as well as on the distribution
of the filtering operations to the processing units in

each stage.

Fig Block diagram of the three-stage architecture

Structure of the Data Scanning Unit: In accordance

with (4), an L×M window of the raw 2-D input data

stored in or an LL-sub band data stored in or must be

partitioned into four L/2×M/2sub-windows, and

stored into the DSU of the corresponding stage.

Further, this same equation also dictates that a 2-D

input data must be scanned in a sequential manner.

According to this sequence of scanning, the samples

in a set of data comprising L rows of a 2-D input data

are scanned starting from the top-left corner. Once

the scanning of all the samples of L rows is

completed, the process is repeated for another L rows
after shifting down by two row positions. The

objective is then to design a structure for a DSU so

that samples scanned with this sequential mode get

partitioned into the four sub-windows. In order to

partition an L×M window into four L/2×M/2 sub-

windows, the structure of the DSU must first partition

the samples of the window into two parts depending

on whether a sample belongs to an even-indexed or

odd-indexed row; then the samples in each part must

be partitioned further into two parts depending on

whether a sample belongs to an even-indexed or odd-

indexed column. The first partition can be achieved
by directing scanned samples alternatively to two sets

of L/2shift registers. The second partition can be

achieved by reorganizing the samples stored in the

shift registers of the two sets depending on whether a

sample belongs to even-indexed or odd-indexed

column by employing de-multiplexers. Finally, the

samples of the four sub-windows can be stored,

respectively, into four units of L/2×M/2 parallel

registers. Fig. shows a structure of the DSU to

accomplish this task. This data scanning scheme

automatically incorporates the down sampling
operations by two in the vertical and horizontal

directions (as required by the transform), and thus no

additional peripheral circuits and registers are

required for the down sampling operations by the

architecture. As a result, the data scanning scheme, in

comparison to the other schemes [32], requires less

hardware resources for the control units and fewer

registers for the stages

Fig Structure of the data scanning unit (DSU)

C. Design of the Processing Unit

In each stage, a processing unit carries out
an (L/2×M/2)-tap filtering operation using the

samples of an L/2×M/2sub-window at a time to

produce the corresponding output. Since the sub-

windows cannot be fed into a processing unit at a rate

faster than the rate at which these sub-windows are

processed by the processing unit, the processing time

to process a sub-window (one time unit) is critical in

determining the maximum clock frequency at which

David Solomon Raju Y et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.775-781

www.ijera.com 780 | P a g e

the processing units can operate. Each physical link

from a given bit of the input to an output bit of the

processing unit gives rise to a data path having a

delay that depends on the number and the types of

operations being carried out along that path.

Therefore, it is crucial to aim at achieving the
shortest possible delay for the critical path when

designing a processing unit for our architecture [33]–

[36].

Fig Block diagram of a processing unit

The filtering operation carried out by a

processing unit, as described above, can be seen as

L/2×M/2parallel multiplications followed by an

accumulation of the L/2×M/2 products. If the input

samples and the filter coefficients have the word

lengths of A and B bits, respectively, then the

processing unit produces an array of (B*L*M/4) ×A

bits simultaneously in one clock cycle. In order to
obtain the output sample corresponding to a given

sub-window, the bits of the partial products must be

accumulated vertically downward and from right to

left by taking the propagation of the carry bits into

consideration. The task of this accumulation can be

divided into a sequence of layers. The shortest critical

data path can be achieved by minimizing the number

of layers and the delay of the layers. In each layer, a

number of bits consisting of the partial product bits

and/or the carry bits from different rows need to be

added. This can be done by employing in parallel as
many bit-wise adders as needed in each layer. The

idea behind using bit-wise adder is to produce to the

extent possible the number of output bits from a layer

is smaller than the number of input bits to that layer.

This can be done by using full adders and specifically

designed double adders, in which the full adder

consumes 3 bits and produces 2 bits (one sum and

one carry bits) whereas the double adder consumes

two pairs of bits (2×2) from neighboring columns and

produces 3 bits (one sum and two carry bits/two sum

and one carry bits). The two types of adders have

equal delay, and are efficient in generating carry bits
and compressing the number of partial products [36].

With this structure of the layers, the number of layers

becomes minimum possible and the delay of a layer

is equal to that of a full adder or equivalently to that

of a double adder, thereby providing the shortest

critical path for the accumulation network. Since the

two rows of bits produced by the accumulation

network still remain un accumulated, they finally

need to be added to produce one row of output bits in

the final phase of the task of a processing unit by

using a carry propagation adder. Note that tasks of

the accumulation network and the carry propagation
adder can be made to have some partial overlap,

since the latter can start its processing as soon as the

rightmost pairs of bits becomes available from the

former. Fig. 9 depicts a block diagram of a

processing unit based on the above discussion.

V. PERFORMANCE RESULTS
In order to evaluate the performance of a

computational architecture, one needs to make use of
certain metrics that characterize the architecture in

terms of the hardware resources used and the

computation time. In this paper, the hardware

resources used for the filtering operation are

measured by the number of multipliers (NMUL) and

the number of adders (NADD), and that used for the

storage of data and filter coefficients are measured by

the number of registers (NREG). The computation

time, in general, is technology dependent. However, a

metric that is technology independent and can be

used to determine the computation time T is the

number of clock cycles (NCLK) elapsed between the
first and the last samples inputted to the architecture.

Assuming that one clock period is Tc, the total

computation time can then be obtained as T=NCLK Tc.

and the synthesis report is below

David Solomon Raju Y et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.775-781

www.ijera.com 781 | P a g e

VI. CONCLUSION
In this paper, 3-stage pipeline architecture

for a real-time computation of the 2-D DWT has been

implemented. The objective has been to achieve a

short computation time by maximizing the

operational clock frequency (1/ Tc)and minimizing

the number of clock cycles (NCLK) required for the

DWT computation by developing a scheme for

enhanced inter-stage and intra-stage computational

parallelism for the pipeline architecture. The results

of the FPGA implementation have shown that the

circuit can process a 512×512 image in 13.840ns,
which is at least two times faster than that of the

other FPGA implementations, and in some instances,

even with less hardware utilization. Finally, it is

worth noting that the architecture designed in this

paper is scalable in that its processing speed can be

adjusted upward or downward by changing the

number of MAC cells in each of the processing units

by a factor equal to that of the reduction required in

the processing speed.

REFERENCES
[1] H. Y. Liao, M. K. Mandal, and B. F.

Cockburn, ―Efficient architectures for 1-D and
2-D lifting-based wavelet transforms,‖ IEEE

Trans. Signal Process., vol. 52, no. 5, pp.
1315–1326, May 2004.

[2] P. Wu and L.Chen, ―An efficient architecture
for two-dimensional discrete wavelet

transform,‖ IEEE Trans. Circuits Syst. Video
Technol.,vol. 11, no. 4, pp. 536–545, Apr.

2001.
[3] S. Masud and J. V. McCanny, ―Reusable

silicon IP cores for discrete wavelet transform

applications,‖ IEEE Trans.Circuits Syst. I,
Reg. Papers, vol. 51, no. 6, pp. 1114–1124,

Jun. 2004.
[4] T. Huang, P. C. Tseng, and L. G. Chen,

―Generic RAM-based architectures for two-
dimensional discrete wavelet transform with

line-based method,‖ IEEE Trans. Circuits Syst.

Video Technol., vol. 15, no. 7, pp. 910–920,
Jul. 2005.

[5] P. K. Meher, B. K. Mohanty, and J. C. Patra,
―Hardware-efficient systolic- like modular

design for two-dimensional discrete wavelet
transform,‖ IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 55, no. 2, pp.151–155, Feb. 2008.
[6] A. Benkrid, D. Crookes, and K. Benkrid,

―Design and implementation of a generic 2-D
orthogonal discrete wavelet transform on an

FPGA,‖ in Proc. IEEE 9th Symp. Field-
programming Custom Computing Machines

(FCCM), Apr. 2001, pp. 190–198.
[7] P. McCanny, S. Masud, and J. McCanny,

―Design and implementation of the
symmetrically extended 2-D wavelet

transform,‖ in Proc. IEEE Int. Conf. Acoustic,
Speech, Signal Process. (ICASSP), 2002, vol.

3, pp. 3108–3111.
[8] S. Raghunath and S. M. Aziz, ―High speed

area efficient multi-resolution 2-D 9/7 filter
DWT processor,‖ in Proc. Int. Conf. Very

Large Scale Integration (IFIP), Oct. 2006, vol.
16–18, pp. 210–215.

[9] M. Angelo poulou, K. Masselos, P. Cheung,
and Y. Andreo poulos, ―A comparison of 2-D

discrete wavelet transform computation
schedules on FPGAs,‖ in Proc. IEEE Int.

Conf. Field Programmable Technology (FPT),

Bangkok, Tailand, Dec. 2006, pp. 181–188.
[10] C. Cheng and K. K. Parhi, ―High-speed VLSI

implementation of 2-D discrete wavelet
transform,‖ IEEE Trans. Signal Process., vol.

56, no.1, pp. 393–403, Jan. 2008.
[11] K. C. Hung, Y. S. Hung, and Y. J. Huang, ―A

nonseparable VLSI architecture for two-
dimensional discrete periodized wavelet

transform,‖ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 9, no. 5, pp. 565–576,

Oct. 2001.
[12] I. S. Uzun and A. Amira, ―Rapid

prototyping—framework for FPGA based
discrete biorthogonal wavelet transforms

implementation,‖ IEE Vision, Image Signal
Process., vol. 153, no. 6, pp. 721–734, Dec.

2006.
[13] R. J.C. Palero, R. G. Gironez, and A. S.

Cortes, ―A novel FPGA architecture of a 2-D
wavelet transform,‖ J. VLSI Signal Process.,

vol. 42, pp. 273–284, 2006.
[14] J. Song and I. Park, ―Pipelined discrete

wavelet transform architecture scanning dual
lines,‖ IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 56, no. 12, pp. 916–920, Dec.
2009.

[15] C. Zhang, C. Wang, and M. O. Ahmad, ―A
VLSI architecture for a fast computation of the

2-D discrete wavelet transform,‖ in Proc.

IEEE Int. Symp. Circuits Syst. (ISCAS), May
2007, pp. 3980–3983.

